Aktuelle Trends und Herausforderungen in der Finite-Elemente-Simulation

Größe: px
Ab Seite anzeigen:

Download "Aktuelle Trends und Herausforderungen in der Finite-Elemente-Simulation"

Transkript

1 Aktuelle Trends und Herausforderungen in der Finite-Elemente-Simulation Kai Diethelm GNS Gesellschaft für numerische Simulation mbh Braunschweig engineering software development Folie 1

2 Überblick Vorstellung GNS Vorstellung der Software-Produkte Ansätze zur Parallelisierung von Programmen Reproduzierbarkeit paralleler Lösungen Zusammenfassung Folie 2

3 GNS im Überblick Allgemeines Firmengründung Gegenstand der Firma Umsatz (GNS mbh) Sitz der Gesellschaft Mitarbeiter Kunden 1994 Berechnungsdienstleistungen, Entwicklung und Vertrieb von Simulations-Software Derzeit ca. 9 Mio, davon jeweils ca. 50% mit Dienstleistung und mit Software-Lizenzverkäufen Braunschweig ca. 120 (Ingenieure, Physiker, Mathematiker,...) Internationale Automobil-, Luft- und Raumfahrtindustrie Folie 3

4 GNS im Überblick Standorte (national) Braunschweig Berlin Flörsheim (Rhein/Main) Sindelfingen Ingolstadt Landkarte: (cc-by) geo.dianacht.de Folie 4

5 GNS im Überblick Standorte (international) Prag Pune Shanghai Melbourne Landkarte: (cc-by) geo.dianacht.de Folie 5

6 GNS im Überblick Software-Produkte Animator Indeed Generator OpenForm Folie 6

7 Indeed Anwendungsgebiete Hauptanwendung: Tiefziehsimulation von Karosseriebauteilen Ebenes Blech wird mittels Werkzeugen (Blechhalter, Stempel, Matrize) in einer Presse plastisch ausgeformt Folie 7

8 Indeed Theoretische Grundlagen Quasi-statisches Finite-Elemente-Programm für die numerische Simulation von Umformprozessen Implizite Integration der Gleichgewichtsbedingungen Verschiedene nichtlineare Elementtypen Schalenelemente (Crisfield-Formulierung / Schoop) Tetra- und Hexa-Elemente (linear/quadratisch) Diverse elasto-plastische Materialmodelle Kontakt-Formulierungen: starr - deformierbar deformierbar - deformierbar (Penalty-Methode) Adaptive Netzverfeinerung Parallele Versionen: Shared Memory Distributed Memory Anspruch: High-End-System für Nutzer mit hohen Genauigkeitsanforderungen Folie 8

9 Ansätze zur Parallelisierung - Shared Memory Grundidee: Rechner enthält System von Multiprozessoren, die sich Speicher teilen Gleiche Datenzugriffszeiten für alle Prozessoren ( uniform memory access ) Verschiedene Programmiermodelle verfügbar In INDEED verwendet: OpenMP Unterstützung von FORTRAN, C, C++ Plattformunabhängigkeit Relativ einfach zu verwenden (direktivenbasiert) Folie 9

10 Reproduzierbarkeit der Lösung Simulation 1* Simulation 2* Simulation 3* *:12cores, Intel SandyBridge Nicht reproduzierbare Ergebnisse im parallelen Fall Ursache: Fließkommaoperationen sind nicht assoziativ, z.b. (a + b) + c a + (b + c) Auswirkung je nach Konditionierung des Gleichungssystems mehr oder weniger stark Folie 10

11 Reproduzierbarkeit der Lösung Simulation 1* Simulation 2* Simulation 3* *:12cores, Intel SandyBridge Reproduzierbarkeit gewährleistet, wenn Operationen immer in der gleichen Reihenfolge ausgeführt werden Programmanpassung zur Erzielung reproduzierbarer Ergebnisse erforderlich für Aufbau der Gesamtsteifigkeitsmatrix Lösen des Gleichungssystems ( PARISOL) Folie 11

12 Ansätze zur Parallelisierung - Shared Memory Grundidee: Rechner enthält System von Multiprozessoren, die sich Speicher teilen Gleiche Datenzugriffszeiten für alle Prozessoren ( uniform memory access ) Verschiedene Programmiermodelle verfügbar In INDEED verwendet: OpenMP Unterstützung von FORTRAN, C, C++ Plattformunabhängigkeit Relativ einfach zu verwenden (direktivenbasiert) Reproduzierbarkeit in INDEED unabhängig von der Prozessoranzahl gewährleistet Im Idealfall ist die Beschleunigung mit wachsender Prozessoranzahl linear Bei heutigen Prozessoren sind gleiche Datenzugriffszeiten immer weniger gewährleistet ( non-uniform memory access ) Folie 12

13 Ansätze zur Parallelisierung - Distributed Memory Grundidee: Rechner besteht aus System von mehreren Einzelrechnern Datenaustausch über Netzwerk erforderlich Klassische Anwendung in der FEM: Gebietszerlegung (domain decomposition) Seit Mitte 1990 MPI als Standard-Programmiermodell verfügbar Unterstützung von FORTRAN, C, C++ Plattformunabhängigkeit Hoher Programmieraufwand Kombination mit Shared-Memory-Parallelisierung möglich Keine Reproduzierbarkeit in INDEED Folie 13

14 Ansätze zur Parallelisierung - Hardwarebeschleuniger Grundidee: Entlastung des Hauptprozessors durch Co-Prozessoren (Grafikkarten) Programmausführung erfolgt in der Regel parallel Grafikkarten (GPUs) verarbeiten Daten nach dem SIMD Prinzip (Single Instruction, Multiple Data) Verschiedene Techniken zur Programmierung von GPUs CUDA (Compute Unified Device Architecture) Nur Unterstützung von NVIDIA GPUs Direkte Unterstützung nur für C/C++ OpenCL Plattformunabhängigkeit Standardisierte Erweiterung von C Datentransfer von der bzw. zur GPU notwendig Kombination mit Shared- und Distributed-Memory-Parallelisierung möglich Folie 14

15 Ansätze zur Parallelisierung - Hardwarebeschleuniger CPU memory Vorbereitung der Elementblöcke CPU GPU Berechnung der lokalen Steifigkeiten Assemblierung zu globaler Steifigkeitsmatrix Folie 15

16 Ansätze zur Parallelisierung - Hardwarebeschleuniger Aufbau der Gesamtsteifigkeitsmatrix Time [s] 20000,00 Time [hh:mm:ss] 18000, , , ,00 GPU node (CPU only) 10000, , ,00 GPU node (CPU + GPU) 1GPU 4000,00 2GPUs 2GPUs 2000,00 2GPUs 0, % 22:00:00 20:00:00 18:00:00 16:00:00 14:00:00 12:00:00 10:00:00 08:00:00 06:00:00 04:00:00 02:00:00 00:00:00 8 #CPU cores Gesamtlaufzeit 1GPU 2GPUs 2GPUs % 2GPUs 8 #CPU cores Nichtbeschleunigte Programmteile verhindern eine signifikante Verringerung der Gesamtlaufzeiten Problem: Datentransfer zur / von der GPU Hoher Zeitaufwand für die manuelle Portierung mittels CUDA Mögliche Alternative: Automatische Code-Generatoren, z.b. HMPP oder OpenACC; OpenMP 4.0 Folie 16

17 Softwarewerkzeuge zur Perfomance-Analyse - Vampir Zeitlicher Verlauf der Programmausführung Zusammenfassung Ungenutzte CPU-Ressourcen Legende Unzureichende Lastbalancierung zwischen CPU und GPU verhindert bessere Performance Folie 17

18 Zukünftige Herausforderungen Skalierbarkeit Anzahl der Rechenkerne wächst stark weniger Hauptspeicher pro Rechenkern Aufgabe: Anpassung des Programmcodes an geänderte HardwareArchitekturen, um Leistung der Hardware optimal auszunutzen Energiebedarf 35% der Kosten eines modernen Hochleistungsrechners entfallen auf Energieversorgung (Tendenz steigend) Struktur des Programmcodes hat Einfluss auf Energiebedarf Aufgabe: Erweiterung vorhandener Performance-Analysewerkzeugen auf Energieanalyse (Gemeinschaftsprojekt Score-E von GNS mit RWTH Aachen, GRS Aachen, FZ Jülich, TU Dresden, TU München; Förderung durch BMBF) Folie 18

19 Zusammenfassung Rechnerarchitekturen werden immer heterogener. Wachsende Anzahl verfügbarer Prozessoren pro Rechenknoten erfordert genaue Kenntnis der Rechnerarchitektur. Konflikt zwischen Forderung nach reproduzierbaren Ergebnissen und Forderung nach hoher Skalierbarkeit. Breiter Einsatz von Hardware-Beschleunigern erfordert Entwicklung anwenderfreundlicher Programmiermodelle. Optimierung des Programmcodes muss auch Energiekosten als Zielgröße berücksichtigen. Folie 19

Grundlagen der Parallelisierung

Grundlagen der Parallelisierung Grundlagen der Parallelisierung Philipp Kegel, Sergei Gorlatch AG Parallele und Verteilte Systeme Institut für Informatik Westfälische Wilhelms-Universität Münster 3. Juli 2009 Inhaltsverzeichnis 1 Einführung

Mehr

Programmierung von Multicore-Rechnern

Programmierung von Multicore-Rechnern Programmierung von Multicore-Rechnern Prof. Dr.-Ing. habil. Peter Sobe HTW Dresden, Fakultät Informatik/Mathematik www.informatik.htw-dresden.de Gliederung: Ein Blick auf Multicore-Prozessoren/ und -Rechner

Mehr

Centre of Excellence for High Performance Computing Erlangen Kompetenzgruppe für Supercomputer und Technisch-Wissenschaftliche Simulation

Centre of Excellence for High Performance Computing Erlangen Kompetenzgruppe für Supercomputer und Technisch-Wissenschaftliche Simulation 1 Centre of Excellence for High Performance Computing Erlangen Kompetenzgruppe für Supercomputer und Technisch-Wissenschaftliche Simulation Dr. G. Wellein, Regionales Rechenzentrum Erlangen Supercomputer

Mehr

Orientierungsveranstaltungen 2009 Informatikstudien der Universität Wien

Orientierungsveranstaltungen 2009 Informatikstudien der Universität Wien Orientierungsveranstaltungen 2009 Informatikstudien der Universität Wien Scientific Computing 07. Oktober 2009 Siegfried Benkner Wilfried Gansterer Fakultät für Informatik Universität Wien www.cs.univie.ac.at

Mehr

Projektseminar Parallele Programmierung

Projektseminar Parallele Programmierung HTW Dresden WS 2014/2015 Organisatorisches Praktikum, 4 SWS Do. 15:00-18:20 Uhr, Z136c, 2 Doppelstunden o.g. Termin ist als Treffpunkt zu verstehen Labore Z 136c / Z 355 sind Montag und Donnerstag 15:00-18:20

Mehr

Programming Models for Cell BE

Programming Models for Cell BE Hauptseminar MAP08 Programming Models for Cell BE Hannes Stadler, Sebastian Graf HannesStadler@gmx.de, sebgr@gmx.net Betreuung: Matthias Hartl, Hritam Dutta, Frank Hannig Hardware-Software-Co-Design Universität

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Die deutsche Windows HPC Benutzergruppe

Die deutsche Windows HPC Benutzergruppe Christian Terboven, Dieter an Mey {terboven, anmey}@rz.rwth aachen.de Rechen und Kommunikationszentrum RWTH Aachen Windows HPC Server Launch 16. Oktober, Frankfurt am Main Agenda o Hochleistungsrechnen

Mehr

Zweite Umfrage zur Bedarfsermittlung von Ressourcen zum wissenschaftlichen Rechnen an der TU Dortmund

Zweite Umfrage zur Bedarfsermittlung von Ressourcen zum wissenschaftlichen Rechnen an der TU Dortmund Zweite Umfrage zur Bedarfsermittlung von Ressourcen zum wissenschaftlichen Rechnen an der TU Dortmund Das Wissenschaftlichen Rechnen hat sich in Forschung und Lehre in den letzten Jahren zu einem wichtigen

Mehr

Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1

Ein kleiner Einblick in die Welt der Supercomputer. Christian Krohn 07.12.2010 1 Ein kleiner Einblick in die Welt der Supercomputer Christian Krohn 07.12.2010 1 Vorschub: FLOPS Entwicklung der Supercomputer Funktionsweisen von Supercomputern Zukunftsvisionen 2 Ein Top10 Supercomputer

Mehr

GPGPU mit NVIDIA CUDA

GPGPU mit NVIDIA CUDA 01.07.12 GPGPU mit NVIDIA CUDA General-Purpose on Formatvorlagecomputing des Graphics Processing durch Units Untertitelmasters mit KlickenCompute bearbeiten NVIDIA Unified Device Architecture Gliederung

Mehr

Hochleistungsrechnen Hybride Parallele Programmierung. Prof. Dr. Thomas Ludwig Universität Hamburg Informatik Wissenschaftliches Rechnen

Hochleistungsrechnen Hybride Parallele Programmierung. Prof. Dr. Thomas Ludwig Universität Hamburg Informatik Wissenschaftliches Rechnen Hochleistungsrechnen Hybride Parallele Programmierung Prof. Dr. Thomas Ludwig Universität Hamburg Informatik Wissenschaftliches Rechnen Inhaltsübersicht Einleitung und Motivation Programmiermodelle für

Mehr

Computational Biology: Bioelektromagnetismus und Biomechanik

Computational Biology: Bioelektromagnetismus und Biomechanik Computational Biology: Bioelektromagnetismus und Biomechanik Implementierung Gliederung Wiederholung: Biomechanik III Statische Elastomechanik Finite Elemente Diskretisierung Finite Differenzen Diskretisierung

Mehr

Staff. Tim Conrad. Zeitplan. Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2013. Tim Conrad

Staff. Tim Conrad. Zeitplan. Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2013. Tim Conrad Blockseminar: Verteiltes Rechnen und Parallelprogrammierung Sommer Semester 2013 Tim Conrad Staff Tim Conrad AG Computational Proteomics email: conrad@math.fu-berlin.de Telefon: 838-51445 Büro: Raum 138,

Mehr

Parallele Programmierung mit OpenMP

Parallele Programmierung mit OpenMP Parallele Programmierung mit OpenMP - Eine kurze Einführung - 11.06.2003 RRZN Kolloquium SS 2003 1 Gliederung 1. Grundlagen 2. Programmiermodell 3. Sprachkonstrukte 4. Vergleich MPI und OpenMP 11.06.2003

Mehr

Dialekte der Klimaforschung

Dialekte der Klimaforschung Dialekte der Klimaforschung Vom Fortran-Programm zum parallelen Programm Thomas Ludwig Inhalt Welche Dialekte werden transformiert? Welche Anforderungen stellen wir? Wozu diese Transformation? Wie ist

Mehr

Moderne parallele Rechnerarchitekturen

Moderne parallele Rechnerarchitekturen Seminar im WS0708 Moderne parallele Rechnerarchitekturen Prof. Sergei Gorlatch Dipl.-Inf. Maraike Schellmann schellmann@uni-muenster.de Einsteinstr. 62, Raum 710, Tel. 83-32744 Dipl.-Inf. Philipp Kegel

Mehr

Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2015. Tim Conrad

Blockseminar: Verteiltes Rechnen und Parallelprogrammierung. Sommer Semester 2015. Tim Conrad Blockseminar: Verteiltes Rechnen und Parallelprogrammierung Sommer Semester 2015 Tim Conrad Staff Tim Conrad AG Medical Bioinformatics email: conrad@math.fu-berlin.de Telefon: 838-51445 Büro: Raum 138,

Mehr

Tag der Umweltmeteorologie 12.05.2015. Michael Kunz

Tag der Umweltmeteorologie 12.05.2015. Michael Kunz Tag der Umweltmeteorologie 12.05.2015 Michael Kunz Beschleunigung von Ausbreitungsmodellen durch Portierung auf Grafikkarten Einleitung Das GRAL/GRAMM-System Cuda-GRAL Ergebnisse Vergleich der Modellergebnisse

Mehr

Transparente Nutzung von Multi-GPU Cluster unter Java/OpenMP

Transparente Nutzung von Multi-GPU Cluster unter Java/OpenMP Transparente Nutzung von Multi-GPU Cluster unter Java/OpenMP Dipl. Inf. Thorsten Blaß Programming Systems Group Martensstraße 3 91058 Erlangen Ausblick Motivation Einführung Java/OpenMP (JaMP) JaMP Sprache

Mehr

Multicore Herausforderungen an das Software-Engineering. Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010

Multicore Herausforderungen an das Software-Engineering. Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010 Multicore Herausforderungen an das Software-Engineering Prof. Dr.-Ing. Michael Uelschen Hochschule Osnabrück 15.09.2010 Inhalt _ Motivation _ Herausforderung 1: Hardware _ Herausforderung 2: Software-Partitionierung

Mehr

Protected User-Level DMA in SCI Shared Memory Umgebungen

Protected User-Level DMA in SCI Shared Memory Umgebungen Protected User-Level DMA in SCI Shared Memory Umgebungen Mario Trams University of Technology Chemnitz, Chair of Computer Architecture 6. Halle Chemnitz Seminar zu Parallelverarbeitung und Programmiersprachen

Mehr

Aufbau eines VR-Systems zur multimodalen Interaktion mit komplexen physikalischen Modellen

Aufbau eines VR-Systems zur multimodalen Interaktion mit komplexen physikalischen Modellen Fazit Aufbau eines s zur multimodalen Interaktion mit komplexen physikalischen Modellen Guido Rasmus Maximilian Klein, Franz-Erich Wolter Leibniz Universität Hannover Institut für Mensch-Maschine-Kommunikation

Mehr

Grafikkarten-Architektur

Grafikkarten-Architektur > Grafikkarten-Architektur Parallele Strukturen in der GPU Name: Sebastian Albers E-Mail: s.albers@wwu.de 2 > Inhalt > CPU und GPU im Vergleich > Rendering-Pipeline > Shader > GPGPU > Nvidia Tesla-Architektur

Mehr

Intel Cluster Studio. Michael Burger FG Scientific Computing TU Darmstadt michael.burger@sc.tu-darmstadt.de

Intel Cluster Studio. Michael Burger FG Scientific Computing TU Darmstadt michael.burger@sc.tu-darmstadt.de Intel Cluster Studio Michael Burger FG Scientific Computing TU Darmstadt michael.burger@sc.tu-darmstadt.de 19.03.13 FB Computer Science Scientific Computing Michael Burger 1 / 30 Agenda Was ist das Intel

Mehr

Virtualisierung im Echtzeitbereich. Andreas Hollmann FH Landshut EADS Military Air Systems

Virtualisierung im Echtzeitbereich. Andreas Hollmann FH Landshut EADS Military Air Systems Virtualisierung im Echtzeitbereich Andreas Hollmann FH Landshut EADS Military Air Systems 2 Überblick Hintergrund und Motivation Vorstellung von Lösungsansätzen Auswahl und Evaluierung Einschränkungen

Mehr

Einführung in die Parallele Programmierung

Einführung in die Parallele Programmierung Einführung in die Parallele Programmierung K. Benkert 1, A. Stock 2 1 High Performance Computing Centre Stuttgart www.hlrs.de Universität Stuttgart 2 Institut für Aerodynamik und Gasdynamik (IAG) www.iag.uni-stuttgart.de

Mehr

OpenCL. Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen.

OpenCL. Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen. OpenCL Seminar Programmiersprachen im Multicore-Zeitalter Universität Siegen Tim Wiersdörfer tim.wiersdoerfer@student.uni-siegen.de Abstract: In diesem Dokument wird ein grundlegender Einblick in das relativ

Mehr

Grundlagen der Programmierung 2. Parallele Verarbeitung

Grundlagen der Programmierung 2. Parallele Verarbeitung Grundlagen der Programmierung 2 Parallele Verarbeitung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 27. Mai 2009 Parallele Algorithmen und Ressourcenbedarf Themen: Nebenläufigkeit,

Mehr

Vorstellung des Fachgebietes Technische Informatik

Vorstellung des Fachgebietes Technische Informatik Fakultät Informatik, Institut für Technische Informatik, Professur Rechnerarchitektur Vorstellung des Fachgebietes Technische Informatik Professur Rechnerarchitektur Zellescher Weg 12 Nöthnitzer Strasse

Mehr

Parallelverarbeitung. Parallelverarbeitung. 2. Grundlagen. 2. Grundlagen. 2.1 Parallelität

Parallelverarbeitung. Parallelverarbeitung. 2. Grundlagen. 2. Grundlagen. 2.1 Parallelität 2. Grundlagen Parallelverarbeitung SS 2005 Inhalt Parallelität Ebenen der Parallelität Parallelrechnerarchitekturen Parallele Programmiermodelle 18.04.05 Roland Wismüller, Univ. Siegen roland.wismueller@uni-siegen.de

Mehr

Parallele Programmierung mit GPUs

Parallele Programmierung mit GPUs Parallele Programmierung mit GPUs Jutta Fitzek Vortrag im Rahmen des Moduls Parallele Programmierung, WS12/13, h_da Agenda GPUs: Historie GPU Programmierung Konzepte Codebeispiel Generelle Tipps & Tricks

Mehr

Die beste Infrastruktur ist nur so schnell, wie der Code der darauf läuft. Fallbeispiel Wettervorhersage

Die beste Infrastruktur ist nur so schnell, wie der Code der darauf läuft. Fallbeispiel Wettervorhersage Die beste Infrastruktur ist nur so schnell, wie der Code der darauf läuft Fallbeispiel Wettervorhersage VPE Swiss Workshop, HSR 24. Januar 2013 David Müller, Tobias Gysi Vision trifft Realität. Supercomputing

Mehr

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme

Proseminar Rechnerarchitekturen. Parallelcomputer: Multiprozessorsysteme wwwnet-texde Proseminar Rechnerarchitekturen Parallelcomputer: Multiprozessorsysteme Stefan Schumacher, , PGP Key http://wwwnet-texde/uni Id: mps-folientex,v

Mehr

Johann Wolfgang Goethe-Universität

Johann Wolfgang Goethe-Universität Flynn sche Klassifikation SISD (single instruction, single data stream): IS IS CU PU DS MM Mono (Mikro-)prozessoren CU: Control Unit SM: Shared Memory PU: Processor Unit IS: Instruction Stream MM: Memory

Mehr

Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun?

Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun? Super rechnen ohne Superrechner Oder: Was hat das Grid mit Monte Carlo zu tun? Marius Mertens 20.02.2015 Super rechnen ohne Superrechner? Warum? Algorithmik und Parallelisierung Wie? Alternative Architekturen

Mehr

Current and Emerging Architectures Multi-core Architectures and Programming

Current and Emerging Architectures Multi-core Architectures and Programming Current and Emerging Architectures Multi-core Architectures and Programming Adel El-Rayyes Hardware-Software-Co-Design, Friedrich-Alexander-Universität Erlangen-Nürnberg 9. Mai 2012 Inhalt Überblick über

Mehr

Theorie und Einsatz von Verbindungseinrichtungen in parallelen Rechnersystemen

Theorie und Einsatz von Verbindungseinrichtungen in parallelen Rechnersystemen Center for Information Services and High Performance Computing (ZIH) Theorie und Einsatz von Verbindungseinrichtungen in parallelen Rechnersystemen Hochgeschwindigkeitskommunikationen 13. Juli 2012 Andy

Mehr

Programmierung von Many-Cores. Seminar: Software Engineering für Exascale Computing

Programmierung von Many-Cores. Seminar: Software Engineering für Exascale Computing Programmierung von Many-Cores Seminar: Software Engineering für Exascale Computing Patrizia Peller April 18, 2013 Programmierung von Many-Cores Hardware-Architekturen Anforderungen an Programmiersprachen

Mehr

Excel beschleunigen mit dem mit Windows HPC Server 2008 R2

Excel beschleunigen mit dem mit Windows HPC Server 2008 R2 Excel beschleunigen mit dem mit Windows HPC Server 2008 R2 Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk Haftungsausschluss Microsoft kann für die Richtigkeit

Mehr

Projekt im Sommersemester 2008. Complex and Distributed IT-Systems TU Berlin

Projekt im Sommersemester 2008. Complex and Distributed IT-Systems TU Berlin Virtuelle Systeme Projekt im Sommersemester 2008 Complex and Distributed IT-Systems TU Berlin Beispiel: VMWare 24.10.2007 CIT, Einführung Projekt Virtualisierung 2 Virtualisierung 24.10.2007 CIT, Einführung

Mehr

OpenCL Implementierung von OpenCV Funktionen

OpenCL Implementierung von OpenCV Funktionen Multi-Core Architectures and Programming OpenCL Implementierung von OpenCV Funktionen julian.mueller@e-technik.stud.uni-erlangen.de Hardware/Software Co-Design August 18, 2011 1 Table of content 1 OpenCL

Mehr

Storage Summit 2014. Zellescher Weg 14 Willers-Bau A206 Tel. +49 351-463 - 35450

Storage Summit 2014. Zellescher Weg 14 Willers-Bau A206 Tel. +49 351-463 - 35450 Storage Summit 2014 Zellescher Weg 14 Willers-Bau A206 Tel. +49 351-463 - 35450 Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) Zentrale wissenschaftliche Einrichtung der Technischen Universität

Mehr

High Performance Computing

High Performance Computing REGIONALES RECHENZENTRUM ERLANGEN [ RRZE ] High Performance Computing Systemausbildung Grundlagen und Aspekte von Betriebssystemen und System-nahen Diensten Michael Meier, RRZE, 01.07.2015 Agenda Was bedeutet

Mehr

Es handelt sich um ein duales Studium mit einem anerkannten Ausbildungsberuf und einem

Es handelt sich um ein duales Studium mit einem anerkannten Ausbildungsberuf und einem Ausbildungsberuf Es handelt sich um ein duales Studium mit einem anerkannten Ausbildungsberuf und einem Bachelorstudium. Deine Ausbildung dauert 3 Jahre und wird am Standort Würselen im Ausbildungsbetrieb,

Mehr

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität Parallelrechner (1) Motivation: Bedarf für immer leistungsfähigere Rechner Leistungssteigerung eines einzelnen Rechners hat physikalische Grenzen: Geschwindigkeit von Materie Wärmeableitung Transistorgröße

Mehr

Hochleistungsrechnen mit Windows Interaktive Benutzung und das Batchsystem Christian Terboven Rechen- und Kommunikationszentrum RWTH Aachen

Hochleistungsrechnen mit Windows Interaktive Benutzung und das Batchsystem Christian Terboven Rechen- und Kommunikationszentrum RWTH Aachen Hochleistungsrechnen mit Windows Interaktive Benutzung und das Batchsystem hristian Terboven Rechen- und Kommunikationszentrum RWTH Aachen 1 Hochleistungsrechnen mit Windows enter omputing and ommunication

Mehr

Seminar GPU-Programmierung/Parallelverarbeitung

Seminar GPU-Programmierung/Parallelverarbeitung Seite iv Literaturverzeichnis 1) Bengel, G.; et al.: Masterkurs Parallele und Verteilte Systeme. Vieweg + Teubner, Wiesbaden, 2008. 2) Breshears, C.: The Art of Concurrency - A Thread Monkey's Guide to

Mehr

Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) Compute Unified Device Architecture (CUDA) Thomas Koller 12. Februar 2012 Zusammenfassung Diese Ausarbeitung beschäftigt sich mit der Programmierung von Grafikkarten mittels CUDA. Bei bestimmten Berechnungen

Mehr

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte

Intel 80x86 symmetrische Multiprozessorsysteme. Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Intel 80x86 symmetrische Multiprozessorsysteme Eine Präsentation im Rahmen des Seminars Parallele Rechnerarchitekturen von Bernhard Witte Gliederung I. Parallel Computing Einführung II.SMP Grundlagen III.Speicherzugriff

Mehr

Exascale Computing. = Exascale braucht Manycore-Hardware...und was für Software??? 46/58

Exascale Computing. = Exascale braucht Manycore-Hardware...und was für Software??? 46/58 Exascale Computing Die FLOP/s-Tabelle: Name Faktor erreicht heute Giga 10 9 1976 CPU-Kern Tera 10 12 1997 Graphikkarte (GPU) Peta 10 15 2009 Supercomputer Exa 10 18 2020(?) Der gegenwärtig schnellste Rechner

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund

Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund Prof. Dr. rer. nat. Christian Schröder Dipl.-Ing. Thomas Hilbig, Dipl.-Ing. Gerhard Hartmann Fachbereich Elektrotechnik und

Mehr

Optimierung eines neuen Logarithmic-Search-Verfahrens zum Image Mosaicing unter Einsatz des CUDA-Frameworks

Optimierung eines neuen Logarithmic-Search-Verfahrens zum Image Mosaicing unter Einsatz des CUDA-Frameworks Fachhochschule Köln, Campus Gummersbach Optimierung eines neuen Logarithmic-Search-Verfahrens zum Image Mosaicing unter Einsatz des CUDA-Frameworks 03.06.2009 Eugen Sewergin, B. Sc. Erstprüfer: Prof. Dr.

Mehr

Technische Fachhochschule Berlin University of Applied Sciences

Technische Fachhochschule Berlin University of Applied Sciences Technische Fachhochschule Berlin University of Applied Sciences Fachbereich II Mathematik - Physik Chemie Masterarbeit von Dipl.-Ing. Ingrid Maus zur Erlangung des Grades Master of Computational Engineering

Mehr

Linux-Cluster mit Raspberry Pi. Dr. René Richter Sächsische Studienakademie Dresden rene.richter@ba-dresden rene.richter@namespace-cpp.

Linux-Cluster mit Raspberry Pi. Dr. René Richter Sächsische Studienakademie Dresden rene.richter@ba-dresden rene.richter@namespace-cpp. Linux-Cluster mit Raspberry Pi Dr. René Richter Sächsische Studienakademie Dresden rene.richter@ba-dresden rene.richter@namespace-cpp.de Lange Nacht der Wissenschaften 2013 Moore s Law Moore s Law (1965)

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr

Entwurf und Implementierung eines hochparallelen Black- Scholes Monte-Carlo-Simulators

Entwurf und Implementierung eines hochparallelen Black- Scholes Monte-Carlo-Simulators Entwurf und Implementierung eines hochparallelen Black- Scholes Monte-Carlo-Simulators Patrick Russell s0970860@mail.zih.tu-dresden.de Dresden, 24. September 2015 Aufgabenstellung Motivation Entwurf Implementierung

Mehr

IT-Infrastruktur, WS 2014/15, Hans-Georg Eßer

IT-Infrastruktur, WS 2014/15, Hans-Georg Eßer ITIS-D'' IT-Infrastruktur WS 2014/15 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz D'': Rechnerstrukturen, Teil 3 v1.0, 2014/11/27 Folie D''-1 Dieser Foliensatz Vorlesungsübersicht Seminar Wiss.

Mehr

Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit

Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit make connections share ideas be inspired Infrastruktur fit machen für Hochverfügbarkeit, Workload Management und Skalierbarkeit Artur Eigenseher, SAS Deutschland Herausforderungen SAS Umgebungen sind in

Mehr

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant?

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant? Übersicht Aktuelle Themen zu Informatik der Systeme: Nebenläufige Programmierung: Praxis und Semantik Einleitung 1 2 der nebenläufigen Programmierung WS 2011/12 Stand der Folien: 18. Oktober 2011 1 TIDS

Mehr

www.hocomputer.de - info@hocomputer.de - Tel: (+49) / 0221 / 76 20 86

www.hocomputer.de - info@hocomputer.de - Tel: (+49) / 0221 / 76 20 86 news 2 / 205 Nur bis 22. Dezember 0 % Sonderrabatt Details auf Seite 8 Cluster Edition named User Die komplette Dokumentation. www.hocomputer.de - info@hocomputer.de - Tel: (+49) / 022 / 76 20 86 205 h.o.-computer

Mehr

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Titelmasterformat durch Klicken Titelmasterformat durch Klicken Huawei Enterprise Server Systeme Global Player auf dem Server- und Storagemarkt Scale up Übersicht Titelmasterformat durch Klicken Textmasterformat

Mehr

Ausarbeitung Seminarvortrag High-Performance-Computing WS 2011/2012

Ausarbeitung Seminarvortrag High-Performance-Computing WS 2011/2012 Ausarbeitung Seminarvortrag High-Performance-Computing WS 2011/2012 Matthias Bott 9. Januar 2012 2 VOM PC ZUM HPC 2 1 Movtivation Auf die Frage, wofür Computer in der Kernphysik benötigt werden, gibt es

Mehr

Brainware für Green IT

Brainware für Green IT Brainware für Green IT Christian Bischof FG Scientific Computing Hochschulrechenzentrum Technische Universität Darmstadt 04.06.2012 Einweihung HPC Cluster Rheinland Pfalz C. Bischof 1 Die Welt des High-Performance

Mehr

M5000 einfach ablösen durch T4/T5 LDoms und Solaris Zonen

M5000 einfach ablösen durch T4/T5 LDoms und Solaris Zonen M5000 einfach ablösen durch T4/T5 LDoms und Solaris Zonen Marcel Hofstetter hofstetter@jomasoft.ch CEO, Mitgründer, Enterprise Consultant JomaSoft GmbH 1 Inhalt Wer ist JomaSoft? SPARC T5 CPU Neue T5-x

Mehr

Computer Aided Engineering

Computer Aided Engineering Computer Aided Engineering André Dietzsch 03Inf Übersicht Definition Teilgebiete des CAE CAD FEM Anwendungen Was hat das mit Rechnernetzen zu tun? André Dietzsch 03Inf Computer Aided Engineering 2 Definition

Mehr

MULTICORE- UND GPGPU- ARCHITEKTUREN

MULTICORE- UND GPGPU- ARCHITEKTUREN MULTICORE- UND GPGPU- ARCHITEKTUREN Korbinian Pauli - 17. November 2011 Seminar Multicore Programmierung, WS11, Universität Passau 2 Einleitung Klassisches Problem der Informatik: riesige Datenmenge! Volkszählung

Mehr

OSL Storage Cluster und RSIO unter Linux Storage-Attachment und Hochverfügbarkeit in 5 Minuten

OSL Storage Cluster und RSIO unter Linux Storage-Attachment und Hochverfügbarkeit in 5 Minuten OSL Storage Cluster und RSIO unter Linux Storage-Attachment und Hochverfügbarkeit in 5 Minuten OSL Technologietage Berlin 12./13. September 2012 Christian Schmidt OSL Gesellschaft für offene Systemlösungen

Mehr

CUDA Nvidia s Parallel Programming Language

CUDA Nvidia s Parallel Programming Language CUDA Nvidia s Parallel Programming Language Zusammengetragen und Erstellt von Christian Wirth und Peter Schroeder Im Rahmen der Vorlesung Serious Games Ausarbeitung abgegeben von Christian Wirth Peter

Mehr

Das Prinzip der kleinsten Überraschung Konfiguration des neuen HPC-Clusters am RRZ

Das Prinzip der kleinsten Überraschung Konfiguration des neuen HPC-Clusters am RRZ Das Prinzip der kleinsten Überraschung Konfiguration des neuen HPC-Clusters am RRZ Hinnerk Stüben ZKI-Arbeitskreis Supercomputing Leibniz-Rechenzentrum, Garching 19. Oktober 2015 Themen Neues HPC-Cluster

Mehr

MOGON. Markus Tacke HPC ZDV. HPC - AHRP Markus Tacke, ZDV, Universität Mainz

MOGON. Markus Tacke HPC ZDV. HPC - AHRP Markus Tacke, ZDV, Universität Mainz MOGON Markus Tacke HPC ZDV HPC - AHRP Was ist Mogon allgemein? Das neue High Performance Cluster der JGU Ein neues wichtiges Werkzeug für Auswertung von Messdaten und Simulationen Beispiele Kondensierte

Mehr

internationalen Verbund

internationalen Verbund University of Applied Sciences 1 zur Optimierung der Wertschöpfungsketten Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund Prof. Dr. rer. nat. Christian Schröder stellv.

Mehr

OpenGL. (Open Graphic Library)

OpenGL. (Open Graphic Library) OpenGL (Open Graphic Library) Agenda Was ist OpenGL eigentlich? Geschichte Vor- und Nachteile Arbeitsweise glscene OpenGL per Hand Debugging Trend Was ist OpenGL eigentlich? OpenGL ist eine Spezifikation

Mehr

Master Informatik / Medizininformatik Numerische Mathematik Folie 20a

Master Informatik / Medizininformatik Numerische Mathematik Folie 20a Master Informatik / Medizininformatik Numerische Mathematik Folie 20a Master Informatik / Medizininformatik Numerische Mathematik Folie 20b Master Informatik / Medizininformatik Numerische Mathematik Folie

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

C C. Hochleistungsrechnen (HPC) auf dem Windows Compute Cluster des RZ der RWTH Aachen. 1 WinHPC 2006 - Einführung Center. 31.

C C. Hochleistungsrechnen (HPC) auf dem Windows Compute Cluster des RZ der RWTH Aachen. 1 WinHPC 2006 - Einführung Center. 31. Hochleistungsrechnen (HP) auf dem Windows ompute luster des RZ der RWTH Aachen 31. Mai 2006 hristian Terboven Dieter an Mey {terboven anmey}@rz.rwth-aachen.de 1 WinHP 2006 - Einführung enter SunFire V40z

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Private Cloud mit Eucalyptus am SCC

Private Cloud mit Eucalyptus am SCC Private Cloud mit Eucalyptus am SCC Christian Baun 15. Dezember 2009 KIT The cooperation of Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) http://www.kit.edu Cloud-Comuting = Grid-Computing?!

Mehr

ANWENDUNG DER SIMULATION IN DER TECHNOLOGIE UMFORMEN.

ANWENDUNG DER SIMULATION IN DER TECHNOLOGIE UMFORMEN. LS-DYNA Forum 2011 13. Oktober 2011 ANWENDUNG DER SIMULATION IN DER TECHNOLOGIE UMFORMEN. AUTOREN: DR. M. FLEISCHER, T. PANICO, DR. J. MEINHARDT, A. LIPP GLIEDERUNG. Einleitung. Anforderungen an die Umformtechnik

Mehr

Wichtige Rechnerarchitekturen

Wichtige Rechnerarchitekturen Wichtige Rechnerarchitekturen Teil 3 Control Data Corporation CDC 6600 1 CDC 6600 Fertigstellung 1964, Betrieb bis weit in die achtziger Jahre Hauptentwickler: Seymour Cray, Entwickler-Team aus nur 34

Mehr

Oracle EngineeredSystems

Oracle EngineeredSystems Oracle EngineeredSystems Überblick was es alles gibt Themenübersicht Überblick über die Engineered Systems von Oracle Was gibt es und was ist der Einsatzzweck? Wann machen diese Systeme Sinn? Limitationen

Mehr

GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen

GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen GPU-Computing im Rahmen der Vorlesung Hochleistungsrechnen Universität Hamburg Scientific Visualization and Parallel Processing Übersicht Hintergrund und Entwicklung von GPGPU Programmierumgebungen & Werkzeuge

Mehr

Paralleles Rechnen: Multicores, Playstation 3, Rekonfigurierbare Hardware

Paralleles Rechnen: Multicores, Playstation 3, Rekonfigurierbare Hardware Paralleles Rechnen: Multicores, Playstation 3, Rekonfigurierbare Hardware Oliver Sinnen o.sinnen@auckland.ac.nz www.ece.auckland.ac.nz/~sinnen/ Von wo? Neuseeland Auckland Wirtschaftszentrum Größte Stadt

Mehr

Grundlagen der Rechnerarchitektur. Ein und Ausgabe

Grundlagen der Rechnerarchitektur. Ein und Ausgabe Grundlagen der Rechnerarchitektur Ein und Ausgabe Übersicht Grundbegriffe Hard Disks und Flash RAM Zugriff auf IO Geräte RAID Systeme SS 2012 Grundlagen der Rechnerarchitektur Ein und Ausgabe 2 Grundbegriffe

Mehr

Vorwort... 11 Azure Cloud Computing mit Microsoft... 12 Danksagungen... 13 Kontakt zum Autor... 13

Vorwort... 11 Azure Cloud Computing mit Microsoft... 12 Danksagungen... 13 Kontakt zum Autor... 13 Inhaltsverzeichnis Vorwort... 11 Azure Cloud Computing mit Microsoft... 12 Danksagungen... 13 Kontakt zum Autor... 13 Einleitung... 15 Zielgruppe... 16 Aufbau... 16 Inhalt der einzelnen Kapitel... 17 Systemanforderungen...

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

1 Einleitung 1 1.1 Motivation... 1 1.2 Zielsetzung... 4 1.3 Aufbau und Gliederung der Arbeit... 5

1 Einleitung 1 1.1 Motivation... 1 1.2 Zielsetzung... 4 1.3 Aufbau und Gliederung der Arbeit... 5 1 Einleitung 1 1.1 Motivation.................................... 1 1.2 Zielsetzung................................... 4 1.3 Aufbau und Gliederung der Arbeit...................... 5 2 Hygromechanische

Mehr

Kurz: Stimme meinen Vorrednern zu: Angenehme Atmosphäre. Eher ein Fachgespräch als eine Prüfung. Eindeutig zu empfehlen

Kurz: Stimme meinen Vorrednern zu: Angenehme Atmosphäre. Eher ein Fachgespräch als eine Prüfung. Eindeutig zu empfehlen Kursversion WS: 10/11 02.2012 Kurs 1727 Kurz: Stimme meinen Vorrednern zu: Angenehme Atmosphäre. Eher ein Fachgespräch als eine Prüfung. Eindeutig zu empfehlen Grundlagen Parallele Programmierung? Was

Mehr

Game Engine Architecture and Development. Platform Unabhängiger Code Multi Threading in Game Engines Profiling

Game Engine Architecture and Development. Platform Unabhängiger Code Multi Threading in Game Engines Profiling Game Engine Architecture and Development Platform Unabhängiger Code Multi Threading in Game Engines Profiling Folien Die Folien werden auf acagamics.de hochgeladen Das Passwort ist 60fps (ohne ) Rückblick:

Mehr

1 Konzepte der Parallelverarbeitung

1 Konzepte der Parallelverarbeitung Parallelverarbeitung Folie 1-1 1 Konzepte der Parallelverarbeitung Erhöhung der Rechenleistung verbesserte Prozessorarchitekturen mit immer höheren Taktraten Vektorrechner Multiprozessorsysteme (Rechner

Mehr

Rapid Control Prototyping

Rapid Control Prototyping Dirk Abel Alexander Bollig Rapid Control Prototyping Methoden und Anwendungen Mit 230 Abbildungen und 16 Tabellen Springer Inhaltsverzeichnis Einführung und Überblick 1 1.1 Allgemeines 1 1.2 Entwicklungsprozesse

Mehr

Hardware-Architekturen

Hardware-Architekturen Kapitel 3 Hardware-Architekturen Hardware-Architekturen Architekturkategorien Mehrprozessorsysteme Begriffsbildungen g Verbindungsnetze Cluster, Constellation, Grid Abgrenzungen Beispiele 1 Fragestellungen

Mehr

Die Linux Kernel Virtual Machine - Wo steht der Linux Hypervisor? 2. März 2008

Die Linux Kernel Virtual Machine - Wo steht der Linux Hypervisor? 2. März 2008 Die Linux Kernel Virtual Machine - Wo steht der Linux Hypervisor? 2. März 2008 Jörg Rödel Virtualization - Whats out there? Virtualisierung hat bereits längere Geschichte auf x86 Startete mit VMware Setzte

Mehr

MATCHING VON PRODUKTDATEN IN DER CLOUD

MATCHING VON PRODUKTDATEN IN DER CLOUD MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's

Mehr

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler

GPGPU-Architekturen CUDA Programmiermodell Beispielprogramm Organiosatorisches. Tutorial CUDA. Ralf Seidler Friedrich-Alexander-Universität Erlangen-Nürnberg 05.10.2010 Outline 1 GPGPU-Architekturen 2 CUDA Programmiermodell 3 Beispielprogramm 4 Organiosatorisches Outlook 1 GPGPU-Architekturen 2 CUDA Programmiermodell

Mehr

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center PROFI UND NUTANIX Portfolioerweiterung im Software Defined Data Center IDC geht davon aus, dass Software-basierter Speicher letztendlich eine wichtige Rolle in jedem Data Center spielen wird entweder als

Mehr