Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Größe: px
Ab Seite anzeigen:

Download "Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)"

Transkript

1 D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce Gleicung bescreibt ie Umkerfunktion f : [0, ) [0, )? (a) Die Umkerfunktion eistiert nict. (b) f () = ln( ) (c) f () = e + () f () = e (e) f () = e Die Funktion ist im Definitionsbereic [0, ) streng monoton wacsen, also injektiv. Des Weiteren ist sie surjektiv, also umkerbar. Sei y = ln( + ). Lösen wir nac auf, so eralten wir = e y. Vertauscen von un y fürt scließlic zu f () = e.. Es sei f() = cos( ) für alle R. Welce er folgenen Aussagen sin war? (a) Es sei D = [ π, π]. Dann ist ie Funktion f : D R, f() injektiv. (b) Das Bil von D unter f, also {f() : D(f)}, ist gleic [0, ]. (c) Die Funktion g : [ 0, / ] [ π/, π/ ] gegeben urc g() = arccos ist ie Umkerfunktion von er Funktion f : [ π/, π/ ] [ 0, / ], f(). Die Funktion f ist auf D streng monoton steigen un folglic injektiv. Weiters ist cos(π) =, also ist im Bil von D unter f entalten un ieses Bil kann somit nict gleic [0, ] sein. Da f(g()) = cos( arccos ) = cos(arccos ) = für [0, /] un as Bil von [ π/, π/ ] unter f gleic [0, / ] ist, ist g in er Tat ie Umkerfunktion von f im gefragten Intervall. Bitte wenen!

2 3. Welce er folgenen Biler bescreiben en Grap einer injektiven Funktion [a, b] [c, ]? (a) () (b) () (c) (3) () (4) (e) (5) (f) (6) () ist kein Grap einer Funktion, weil verscieene y-koorinaten mit erselben -Koorinate möglic sin. In (3) un (5) sin verscieene -Koorinaten mit erselben y-koorinate möglic; in iesen Fällen ist ie Funktion also nict injektiv. Für (), (4) un (6) tritt ieses Problem nict auf; esalb sin sie Grapen zweier injektiver Funktionen auf einem geeigneten Definitionsintervall. Siee näcstes Blatt!

3 ( ) 4. Eine Funktion g eisst Asymptote einer Funktion f für, falls lim f() g() = 0 gilt. Es sei ie Funktion f : R R gegeben urc f() = e + e +. Welce er folgenen Funktionen ist eine Asymptote von f für? (a) g() = e (b) g() = e e + (c) g() = e () (e) g() = e e g() = e Es gilt f() = e + e + = e + /(e + ). Terme, ie ier für nict gegen Null konvergieren, sin Terme, ie in er Funktion g vorkommen. Also g() = e. 5. Es sei f() = Welce Aussage ist rictig? (a) f () = 36 ( 3 ) 3 ( 3 +) 5 (b) f () = 9 (+ 3 ) (c) f () = 36 ( 3 ) 3 ( 3 +) 4 () f () = 7 ( 3 ) 3 ( 3 +) 5 Bitte wenen!

4 . Gegeben seien ie Funktionen f : R R, 6 f : R [0, ), f 3 : R R, min{ 9, 0} f 4 : R \ {3} R, + f. () a) Untersuce alle Funktionen auf Injektivität, Surjektivität un Bijektivität. b) Skizziere auf em Intervall [ 5, 5] ie Funktionen g := f 3 f, un := f g, g : R R, : R [0, ), f 3 () f (), f (g()). c) Bestimme ie Umkerfunktion f4 : W (f 4 ) R \ {3}. (Hinweis: Sie müssen W (f 4 ) = R \ { } ierzu nict eplizit berecnen.) Lösung: a) Untersucen Sie alle Funktionen auf Injektivität, Surjektivität un Bijektivität. In er Vorlesung wure für eine Funktion f Injektivität efiniert als as ist logisc äquivalent zu f( ) f( ), f( ) = f( ) =. f ist bijektiv: 6 = 6 = f ist injektiv y R beliebig, wäle = y + 6 f () = y f ist surjektiv f ist nict bijektiv: (z.b.) für =, = ist f ( ) = f ( ) f ist nict injektiv f 3 ist nict bijektiv: y [0, ) beliebig, wäle z.b. = y f () = y f ist surjektiv (z.b.) für = 5, = 8 ist f 3 ( ) = f 3 ( ) f 3 ist nict injektiv (z.b.) für y = gibt es kein R, so ass f 3 () = y Wir beginnen, inem wir f 4 () umformen: f 4 () = + 6 = + 3 = Damit erkennt man leicter: + 3 = + 3 ( 3) = 3 0 für alle R \ {3}, so ass / W (f 4) Somit ist f 4 nict bijektiv. f 3 ist nict surjektiv ( + 4 ) = = 3 3 = 3 = f 4 ist injektiv f 4 ist nict surjektiv Siee näcstes Blatt!

5 b) Skizzieren Sie auf em Intervall [ 5, 5] ie Funktionen g := f 3 f, un := f g, g : R R, : R [0, ), f 3 () f (), f (g()). Siee Abbilungen un ; Bemerkung: Da f ie Betragsfunktion ist, erält man en Grapen von, inem man en Teil es Grapen von g, welcer unteralb er -Acse liegt, an er -Acse spiegelt Y X Abbilung : Aufgabe 4. b) Funktion g c) Bestimmen Sie ie Umkerfunktion f 4 : W (f 4 ) R \ {3}. Wir müssen ie Gleicung y = f 4 () nac auflösen: y = = y 6y 6y + = y 6y + = (y ) = 6y + y. Jetzt vertauscen wir noc ie Variablen un y un eralten: { } f4 : R \ R \ {3}, 6 +. Bitte wenen!

6 6 4 0 Y X Abbilung : Aufgabe 4. b) Funktion 3. a) Gegeben sei ie Funktion f mit Definitionsbereic D(f) = ( π, 3π ) urc ie Abbilungsvorscrift f() = tan(). Bestimme ie inverse Funktion von f. b) Es sei a R beliebig gewält. Finen Sie alle reellen Lösungen er Gleicung tan ( π ( + cos())) = a. Lösung: a) Wir nutzen zunäcst aus, ass ie Funktion tan π-perioisc ist. Daer ist f() = tan() = tan( π) für alle. Wegen D(f) = ( π, ) 3π ist ann := π ( π, ) π. Also ist arctan(f()) = arctan(tan( π)) = arctan(tan( )) = = π. Screiben wir y = f(), so liefert Auflösen er obigen Gleicung nac, ass y g(y) := arctan(y) + π ie gesucte Inverse ist. Da f : D(f) R surjektiv ist (.. zu jeem y R gibt es ein D(f) mit f() = y) kann als Definitionsbereic von g ganz R gewält weren: D(g) = R. b) Wegen cos() [, ] liegt as Argument es Tangens π( + cos()) in [ π, 3π ]. Da aber er Tangens weer für π noc für 3π efiniert ist, muss auf jeen Fall zunäcst π( + cos()) ( π, 3π ) gelten, also cos() (, ). Wir erkennen in ( π, 3π ) en Definitionsbereic D(f) von f wieer, also en Wertebereic er inversen Funktion g. Aus folgt ann, ass tan(π( + cos())) = f(π( + cos())) = g (π( + cos())) ist. Da g injektiv ist, scließen wir araus g (π( + cos())) = a = g (g(a)) π( + cos()) = g(a) = arctan(a) + π, Siee näcstes Blatt!

7 also cos() = π arctan(a). Somit sin alle Lösungen von er Form ( ) = ± arccos π arctan(a) + kπ, k Z. Alternativer Lösungweg: Wegen er π-perioizität er tan-funktion ist a = tan(π( + cos())) = tan(π cos()). Das Argument π cos() es Tangens liegt nun in ( π, π ), un wir können irekt ie Umkerfunktion arctan anwenen. Ein weiterer, aber falscer Lösungsweg: Wir wenen ie Funktion arctan irekt auf beie Seiten er Gleicung an un eralten arctan(a) = arctan(tan(π( + cos()))) = π( + cos()), was offensictlic nict mit obigem Resultat übereinstimmt. Der Feler liegt arin, ass im allgemeinen nict arctan(tan(z)) = z gilt. Gleiceit bestet nämlic nur für z ( π, π ), a er Wertebereic von arctan per Definition ( π, π ) ist. Fazit: Muss eine nict injektive Funktion (wie ier er tan) erst auf einen kleineren Definitionsbereic eingescränkt weren, amit sie umkerbar ist, so ist bei er Anwenung er Umkerfunktion Vorsict geboten! Das gleice Problem tritt übrigens auc bei en Funktionen arcsin un arccos auf. 4. Bestimme bei jeer er folgenen Funktionen, welce für alle reellen Zalen t > 0 efiniert sin, jeweils eine Asymptote er Form at + b für t + : a) f(t) = t t+ t ; b) g(t) = 4t + 3; c) (t) = 3t + cos(/t); ) i(t) = ln( + e t ). Zeicne ie Grapen er Funktionen un ie azugeörigen Asymptoten. Lösung: a) Da für t, ist ie Asymptote ie Gerae t. t t + t = 0 t + Bitte wenen!

8 b) Da 4t + 3 t = 3 4t t 0 für t, ist ie Asymptote ie Gerae t t. c) Da cos(/t) cos(0) = für t, ist ie Asymptote ie Gerae t 3t +. ) Da log( + e t ) t = log( + e t ) log(e t ) = log( + e t ) log() = 0 für t, ist ie Asymptote ie Gerae t t. 5. Berecne f : D(f) R für a) f : R R, sin(); b) f : R R, +3 ; c) f : (0, π) R, sin ; ) f : R R, e ; e) f : ( π, π ) R, (tan ) ; f) f : R R, ln ; g) f : R R, { {e für 0 sin( ; ) f : R R, ) für 0 0 für = 0 0 für = 0. Zeige, ass ie Ableitung er Funktion aus Teilaufgabe ) im Punkt = 0 nict stetig ist. Lösung: a) b) c) ) e) f) ( sin ) = sin + cos (Prouktregel) ( ( + 3) ) = ( )( + 3) = ( + 3) (Kettenregel) ( ) = cos sin sin ( e ) = e (Kettenregel) ( (tan ) ) = (tan ) ( ) ln = g) Es sei 0. Es gilt Weiter gilt (Kettenregel oer Quotientenregel) cos = sin cos 3 ln = ln ) (e = e 3 (Kettenregel, Abl. von tan ) (Kettenregel un Ableitung von ln ) (Kettenregel). weil f f() f(0) f() (0) lim 0 + e + e = 0 e, 0 e Siee näcstes Blatt!

9 un lim 0 e 0 + e + = lim e = 0, wobei wir ie Substitution = gemact aben, gilt f (0) = 0 (weil er linksseitige un er rectsseitige Grenzwert übereinstimmen). ) Es sei 0. Wir berecnen ( ( )) sin = sin Weiter gilt ( ) cos ( ) f f() f(0) f() (0) Weil sin() für alle R, ( ) sin = (Kettenregel un Prouktregel). sin ( ) sin 0 un esalb lässt sic zeigen, ass ( ) ( lim sin 0 0 ) sin lim = 0. 0 ( ). Wir aben also gezeigt f (0) 0 un somit gilt f (0) = 0. Fasst man alles zusammen erält man: { f sin ( ( () = ) cos ) falls 0 0 falls = 0. Im folgenen zeigen wir, ass ie Funktion f im Punkt = 0 nict stetig ist. Es gilt ( ( ) ( )) ( ) ( ) lim f () sin cos sin lim cos = 0 lim 0 cos Der Grenzwert lim cos ( 0 ) eistiert nict. Um ass zu zeigen muss man zwei Folgen (an ), (b n ) finen so ass a n 0, b n 0 mit n + un ( ) ( ) lim cos lim n + a cos n n + b n In er Tat, es sei (a n ) ie Folge gegeben urc un es sei (b n ) ie Folge gegeben urc a n := nπ b n := π + nπ. Beacte, ass a n 0 un b n 0 falls n +. Wir berecnen ( ) lim cos cos(nπ) = n + n + n + a n un ( ) ( π ) lim cos n + b cos n n + + nπ 0 = 0; n + er Grenzwert lim cos ( 0 ) eistiert also nict un ie Funktion f ist nict stetig an er Stelle = 0. ( ).

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: M. Boßle, B. Krinn Ü. Okur, M. Wie Blatt 7 Gruppenübung zur Vorlesung Höere Matematik 2 Sommersemester 202 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungsinweise zu en Hausaufgaben: Aufgabe H 58. Differenzierbarkeit

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Differenzial- und Integralrechnung V

Differenzial- und Integralrechnung V Differenzial- un Integralrecnung V Rainer Hauser Dezember 2013 1 Einleitung 1.1 Rationale Funktionen Rationale Funktionen sin Funktionen in er Form von Brücen, eren Zäler un Nenner Polynome sin. Durc vollstäniges

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

7. Natürliche Exponential- und Logarithmusfunktion 7.1 Die natürliche Exponentialfunktion

7. Natürliche Exponential- und Logarithmusfunktion 7.1 Die natürliche Exponentialfunktion 7. Natürlice Eponential- und Logaritmusfunktion 7. Die natürlice Eponentialfunktion Wiederolung 0. Klasse: allgemeine Eponentialfunktion f() = a bekannt (a )' = lim = lim a a a = a lim a Ziel: f f = lim

Mehr

1. Tangente, Ableitung, Dierential

1. Tangente, Ableitung, Dierential 1. Tangente, Ableitung, Dierential Variablen un Funktionen 1.1. Verallgemeinern Sie ie folgenen Gruppen von Gleichungen mithilfe von Variablen. (1) 5 + 3 = 3 + 5, 1 2 = 2 + 1. (2) 3 2 + 5 2 = (3 + 5) 2,

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Differenzierbare Funktionen

Differenzierbare Funktionen Kapitel 5 Differenzierbare Funktionen In diesem Kapitel widmen wir uns dem Begriff der Differenzierbarkeit und entwickeln die Eigenscaften differenzierbarer Funktionen. Darüberinaus wollen wir auc unsere

Mehr

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [. Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)

Mehr

Stetigkeit und Differenzierbarkeit

Stetigkeit und Differenzierbarkeit Kapitel 5 Stetigkeit un Differenzierbarkeit 5.1 Stetigkeit Unstrenge Definitionen : Eine Funktion heißt stetig, wenn - man ihren Graphen mit em Bleistift ohne Absetzen zeichnen kann; - kleine Änerungen

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 4. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fax:

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Á 5. Differenzierbarkeit

Á 5. Differenzierbarkeit Á. Differenzierbarkeit Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 . Differenzierbarkeit Zur Berecnung der Steigung

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

122 KAPITEL 7. POTENZREIHEN

122 KAPITEL 7. POTENZREIHEN Kapitel 7 Potenzreien 7.1 Der Konvergenzradius Definition 7.1: (Komplexe Potenzreien) Eine Potenzreie um den Punt z 0 C ist eine Reie der Form a (z z 0 ), a, z, z 0 C. Dort, wo die Reie onvergiert, definiert

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Herleitungen von elementaren Ableitungsregeln

Herleitungen von elementaren Ableitungsregeln Herleitungen von elementaren Ableitungsregeln by Nictnäerdefiniert 5..003-6..003 Index. Differenzenquotient. Faktorregel 3. Konstantenregel 4. Summenregel 5. Produktregel 6. Quotientenregel 7. Potenzregel

Mehr

V. Differentialrechnung

V. Differentialrechnung V.. Die Ableitung 97 V. Differentialrecnung Ausgeend von der Frage nac der Approximierbarkeit von Funktionen durc affine Funktionen, d.., Funktionen, deren Grap eine Gerade ist, werden wir in diesem Kapitel

Mehr

8 Reelle Funktionen. 16. Januar

8 Reelle Funktionen. 16. Januar 6. Januar 9 54 8 Reelle Funktionen 8. Reelle Funktion: Eine reelle Funktion f : D f R ordnet jedem Element x D f der Menge D f R eine reelle Zahl y R zu, und man schreibt y = f(x), x D. Die Menge D f heißt

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x)

7.1 Definitionen und Ableitungen der elementaren Funktionen. f(x + x) f(x) Kapitel 7 Differentialrechnung 71 Definitionen un Ableitungen er elementaren Funktionen Die Funktion f) sei efiniert für a

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

Klausur Analysis für Informatiker Musterlösung

Klausur Analysis für Informatiker Musterlösung Prof. Dr. Torsten Wedhorn WS 9/ Dr. Ralf Kasprowitz Elena Fink Klausur Analysis für Informatiker Musterlösung 9.2.2 Name, Vorname Studienfach Matrikelnummer Semester Übungsgruppe Zugelassene Hilfsmittel:

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Universität Paerborn, en 16.07.2007 Differential- un Integralrechnung Ein Repetitorium vor er Klausur Kai Gehrs 1 Übersicht Inhaltlicher Überblick: I. Differentialrechnung I.1. Differenzierbarkeit un er

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum Anwendungen der Potenzreienentwicklung: Approximation, Grenzwerte; Wacstum Lokale Näerung einer Funktion durc ganzrationale Funktionen Ganzrationale Funktionen aben viele angeneme Eigenscaften. Man weiß

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.41 2018/05/08 15:50:54 k Exp $ 1 Analytisce Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung atten wir eine metrisce Form des Stralensatzes ergeleiten, gegeben

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17

Themenkatalog. Mathe-Party Fulda 1 Wintersemester 2016/17 Themenkatalog Mengenlehre Aussagenlogik Relationen Funktionen Vollstänige Inuktion Folgen Reihen Grenzwerte Funktionseigenschaften Differentialrechnung Integralrechnung Mathe-Party Fula Wintersemester

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend?

Lösung - Serie 2. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Welche der folgenden Funktionen ( 1, 1) R sind strikt monoton wachsend? D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie.. Welche der folgenden Funktionen (, R sind strikt monoton wachsend? (a (b (c + 3 (d e (e (f arccos Keine. Auf (, 0] ist strikt monoton

Mehr

2.2 Reellwertige Funktionen

2.2 Reellwertige Funktionen 4 Kapitel. Differentialrechnung in einer Variablen. Reellwertige Funktionen Ein zentraler Begriff der Mathematik ist der Begriff der Abbildung oder Funktion, und dieses Konzept taucht in den verschiedensten

Mehr

Einführung der Trigonometrischen Funktionen

Einführung der Trigonometrischen Funktionen Einfürung der Trigonometriscen Funktionen Andreas Kovacs H03550L JKU Linz andreas.kovacs@ aon.at Cristian Punzengruber H035596L JKU Linz cunzengruber@ gm.at. Juni 004 Kurzfassung Diese Arbeit andelt von

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Analysis Klausur zu Ableitung, Änderungsrate, Tangente Gymnasium Klasse 10 Aleander Scwarz www.mate-aufgaben.com Dezember 01 1 Teil 1: one Hilfsmittel Aufgabe 1: Ermittle die Steigung von f() = + 4 an

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n

0.1. Lösung der Aufgabe 1. Nehme an, wir ( hätten ) die Aufgabe, n Personen aus 2n .. Lösung der Aufgabe. Neme an, wir ätten die Aufgabe, n Personen aus n n Personen auszuwälen. Dafür gibt es natürlic Möglickeiten. Wir können aber n auc wie folgt verfaren. Teilen wir die n Personen auf

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Zusammenfassung An1I HS2012 Analysis für Informatiker 1

Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Emanuel Duss emanuel.duss@gmail.com 19. November 2012 Analysis für Informatiker 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen der Lehre von

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Aufgabe 2 Wetterstation Aufgabe aus der scriftlicen Abiturprüfung Hamburg 05. In einer Wetterstation wird die Aufzeicnung eines Niedersclagmessgeräts vom Vortag (im Zeitraum von 0 Ur bis Ur) ausgewertet.

Mehr

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

Das Matrizenexponential

Das Matrizenexponential Das Matrizenexponential Tobias Fleckenstein 18 Mai 215 Das Matrizenexponential Seminar im Sommersemester 215 HCM Bonn Einleitung Bei der Untersucung von Differentialgleicung kommt man ser scnell in die

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Vorlesungen Analysis von B. Bank

Vorlesungen Analysis von B. Bank Vorlesungen Analysis von B. Bank vom 23.4.2002 und 26.4.2002 Zunächst noch zur Stetigkeit von Funktionen f : D(f) C, wobei D(f) C. (Der Text schliesst unmittelbar an die Vorlesung vom 19.4.2002 an.) Auf

Mehr

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0,

2. Umkehrfunktionen und ihre Ableitung, Hyperbelfunktionen 2.1. Höhere Ableitungen. Die Ableitung der Ableitung von f bezeichnet man, x 2, fur x < 0, . Umkehrfunktionen un ihre Ableitung, Hyperbelfunktionen.. Höhere Ableitungen. Die Ableitung er Ableitung von f bezeichnet man, falls sie existiert, mit f x) oer f ) x) oer fx)) oer fx) bzw. allgemein

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist.

A U F G A B E N A N A L Y S I S. 11. Vorlesung Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion x, x 0, stetig bei x 0 = 5 ist. A U F G A B E N A N A L Y S I S. Vorlesung. Zeigen Sie, mit Hilfe der ɛ-δ -Sprache, daß die Funktion, 0, stetig bei 0 = 5 ist. Lösung: Es sei 5 < ɛ. () Daraus folgt 5 ɛ < < 5 + ɛ () oder Folglich gilt

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

1 Lokale Umkehrbarkeit und implizite Funktionen

1 Lokale Umkehrbarkeit und implizite Funktionen Christina Schinler Karolina Stoiber Ferienkurs Analysis 2 für Physiker SS 2013 A 1 Lokale Umkehrbarkeit un implizite Funktionen In iesem Kapitel weren Kriterien vorgestellt, wann eine Funktion umkehrbar

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 11

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 11 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Übungsblatt 11 1. In der Vorlesung haben Sie gesehen, dass es verschiedene Zweige des komplexen Logarithmus gibt. Dies bedingt, dass es

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Übungsklausur Lineare Algebra I - Wintersemester 2008/09

Übungsklausur Lineare Algebra I - Wintersemester 2008/09 1 Übungsklausur Lineare Algebra I - Wintersemester 008/09 Teil 1: Multiple Choice (1 Punkte Für ie ganze Klausur bezeichne K einen beliebigen Körper. 1. Welche er folgenen Aussagen sin ann un nur ann erfüllt,

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld

ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld ETH Zürich Analysis I Zwischenprüfung Winter 2014 D-BAUG Musterlösungen Dr. Meike Akveld Bitte wenden! 1. Die unten stehende Figur wird beschrieben durch... (a) { (x, y) R 2 x + y 1 }. Richtig! (b) { (x,

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 3. Reelle Funktionen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

Goniometrische Gleichungen

Goniometrische Gleichungen EL / GS - 3.8.5 - e_triggl.mcd Goniometrische Gleichungen Definition: Gleichungen, in denen die Variable als Argument von Winkelfunktionen vorkommen, nennt man "goniometrische Gleichungen". sweg: Mit Hilfe

Mehr

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10

Analysis: Ableitung, Änderungsrate,Tangente 1 Analysis Ableitung, Änderungsrate, Tangente Teil 1 Gymnasium Klasse 10 www.mate-aufgaben.com Analysis: Ableitung, Änderungsrate,Tangente Analysis Ableitung, Änderungsrate, Tangente Teil Gymnasium Klasse 0 Alexander Scwarz www.mate-aufgaben.com April 0 www.mate-aufgaben.com

Mehr

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen

Mathematik Klassenarbeit Nr. 3. Die Ableitungsfunktion, Eigenschaften und Anwendungen 0. Für Pflict- und Walteil gilt: saubere und übersictlice Darstellung, klar ersictlice Recenwege, Antworten in ganzen Sätzen und Zeicnungen mit spitzem Bleistift bringen dir bis zu 3 Punkte. /3 1. Erkläre

Mehr

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 12 der Vorlesung Analysis I WS08/09 Musterlösung zu Blatt 1 der Vorlesung Analysis I WS08/09 Schriftliche Aufgaben Aufgabe 1. Beweisskizze a): Wir benutzen die Stetigkeit von sin und cos und sin π/) = 1, sinπ/) = 1, cos π/) = cosπ/) = 0,

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 7 4 DIFFERENZIERBARKEIT Sei dazu 0 < ρ < s < r. Dann gilt lim sup k k a k

Mehr

Definition von Sinus und Cosinus

Definition von Sinus und Cosinus Definition von Sinus und Cosinus Definition 3.16 Es sei P(x y) der Punkt auf dem Einheitskreis, für den der Winkel von der positiven reellen Halbachse aus (im Bogenmaß) gerade ϕ beträgt (Winkel math. positiv,

Mehr

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $

$Id: stetig.tex,v /02/10 17:31:38 hk Exp $ $Id: diffb.tex,v /02/10 17:50:21 hk Exp hk $ Mathematik für Ingenieure I, WS 008/009 Dienstag 0. $Id: stetig.te,v.5 009/0/0 7:3:38 hk Ep $ $Id: diffb.te,v. 009/0/0 7:50: hk Ep hk $ III. Analysis 3 Stetige Funktionen 3.4 Umkehrfunktionen Zum Abschluss

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN. Vektorräume: Basen und lineare Unabhängigkeit TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Frierich Roesler Ralf Franken, PhD Max Lein Lineare Algebra WS 26/7 en Blatt 8.2.26 ektorräume: Basen un lineare Unabhängigkeit Zentralübungsaufgaben

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

12. Übungsblatt zur Analysis II

12. Übungsblatt zur Analysis II Facbereic atematik Prof. Dr. R. Farwig C. omo J. Prasiswa R. Sculz SS 29 6.7.29 2. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Jordan-essbarkeit Die enge R n sei Jordan-messbar. Zeigen Sie, dass

Mehr