Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL"

Transkript

1 Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken Integration von Schemata und Daten aus Quellen Analyseaspekt multidimensionales Datenmodell (OLAP) Stabile Datenbasis Eingebrachte Daten werden nicht mehr modifiziert Neue Daten können aufgenommen werden Data Warehouse System Komponenten zur Integration und Analyse + Data Warehouse 3 4

2 Data Warehouse Prozess Monitoring Entdecken und melden von Änderungen in den Quellen Vereinfachte Sicht auf die Referenzarchitektur Extraktion Selektion und Transport von Daten aus den Quellen in den Arbeitsbereich Transformation Vereinheitlichung, Bereinigung, Integration, Konsolidierung, Aggregierung und Ergänzung der Daten im Arbeitsbereich Laden Laden der Daten aus dem Arbeitsbereich in die Basisdatenbank bzw. ins Data Warehouse Operative Datenbanken Extraktion Transformation Laden Data Warehouse OLAP Server Analyse Analyse Analyse und Präsentation der Daten im Data Warehouse 5 6 Fokus im Praktikum Fokus im Praktikum - Analysephase Operative Datenbanken Extraktion Transformation Laden Unser Fokus Data Warehouse OLAP Server Analyse Unterschiedliche Ansätze: Themenkomplex I, Heute Zugriff auf vorhandenen Datenbestand Nutzung von Datenmanipulationssprachen (z.b. SQL) Wieviele Einheiten von Artikel X wurden in Filiale Y im Jahr Z Data Access verkauft? (OLAP) Themenkomplex II Anpassung des Datenbestands an die Analyse Suche nach neuen oder unerwarteten Beziehungen zwischen Variablen In welcher Stadt macht Produktgruppe X den größten Umsatz? Data Mining Themenkomplex IV und V Suche nach Mustern im Datenbestand Wie ist die Entwicklung des Absatzes der Produktgruppen im Jahresverlauf? 7 8

3 Data Access Tools: Anfragesprachen (z. B. SQL) Lesen von Daten Arithmetische Operationen auf Daten Keine Präsentationsmöglichkeit Reporting Tools (z.b. Cognos) jetzt Themenkomplex II Lesen der Daten Anreicherung der Daten durch arithmetische Operationen Präsentation der Daten in Berichten Unterstützung von Ampelfunktionalität 9 10 Relationenmodell Kurze Wiederholung Stadt Name Paris Tokyo Relationenname Hamburg Stockholm Seoul Berlin CID FR JA GM SW KS GM Attribut Population Relationenschema Relation Tupel Attributwert 11 Primärschlüssel Integritätsbedingungen Menge von Attributen zur eindeutigen Identifikation eines Tupels Nötig um eindeutig auf Tupel zugreifen zu können Fremdschlüssel Referenziert von einem Tupel auf ein Tupel einer anderen Relation Nötig zur Speicherung von Abhängigkeiten 12

4 SQL Datentypen Eigenschaften die Sprache für relationale Datenbanken mengenorientiert & deklarativ Zeichenketten CHARACTER(n), CHAR(n) VARCHAR(n) Konstrukte zur Datenmanipulation CREATE, INSERT, UPDATE, DELETE Zahlen INTEGER, INT NUMERIC(p, s) FLOAT Konstrukt für Datenabfragen SELECT Datum und Uhrzeit DATE Create Anlegen von Relationen CREATE TABLE <Relation> ( <Attribut><Datentyp>, PRIMARY KEY (<Attribut>) FOREIGN KEY <Attribut> REFERENCES <Relation>(<Attribut>) ) 15 16

5 SQL Insert und Update SQL - Delete Einfügen von Tupeln in Relation Löschen von Tupeln aus einer Relation INSERT INTO <Relation> VALUES (<Datum1>, '<Datum2>', ) DELETE FROM <Relation> WHERE <Attribut> = <Datum> Ändern von Tupeln UPDATE <Relation> SET <Attribut> = <Datum> WHERE <Attribut> = <Datum> Löschen von Relationen DELETE FROM <Relation> Anfragen - Grundgerüst Anfragen an den Datenbestand SELECT <Attribut>, FROM <Relation> WHERE <Selektionsbedingung> 19 20

6 Projektion Auswahl von Spalten einer Relation SELECT <Attribut>, FROM <Relation> Selektion Auswahl von Tupeln einer Relation SELECT * FROM <Relation> WHERE <Selektionsbedingung> Name CID Population Name CID Population Paris FR Paris FR Tokyo JA Tokyo JA Hamburg GM Hamburg GM Stockholm SW Stockholm SW Seoul KS Seoul KS Berlin GM Berlin GM Verbund Aggregatfunktionen Kombination mehrerer Relationen Berechnung von Aggregaten auf Relationen SELECT <Attribut>, FROM <Relation1>, <Relation2> WHERE <Relation1>.<Attribut> = <Relation2>.<Attribut> SELECT <Aggregat>(<Attribut>) AS <Name> FROM <Relation> Wichtige Aggregatfunktionen: COUNT SUM MIN MAX AVG 23 24

7 Gruppierung Mengenoperationen Gruppierung von gleichen Attributwerten SELECT <Attribut> FROM <Relation> GROUP BY <Attribut> HAVING <Gruppenbedingung> Mengenoperationen auf Anfrageergebnissen (SELECT <Attribut>, FROM <Relation>) INTERSECT UNION MINUS (SELECT <Attribut>, FROM <Relation>) Vorgehen bei der Definition von Anfragen FROM WHERE GROUP BY HAVING SELECT Ausgangsrelationen Selektion von Tupeln, die der Bedingung genügen Gruppierung von Tupeln gemäß gleicher Attributwerte Selektion von Gruppen, die der Bedingung genügen Projektion der gewählten Attribute 27 28

8 Anforderungen an Online Analytical Processing Geschwindigkeit Anfragen sollten in 5 Sekunden beantwortet sein Analysemöglichkeit Ermöglichung anwenderfreundlicher und intuitiver Analyse Sicherheit Sicherer Mehrbenutzerbetrieb Stabile Sicherungsmechanismen Multidimensionalität Multidimensionale Sicht auf die Daten Kapazität Hohe Skalierbarkeit der verwalteten Daten Multidimensionales Datenmodell - Begriffe Hilfsmittel zur Veranschaulichung von Daten verschiedene Aspekte auf gleiche Weise zugreifbar Einsatz bei OLAP Anwendungen Kennzahlen Elemente eines Würfels Dimensionen Beschreiben Daten Ermöglichen Zugriff auf Kennzahlen Können Hierarchien sein Dimension Kennzahl Multidimensionales Datenmodell Beispiel Jahr. Zeit Produkt Geographie Umsatz 31 32

9 Dimensionen Einordnung Bewertung der Analysedaten durch Kenngrößen (z.b. Umsatz, Kosten) Untersuchung der Kenngrößen aus verschiedenen Perspektiven (z.b. Stadt, Bundesland, Zeitachse) Betrachtungsperspektive heißt Dimension Dimensionen Beispiel Zeit Jahr. Eigenschaften Mindestens 2 Dimensionselemente Dimensionselemente Bilden Blätter eines Baums (sog. Klassifikationshierarchie) Klassifikationshierarchie Dimensionselement Arten von Klassifikationshierarchien Klassifikationshierarchie Beispiele Einfache Hierarchien Höhere Hierarchieebenen enthalten die aggregierten Werte der jeweils niedrigeren Ebenen Oberster Knoten: Gesamtknoten Verdichtung aller Werte einer Dimension Parallele Hierarchien Entstehen bei unterschiedlicher Art der Gruppierung Parallele Äste ohne Beziehung Betrachtung eines Teilaspekts der Hierarchie pro Ast TOP Land Region Stadt Strasse Einfache Hierarchie TOP Jahr Woche Parallele Hierarchie 35 36

10 Weitere Begriffe Würfel Kanten von Dimensionen aufgespannt Katenlänge entspricht Anzahl der Elemente in Dimension Eine oder mehrere Kennzahlen pro Würfelzelle Anzahl der Dimensionen heißt Dimensionalität Konsolidierungspfad Pfade im Klassifikationsschema Konzeptionelle Modellierung ME/R-Modell Einsatz Entity Relationship Modells oder UML Probleme: Modellierung der Konsolidierungspfade nicht möglich Entitäten besitzen keine Semantik Hier aber: Höherer Automatisierungsgrad durch verzicht auf universelle Anwendbarkeit Unterscheidung zwischen Klassifikationsstufen, beschreibenden Attributen und Kennzahlen nicht möglich Daher eigene Modellierungsmodelle Multidimensionales Entity/Relationship Modell (ME/R) Multidimensionale Unified Modeling Language (muml) Ansatz von Totok Hier: ME/R Weiterentwicklung des E/R-Modells Anforderungen Spezialisierung: Alle eingeführten Elemente sind Spezialfälle von E/R Konstrukten Minimale Erweiterung: Leicht erlernbar für erfahrene E/R-Modellierer Darstellung der multidimensionalen Semantik: Klassifikationsschema, Würfelstruktur muss abbildbar sein Eingeführte Konstrukte Entitätenmenge Dimension Level (Klassifikationsstufe) n-äre Faktenbeziehung Binäre Klassifikationsbeziehungsmenge 39 40

11 Visualisierung der ME/R - Konstrukte Fakt Kenngröße Klassifikationsstufe Klassifikationsbeziehung Einkauf Kosten Region Stadt Strasse Relationale Umsetzung des multidim. Modells Relationale Umsetzung: Faktentabelle Anforderungen Beibehaltung der Semantik z.b. Hierarchien Effiziente Umsetzung von Anfragen Effiziente Verarbeitung von Anfragen Einfache Wartung z.b. beim Nachladen von Daten Umsetzung des Datenwürfels ohne Hierarchien Kennzahlen, Dimensionen Spalten Zellen Tupel Jahr. Produkt Produkt BMW 3er BMW 7er BMW 1er Zeit Geographie Karlsruhe Mannheim Mannheim Umsatz Zeit Umsatz Geographie 43 44

12 Relationale Umsetzung: Star Schema Relationale Umsetzung: Star Schema - Beispiel gängiger Schematyp für Data Warehouses Produkt Zeit Geographie Umsatz Beschreibung der Dimensionen durch: Dimension Tables Je eine Relation pro Dimension Nicht in dritter Normalform Hierarchien führen zu Redundanz Vorteil Performanz Jahr. Produkt BMW 3er Karlsruhe BMW 7er Mannheim BMW 1er Mannheim 726 Jahr Januar Q Januar Q Januar Q Zeit Umsatz Geographie Relational Umsetzung: Snowflake Schema Relational Umsetzung: Snowflake - Beispiel Verfeinerung des Star Schemas Mehrere Dimension Tables pro Dimension Relation pro Ebene einer Hierarchie Normalisiert Höherer Join-Aufwand bei Anfragen Keine Redundanz Jahr. Produkt Produkt Zeit Geographie Umsatz BMW 3er Karlsruhe BMW 7er Mannheim BMW 1er Mannheim 726 Bezeichnung _ID Neujahr Namenstag Adelhard Namenstag Adula 1 Zeit Geographie Umsatz _ID 1 2 Bezeichnung Januar Februar _ID Q1 Q1 3 März Q

13 Relationale Umsetzung: Semantikverluste Verluste in Faktentabelle Unterscheidung von Dimensionen und Kenngrößen nicht ersichtlich Dimensionstabelle Unterscheidung zwischen beschreibendem Attribut und Attribut der Klassifikationsebene nicht möglich Aufbau der Dimensionen geht verloren Lösung: Erweiterung des Systemkatalogs in relationalen Datenbankmanagementsystemen Aber: Für jedes DBMS anderes Vorgehen Quellenangaben A. Bauer, H. Günzel: Data Warehouse Systeme Architektur, Entwicklung, Anwendung, dpunkt.verlag, K. Sattler, S. Conrad: Folien zur Vorlesung Data Warehouse Technologien, 2003 C. von der Weth: Folien zum Datenbankpraktikum, Vielen Dank für Eure Aufmerksamkeit!

Themenblock: Data Warehousing (I)

Themenblock: Data Warehousing (I) Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining Agenda Einführung Data Warehouses Online Transactional Processing (OLTP) Datenmanipulation mit SQL Anfragen mit SQL Online

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

SQL/ETL. Praktikum: Data Warehousing und. Praktikum Data Warehousing und Mining, Sommersemester 2010

SQL/ETL. Praktikum: Data Warehousing und. Praktikum Data Warehousing und Mining, Sommersemester 2010 Data Warehousing (I): SQL/ETL Praktikum: Data Warehousing und Data Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Weitere Termine Praktikum Data Warehousing und Mining, Sommersemester

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle.

Seminar 2. SQL - DML(Data Manipulation Language) und. DDL(Data Definition Language) Befehle. Seminar 2 SQL - DML(Data Manipulation Language) und DDL(Data Definition Language) Befehle. DML Befehle Aggregatfunktionen - werden auf eine Menge von Tupeln angewendet - Verdichtung einzelner Tupeln yu

Mehr

Modellierung von OLAP- und Data- Warehouse-Systemen

Modellierung von OLAP- und Data- Warehouse-Systemen Andreas Totok Modellierung von OLAP- und Data- Warehouse-Systemen Mit einem Geleitwort von Prof. Dr. Burkhard Huch Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R Vorlesung #3. SQL (Teil 1) Vorlesung #3 SQL (Teil 1) Fahrplan Wiederholung/Zusammenfassung Relationales Modell Relationale Algebra Relationenkalkül Geschichte der Sprache SQL SQL DDL (CREATE TABLE...) SQL DML (INSERT, UPDATE, DELETE)

Mehr

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL Früherer Name: SEQUEL SQL: Structured Query Language Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL ist eine deklarative Anfragesprache Teile von SQL Vier große Teile:

Mehr

PSE: Analysesoftware für Logistiknetzwerke

PSE: Analysesoftware für Logistiknetzwerke PSE: Analysesoftware für Logistiknetzwerke IPD Böhm Matthias Bracht,, Lehrstuhl Prof. Böhm KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Multidimensionales Datenmodell

Multidimensionales Datenmodell Multidimensionales Datenmodell Grundbegriffe fi Fakten, Dimensionen, Würfel Analyseoperationen fi Drill-Down, Roll-Up, Slice und Dice Notationen zur konzeptuellen Modellierung fi ME/R, ADAPT Relationale

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Die Anweisung create table

Die Anweisung create table SQL-Datendefinition Die Anweisung create table create table basisrelationenname ( spaltenname 1 wertebereich 1 [not null],... spaltenname k wertebereich k [not null]) Wirkung dieses Kommandos ist sowohl

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Daniel Warner SQL. Das Praxisbuch. Mit 119 Abbildungen. Franzis

Daniel Warner SQL. Das Praxisbuch. Mit 119 Abbildungen. Franzis Daniel Warner SQL Das Praxisbuch Mit 119 Abbildungen Franzis Inhaltsverzeichnis Teil I - Einleitung 15 1 Einleitung 17 1.1 Zum Aufbau des Buchs 17 1.2 Hinweise zur Buch-CD 18 1.3 Typografische Konventionen

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Rückblick Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Data Definition Language zur Schemadefinition (z.b. CREATE TABLE zum Anlegen von Tabellen) Data

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15 Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................

Mehr

Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte

Wirtschaftsinformatik 7a: Datenbanken. Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte Wirtschaftsinformatik 7a: Datenbanken Hochschule für Wirtschaft und Recht SS 16 Dozent: R. Witte Drei Gäste bezahlen nach einem gemeinsamen Abendessen eine Rechnung von 30 Euro, so dass jeder 10 Euro gibt.

Mehr

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen

Mehr

Fortgeschrittene OLAP Analysemodelle

Fortgeschrittene OLAP Analysemodelle Fortgeschrittene OLAP Analysemodelle Jens Kübler Imperfektion und erweiterte Konzepte im Data Warehousing 2 Grundlagen - Datenanalyse Systemmodell Datenmodell Eingaben System Schätzer Datentypen Datenoperationen

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Inhaltsverzeichnis. Vorwort 13. Kapitel 1 Einleitung 15

Inhaltsverzeichnis. Vorwort 13. Kapitel 1 Einleitung 15 Vorwort 13 Kapitel 1 Einleitung 15 Kapitel 2 SQL-der Standard relationaler Datenbanken... 19 2.1 Die Geschichte 19 2.2 Die Bestandteile 20 2.3 Die Verarbeitung einer SQL-Anweisung 22 2.4 Die Struktur von

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

A Datendenition in SQL ( Punkte)

A Datendenition in SQL ( Punkte) A Datendenition in SQL (5 + 2 + 1 Punkte) Eine Sportredaktion verwaltet die Ergebnisse der Fuball-Bundesliga in einer Datenbank mit folgendem Schema: Mannschaften (MannschaftID, MannschaftName) Spiele

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

4. Datenbanksprache SQL

4. Datenbanksprache SQL 4. Datenbanksprache SQL Standard-Sprache für das Arbeiten mit relationalen Datenbanken: Structured Query Language Datendefinition: Anlegen, Ändern und Löschen von Datenbankstrukturen Datenmanipulation:

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort... 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort... 13 Auf einen Blick Vorwort... 13 Teil 1 Vorbereitung Kapitel 1 Einleitung... 17 Kapitel 2 SQL der Standard relationaler Datenbanken... 21 Kapitel 3 Die Beispieldatenbanken... 39 Teil 2 Abfrage und Bearbeitung

Mehr

Datenbanken Grundlagen und Design

Datenbanken Grundlagen und Design Frank Geisler Datenbanken Grundlagen und Design 3., aktualisierte und erweiterte Auflage mitp Vorwort 15 Teil I Grundlagen 19 i Einführung in das Thema Datenbanken 21 i.i Warum ist Datenbankdesign wichtig?

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

Wirtschaftsinformatik 2. Tutorium im WS 11/12

Wirtschaftsinformatik 2. Tutorium im WS 11/12 Wirtschaftsinformatik 2. Tutorium im WS 11/12 Entity/Relationship-Modell SQL Statements Tutorium Wirtschaftsinformatik WS 11/12 2.1 Datenmodellierung mit ERM (1) Datenmodellierung zur Erarbeitung des konzeptionellen

Mehr

Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur dritten Auflage Vorwort zur zweiten Auflage Vorwort zur ersten Auflage Hinweise zur CD

Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur dritten Auflage Vorwort zur zweiten Auflage Vorwort zur ersten Auflage Hinweise zur CD Vorwort zur vierten Auflage 11 Vorwort zur dritten Auflage 13 Vorwort zur zweiten Auflage 15 Vorwort zur ersten Auflage 17 Hinweise zur CD 19 1 Datenbanken und Datenbanksysteme 21 1.1 Zentralisierung der

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13 Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel

Mehr

Anfragen an multidimensionale Daten

Anfragen an multidimensionale Daten Anfragen an multidimensionale Daten Alexander Heidrich - BID8 09.06.2005 Hintergrundbild: http://www.csc.calpoly.edu/~zwood/teaching/csc471/finalproj02/afternoon/mfouquet/cube.jpg Inhaltsübersicht Motivation

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

Inhalt. 4.1 Motivation. 4.2 Datenintegration. 4.3 Konzeptuelle Modellierung. 4.4 Anfragen an Data Warehouses. 4.5 Implementierungsaspekte

Inhalt. 4.1 Motivation. 4.2 Datenintegration. 4.3 Konzeptuelle Modellierung. 4.4 Anfragen an Data Warehouses. 4.5 Implementierungsaspekte 4. Data Warehouses Inhalt 4.1 Motivation 4.2 Datenintegration 4.3 Konzeptuelle Modellierung 4.4 Anfragen an Data Warehouses 4.5 Implementierungsaspekte 2 Literatur V. Köppen, G. Saake und K.-U. Sattler:

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Datenbanken: Datenintegrität. www.informatikzentrale.de

Datenbanken: Datenintegrität. www.informatikzentrale.de Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt Andreas Heuer Gunter Saake Kai-Uwe Sattler Datenbanken kompakt Inhaltsverzeichnis Vorwort v 1 Was sind Datenbanken 1 1.1 Warum Datenbanken 1 1.2 Datenbanksysteme 4 1.3 Anforderungen: Die Codd'schen Regeln

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2 SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R IV-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Profilbezogene informatische Bildung in den Klassenstufen 9 und 10. Schwerpunktthema Daten und Datenbanken

Profilbezogene informatische Bildung in den Klassenstufen 9 und 10. Schwerpunktthema Daten und Datenbanken Profilbezogene informatische Bildung in den Klassenstufen 9 und 10 Schwerpunktthema Robby Buttke Fachberater für Informatik RSA Chemnitz Fachliche Einordnung Phasen relationaler Modellierung Fachlichkeit

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

Anwendungsentwicklung Datenbanken SQL. Stefan Goebel

Anwendungsentwicklung Datenbanken SQL. Stefan Goebel Anwendungsentwicklung Datenbanken SQL Stefan Goebel SQL Structured Query Language strukturierte Abfragesprache von ANSI und ISO standardisiert deklarativ bedeutet was statt wie SQL beschreibt, welche Daten

Mehr

6. Datenintegrität. Integritätsbedingungen

6. Datenintegrität. Integritätsbedingungen 6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können

Mehr

SQL Data Manipulation Language (DML) und Query Language (QL)

SQL Data Manipulation Language (DML) und Query Language (QL) Innsbruck Information System University of Innsbruck School of Management Information Systems Universitätsstraße 15 6020 Innsbruck SQL Data Manipulation Language (DML) und Query Language (QL) Universität

Mehr

9. Einführung in Datenbanken

9. Einführung in Datenbanken 9. Einführung in Datenbanken 9.1 Motivation und einführendes Beispiel 9.2 Modellierungskonzepte der realen Welt 9.3 Anfragesprachen (Query Languages) 9.1 Motivation und einführendes Beispiel Datenbanken

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

Datenbanken. Zusammenfassung. Datenbanksysteme

Datenbanken. Zusammenfassung. Datenbanksysteme Zusammenfassung Datenbanksysteme Christian Moser Seite 1 vom 7 12.09.2002 Wichtige Begriffe Attribut Assoziation API Atomares Attribut Datenbasis DBMS Datenunabhängigkeit Datenbankmodell DDL DML DCL ER-Diagramm

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik

Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik Beispielaufgaben Informationssysteme erstellt von Fabian Rump zur IS Vorlesung 2009/10 1 Multiple Choice Aussage richtig falsch Eine SQL-Abfrage beginnt immer mit dem Schlüsselwort SELECT Eine Datenbank

Mehr

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle)

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) Kapitel 6 Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) 1 Datenmanipulationssprache (DML) SQL Einfügen: Insert-Statement Ändern: Update-Statement Löschen:

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL als Anfrage- und Datenmanipulationssprache (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL als DQL und DML M. Lange, S. Weise Folie #8-1 Themen

Mehr

DB1. DB SQL-DQL 1 Mario Neugebauer

DB1. DB SQL-DQL 1 Mario Neugebauer DB1 DB1-12 041-SQL-DQL 1 Mario Neugebauer Einführung Informationsmodellierung Relationales Datenbankmodell Datenbanksprache SQL Einführung Daten-Abfrage-Sprache - DQL Daten-Definitions-Sprache - DDL Daten-Manipulations-Sprache

Mehr

Garten - Daten Bank. - survival pack -

Garten - Daten Bank. - survival pack - Garten - Daten Bank - survival pack - Dr. Karsten Tolle PRG2 SS 2017 Inhalt heute Kurz: Motivation und Begriffe SQL (survival pack) create table (Tabelle erzeugen) insert into (Einfügen) select (Anfragen)

Mehr

Webbasierte Informationssysteme

Webbasierte Informationssysteme SS 2004 Prof. Dr. Stefan Böttcher Universität Paderborn - SS 2004 - Prof. Dr. Stefan Böttcher Folie 1 Was ist eine relationale Datenbank? Menge von Relationen (=Tabellen) und Constraints (=Integritätsbedingungen)

Mehr

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Garten -Daten Bank Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Inhalt heute Kurz: Motivation und Begriffe SQL (am Beispiel MySQL und Workbench) create table(tabelle erzeugen) insert into(einfügen) select

Mehr

Relationales Datenbanksystem Oracle

Relationales Datenbanksystem Oracle Relationales Datenbanksystem Oracle 1 Relationales Modell Im relationalen Modell wird ein relationales Datenbankschema wie folgt beschrieben: RS = R 1 X 1 SC 1... R n X n SC n SC a a : i=1...n X i B Information

Mehr

Referenzielle Integrität SQL

Referenzielle Integrität SQL Referenzielle Integrität in SQL aus Referential Integrity Is Important For Databases von Michael Blaha (Modelsoft Consulting Corp) VII-45 Referenzielle Integrität Definition: Referenzielle Integrität bedeutet

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

1. Funktionen und Datenflüsse; Tabellenkalkulationssysteme

1. Funktionen und Datenflüsse; Tabellenkalkulationssysteme Grundwissen Informatik 1. und Datenflüsse; Tabellenkalkulationssysteme Zellbezug relativer Zellbezug absoluter Zellbezug iterative Berechnungen Datentypyen z. B. A4 A ist der Spaltenbezeichner 4 ist die

Mehr

VO Datenmodellierung. Katrin Seyr

VO Datenmodellierung. Katrin Seyr Datenintegrität Datenintegrität VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Datenintegrität 1. Überblick Überblick 1 Überblick 2 Integritätsbedingungen

Mehr

Datenbanken Entity-Relationship-Modell und Datenbankentwurf 1. Andreas Heß Hochschule Furtwangen

Datenbanken Entity-Relationship-Modell und Datenbankentwurf 1. Andreas Heß Hochschule Furtwangen Datenbanken Entity-Relationship-Modell und Datenbankentwurf 1 Andreas Heß Hochschule Furtwangen Inhalte heute Einführung ins Entity-Relationship-Modell Einführung ins relationale Modell Umsetzung vom E/R-

Mehr

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Software-Engineering Einführung

Software-Engineering Einführung Software-Engineering Einführung 7. Übung (04.12.2014) Dr. Gergely Varró, gergely.varro@es.tu-darmstadt.de Erhan Leblebici, erhan.leblebici@es.tu-darmstadt.de Tel.+49 6151 16 4388 ES Real-Time Systems Lab

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Informatik II Datenorganisation Datenbanken

Informatik II Datenorganisation Datenbanken Informatik II Datenorganisation Datenbanken Studiengang Wirtschaftsingenieurwesen (2. Semester) Prof. Dr. Sabine Kühn Tel. (0351) 462 2490 Fachbereich Informatik/Mathematik skuehn@informatik.htw-dresden.de

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

Seminar Data Warehousing. Seminar. Data Warehousing. Thema: Speichermodelle für Data-Warehouse-Strukturen

Seminar Data Warehousing. Seminar. Data Warehousing. Thema: Speichermodelle für Data-Warehouse-Strukturen Seminar Data Warehousing Thema: Speichermodelle für Data-Warehouse-Strukturen Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Institut für Informatik Lehrstuhl für Datenbanken

Mehr

Relationale Anfragesprachen

Relationale Anfragesprachen Relationale Anfragesprachen Structured Query Language: SQL Query by Example: QBE Kapitel 1 Übungen Fr 8.0 Uhr Michael Kühn Raum E 11 SQL standardisierte - Datendefinitions (DDL)- - Datenmanipulations (DML)-

Mehr

Kapitel 8: Datenintegrität

Kapitel 8: Datenintegrität Kapitel 8: Datenintegrität Datenintegrität Statische Bedingung (jeder Zustand) Dynamische Bedingung (bei Zustandsänderung) Bisher: Definition eines Schlüssels 1:N - Beziehung Angabe einer Domäne Jetzt:

Mehr

4. Structured Query Language (SQL)

4. Structured Query Language (SQL) 4. Structured Query Language (SQL) Rückblick Konzeptuelles Modell (ERM) können wir nun in (wenige) Relationen übersetzen Relationale Algebra gibt uns eine Sprache an die Hand, mit der wir Anfragen auf

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 08. Exkurs: Datenbanken 1 Motivation Datenbanksysteme

Mehr

Kapitel 7 Grundlagen von Data

Kapitel 7 Grundlagen von Data LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2014 Kapitel 7 Grundlagen von Data Warehouses Vorlesung: PD

Mehr

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014 Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: moer@db.informatik.uni-mannheim.de Marius Eich Email: marius.eich@uni-mannheim.de Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester

Mehr

Datenbanksysteme Kapitel: SQL Data Definition Language

Datenbanksysteme Kapitel: SQL Data Definition Language Datenbanksysteme Kapitel: SQL Data Definition Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni - Prof.

Mehr