Abschlussklausur Cluster-, Grid- und Cloud-Computing (CGC) Dr. Christian Baun

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Abschlussklausur Cluster-, Grid- und Cloud-Computing (CGC) 25.1.2012 Dr. Christian Baun"

Transkript

1 ÐÙ Ø Ö¹ Ö ¹ÙÒ ÐÓÙ ¹ ÓÑÔÙØ Ò µ Ä ÙÒ ÞÞ ÒÞÙÖ ÐÙ Ð Ù ÙÖ ¾ ºÂ ÒÙ Ö¾¼½¾ ÎÓÖÒ Ñ Æ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ ÒË ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µá Ö ÒÆ Ñ Ò Ë Ö ÒË Ä ÙÒ Ò ÖÌ Ð Ù Ù Û Ð ÚÓÖ Ö Ø Ø Ð Øغ Á Ö ÒÎÓÖÒ Ñ ÒÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö ÒºÄ ÙÒ ÒÓ Ò Ò Ò ÒÒ ÒÒ Ø Û ÖØ ØÛ Ö Òº Ä ÒË ØØ Á Ö ÒÄ Ø Ð Ù Û ÙÒ Á Ö ÒËØÙ ÒØ Ò Ù Û Ö Øº Ë ÒÒ Ò Ù Ð Ö Ò ÐØØ Ö Ñ Ò ÖÀ ØÙÒ ÒÙØÞ ÒºÁÒ Ñ ÐÐ Ð À Ð Ñ ØØ Ð Ø ÒÒ Ø¹ÔÖÓ Ö ÑÑ Ö Ö ÖÌ ÒÖ Ò ÖÞÙ Ð Òº Ø ÒÎ ÖÛ ÒÓØÛ Ò º Ò È Ô Ö Ö Ò ØÚ ÖÛ Ò ØÛ Ö Òº Å Ø Ð Ø ØÓ ÖÊÓØ Ø Ø Ö Ò Ö Ò Û Ö ÒÒ Ø Û ÖØ Øº Ö ØÙÒ Þ Ø Ì Ð Ö ÐÙ Ð Ù ÙÖ ØÖ Ø ¼Å ÒÙØ Òº ËØ ÐÐ ÒË Ö Á ÖÅÓ ÐØ Ð ÓÒ Ù ÐØ Ø ØºÃÐ Ò ÐÒ ÅÓ ÐØ Ð ¹ ÒØ» ÒÛ Ö ÚÓÒ ÖÛ Ø Ö ÒÌ ÐÒ Ñ Ò ÖÃÐ Ù ÙÖ Ù ÐÓ Ò ÓÒ Û Ö Ò Ð ÌÙ ÙÒ Ú Ö Ù Ò ÒÙÒ Ö» ÒØ ÔÖ Ò ËØÙ¹ Û ÖØÙÒ ½µ ¾µ µ µ µ µ µ µ µ ÆÓØ Σ

2 Abschlussklausur Cluster-, Grid- und Cloud-Computing (CGC) Dr. Christian Baun Aufgabe 1 (4+4 Punkte) a) Ordnen Sie die folgenden Cloud-Dienste-Kategorien den Ebenen in der Abbildung zu PaaS Cloud-Gaming Cloud-Printing IaaS HPCaaS HuaaS Cloud-Betriebssystem SaaS b) Ordnen Sie die folgenden freien und kommerziellen Cloud-Angebote den Ebenen zu: Google App Engine Google Cloud Print Amazon Elastic Compute Cloud Amazon Mechanical Turk eyeos EC2 Cluster Compute Instances Google Apps OnLive Aufgabe 2 (4+2 Punkte) a) Nennen Sie die vier HTTP-Methoden bei REST Web Services, die an die aus dem Datenbank-Umfeld bekannten CRUD-Aktionen erinnern und beschreiben Sie kurz deren Funktion. b) Zusätzlich zu den vier HTTP-Methoden werden zwei weitere HTTP-Methoden häufig bei Cloud-Diensten angeboten. Nennen Sie diese und beschreiben Sie kurz deren Funktion. Aufgabe 3 (4 Punkte) Ordnen Sie die Eigenschaften in der Tabelle jeweils dem Cloud-Computing oder dem Grid-Computing zu. (Es genügt, wenn Sie jeweils C für Cloud Computing und G für Grid Computing eintragen.) Eigenschaft Verteilte, heterogene Ressourcen ohne zentrale Kontrolle Benutzerfreundliche Bedienung Vollautomatisierte Dienste Basiert auf freier, standardisierter Software und Schnittstellen Finanzierung primär durch Förderung durch die öffentliche Hand Verbrauchsabhängige Abrechnung Hauptsächlich physische Ressourcen Hauptsächlich virtualisierte Ressourcen Cloud/Grid Computing Für jede korrekte Antwort gibt es 0.5 Punkte. Für jede falsche Antwort werden 0.5 Punkte abgezogen. Es können maximal 4 Punkte und nicht weniger als 0 Punkte insgesamt erreicht werden.

3 Aufgabe 4 (4+2 Punkte) a) Amazon Web Services (AWS) Erklären Sie die beiden Konzepte Availability Zone und Region. Erklären Sie die beiden Konzepte AMI und Instanz. b) Google App Engine (GAE) Erklären Sie die Unterschiede zwischen Datastore und Memcache. Aufgabe 5 (1+3+3 Punkte) a) Worin unterscheiden sich Peer-to-Peer und das Client-Server-Modell? b) Nennen Sie die Namen der drei Arten von Peer-to-Peer-Systemen. c) Beschreiben Sie in wenigen Worten, was jede der drei Arten von Peer-to-Peer-Systemen auszeichnet. Aufgabe 6 (4 Punkte) Kreuzen Sie bei jeder Aussage in der Tabelle an, ob sie wahr oder falsch ist. Aussage IBM Smart Cloud Enterprise ist eine Infrastructure as a Service Buckets in S3 haben einen hierarchischen Namensraum Die Google App Engine ist eine Platform as a Service Google Cloud Storage hat die gleiche Schnittstelle wie EBS Man kann die Firewall-Einstellungen von EC2-Instanzen mit Hilfe von Sicherheitsgruppen konfigurieren EBS-Volumen können zu jedem Zeitpunkt nur an eine Instanz angehängt sein EBS-Volumen dürfen nur das Dateisystem ext3 enthalten Ein verteiltes System auf Basis von BOINC ist eine Infrastructure as a Service wahr falsch Für jede korrekte Antwort gibt es 0.5 Punkte. Für jede falsche Antwort werden 0.5 Punkte abgezogen. Es können maximal 4 Punkte und nicht weniger als 0 Punkte insgesamt erreicht werden. Aufgabe 7 (5+2 Punkte) a) Berechnen Sie die Werte der Fingertable von Knoten n = 8 und tragen Sie diese in die Tabelle ein. b) Welche beiden Formen der Suche gibt es bei verteilten Hashtabellen? Aufgabe 8 (2+2 Punkte) 10 TB Daten sollen aus einer Cloud exportiert werden. a) Wie lange dauert die Übertragung via Ethernet (LAN) mit 10 Gbit/s? b) Wie lange dauert die Übertragung via DSL mit Kbit/s? Aufgabe 9 (2+1+1 Punkte) a) Beschreiben Sie den Unterschied zwischen Virtualisierung und Emulation. b) Nennen Sie ein Beispiel für Anwendungsvirtualisierung. c) Beschreiben Sie die Funktion des VMM bei vollständiger Virtualisierung.

4 Ù ½µ µ ÈÙÒ Ø ººººººººººººººººººººº µ ÓÓ Ð ÔÔ Ò Ò Ñ ÞÓÒÅ Ò ÐÌÙÖ Ñ ÞÓÒ Ð Ø ÓÑÔÙØ ÐÓÙ = Á Ë ÓÓ Ð ÐÓÙ ÈÖ ÒØ = È Ë Ý ÇË = ÀÙ Ë = ÐÓÙ ¹ÈÖ ÒØ Ò ÓÓ Ð ÔÔ ÇÒÄ Ú ¾ ÐÙ Ø Ö ÓÑÔÙØ ÁÒ Ø Ò = ÀÈ Ë = ÐÓÙ ¹ ØÖ Ý Ø Ñ = Ë Ë = ÐÓÙ ¹ Ñ Ò

5 Ù ¾µ µàììè ÊÍ ¹ Ø ÓÒ Ò ËÉÄ Ö ÙÒ ÈÙÒ Ø ººººººººººººººººººººº ÈÍÌ Ì ÈÇËÌ Ö Ø Ê»Ê ØÖ Ú ÍÔ Ø ÁÆË ÊÌÊ ÓÙÖ ÖÞ Ù ÒÓ Ö Ö ÒÁÒ ÐØ Ö ØÞ Ò Ë Ä ÌÊ ÓÙÖ ÞÛº Ö ÒÊ ÔÖ ÒØ Ø ÓÒ Ò ÓÖ ÖÒ µ Ä Ì Ð Ø» ØÖÓÝ ÍÈ Ì Ò ÖÊ ÓÙÖ ØÛ ÒÞÙ Ò Ä Ì Ê ÓÙÖ Ð Ò À ÓÖ ÖØÚÓÑË ÖÚ ÖÒÙÖ ÒÀ Ö Ò ÖÊ ÓÙÖ Ø µ Ò ËÓ ÒÒ Ö ÒÙØÞ Ö Ï ¹Ë ÖÚ Ö Å Ø Ø Ò Ò ÓÖÑ Ö Ò ÇÈÌÁÇÆËÔÖ ØÛ Ð Å Ø Ó Ò Ù Ò ÖÊ ÓÙÖ Ú Ö Ö Ò Û Ö Ö Ð À ÖÞÙÖ Ð ÖØÛ Ì Ó Ò ÒØÐ ÒÊ ÓÙÖ ÞÙ ÖØÖ Ò

6 Ù µ Ò Ø ÈÙÒ Ø ººººººººººººººººººººº Î ÖØ ÐØ Ø ÖÓ Ò Ê ÓÙÖ ÒÓ Ò Þ ÒØÖ Ð ÃÓÒØÖÓÐÐ ÒÙØÞ Ö Ö ÙÒ Ð ÒÙÒ ÎÓÐÐ ÙØÓÑ Ø ÖØ Ò Ø Ö ÓÑÔÙØ Ò ÐÓÙ» Ö ÓÑÔÙØ Ò ÖØ Ù Ö Ö Ø Ò Ö ÖØ ÖËÓ ØÛ Ö ÙÒ Ë Ò ØØ Ø ÐÐ Ò Ò ÒÞ ÖÙÒ ÔÖ ÑÖ ÙÖ Ö ÖÙÒ ÙÖ ÒØÐ À Ò Ö ÓÑÔÙØ Ò Î Ö Ö Ù Ò Ö ÒÙÒ ÐÓÙ ÓÑÔÙØ Ò À ÙÔØ Ð Ô Ý Ê ÓÙÖ Ò À ÙÔØ Ð Ú ÖØÙ Ð ÖØ Ê ÓÙÖ Ò ÐÓÙ ÓÑÔÙØ Ò

7 Ù µ µ ÈÙÒ Ø ººººººººººººººººººººº ¾ Ø Ø Ù ËØ Ò ÓÖØ Ò Ê ÓÒ Òµ Ñ ØÊ ÓÙÖ ÒºÂ ÖËØ Ò ÓÖØ Òع Î ÖØÙ ÐÐ Ë ÖÚ Ö ÁÒ Ø ÒÞ ÒµÛ Ö Ò Ù Ñ ÞÓÒÅ Ò ÁÑ ÅÁµ Ö¹ Ò ÐÓ Ò Ö ÐÙ Ø Öº ÐØÎ Ö Ö Ø ÞÓÒ Ò Ú Ð Ð ØÝ ÓÒ µºâ Î Ö Ö Ø ÞÓÒ Ø Ò µ Þ Ù Øº Ò ÅÁ Ø Ò Ð ÙÔ Ù Ö ÒÐ Ò Ò Ò Ù ÒÚ ÖØÙ ÐÐ ÒË Ö¹ Ú Ö º Ø ØÓÖ Ò Ø ÓÒ Ö ÙÒ Å Ò ÔÙÐ Ø ÓÒÚÓÒ Ø Ò Ö ÓÐ Ø Ö Ò Ò ÌÖ Ò Ø ÓÒ Ò Ò ØÓÑ Ö È Ö Ø ÒØ ÖËÔ Ö Ö Ð ÖØ Ð Ã Ý»Î ÐÙ ¹ Ø Ò Ò Å Ñ ËÔÖ ÉÄ ÓÓ Ð ÉÙ ÖÝÄ Ò Ù µ ÀÓ Ô Ö ÓÖÑ ÒØ ÖØ ÑÔÓÖÖ Ö Ø Ò Ô Ö Ù À ÙÔØ Ô Ö ÉÄ Ø ÖÓ ÒÐ Ø ÒÑ ØËÉÄ ËØÖÙØÙÖ ÉÙ ÖÝÄ Ò Ù µ Â Ö ÒØÖ Ø Ù ½Å ÖÒ Ø Â Ö ÒØÖ Û Ö Ñ Ø Ò Ñ Ò ÙØ ÒË Ð Ð Ð Ø Ë Ö ÙØ Ù Ö Þ Ø Ò Ø ÒÛ Ö Ò Ò Ù Ð ØÙÒ Å Ñ Ö ÖÛ ÖÚ Ö ÖÒ Ø Û Ö Ò Î Ö ÐÐ Þ Ø ÒË ÙÒ Ò Ò Ò Û ÒÒ Ö ÒØÖ Ù Ñ Å Ñ ÒØ ÖÒØÛ Ö Ò ÓÐÐ

8 Ù µ µ ÈÙÒ Ø ººººººººººººººººººººº ÒÈ Ö¹ØÓ¹È Ö¹ËÝ Ø Ñ Ø ÒÎ Ö ÙÒ Ð Ö Ø Ø ÖÃÒÓØ Ò Â ÖÃÒÓØ Ò Ø Ð Þ Ø Ð ÒØÙÒ Ë ÖÚ Ö ÃÒÓØ ÒÑ Ò Ò Ø Ê ÓÙÖ ÒÞÙ Ò Ð ÃÒÓØ ÒÛ Ö Ò Ð È Ö Þ Ò Ø Ò ØÛÓÖ ÒÚ ÖÓÒÑ ÒØ ÚÓ Ò ÒØÖ Ð ÖÚ º Ò ÝÇÖ Ñµ È Ö¹ØÓ¹È Ö Ý Ø Ñ Ð ¹ÓÖ Ò Þ Ò Ý Ø ÑÓ ÕÙ Ð ÙØÓÒÓÑÓÙ ÒØ Ø Ô Ö µû Ñ ÓÖØ Ö Ù Ó ØÖ ÙØ Ö ÓÙÖ Ò µ ÒØÖ Ð ÖØ È¾È Ê Ò»ÈÙÖ È¾È ÀÝ Ö È¾È

9 µ ÉÙ ÐÐ Â Ö Ö Ô ÖÙÒ Ê ÖË ÓÐÐÑ Öº Ö Ø Ò Ë ÓÒ Ò Ö Ø ÓÒÓ È Ö¹ØÓ¹È ÖËÝ Ø Ñ ¾¼¼ µºäæ Ë

10 Ù µ Ù ÈÙÒ Ø ººººººººººººººººººººº Á ÅËÑ ÖØ ÐÓÙ ÒØ ÖÔÖ Ø Ò ÁÒ Ö ØÖÙØÙÖ Ë ÖÚ Ù Ø ÒË Ò Ò Ò Ö Ö ÒÆ Ñ Ò Ö ÙÑ ÓÓ Ð ÔÔ Ò Ò Ø Ò ÈÐ Ø ÓÖÑ Ë ÖÚ Û Ö Ð ÓÓ Ð ÐÓÙ ËØÓÖ Ø Ð Ë Ò ØØ Ø ÐÐ Û Ë Å Ò ÒÒ Ö Û Ðй Ò Ø ÐÐÙÒ ÒÚÓÒ ¾¹ÁÒ Ø ÒÞ ÒÑ Ø À Ð ÚÓÒË Ö Ø ÖÙÔÔ Ò ÓÒ ÙÖ Ö Ò Ë¹ÎÓÐÙÑ Ò ÒÒ ÒÞÙ Ñ ØÔÙÒ ØÒÙÖ Ò Ò ÁÒ Ø ÒÞ Ò Ò Ø Ò Ë¹ÎÓÐÙÑ Ò Ö ÒÒÙÖ Ø Ý Ø Ñ ÜØ ÒØ ÐØ Ò ÒÚ ÖØ ÐØ ËÝ Ø Ñ Ù ÚÓÒ ÇÁÆ Ø Ò ÁÒ Ö ØÖÙØÙÖ Ë ÖÚ

11 Ù µ ÈÙÒ Ø ººººººººººººººººººººº ÒØÖ ËØ ÖØÃÒÓØ Ò ½ µ Ò ÖØ Ð ÚÓÒÃÒÓØ Òn ¾ ½¼ ½¾ ½½ ½ = 8 ½ ¾ ½ ½ µ ØÐ Ò Ö ËÙ ÙÒ ÒÖ ËÙ Ì ÐÐ Ø ÒØÖ Û Ðm ÄÒ ÖÁ Ò Ø ØÙÒ m = 5

12 Ù µ µ Ø Ò Ò Ö ÐÓÙ ½¼Ì µ ÈÙÒ Ø ººººººººººººººººººººº Ò Ö Ø Ø ÖÒ Ø Ò ÝØ» Ò Ö Ø Ø ÖÒ Ø 10 Ø» µ ÝØ ½¼º¼¼¼º¼¼¼º¼¼¼º¼¼¼ ÝØ»½º¾ ¼º¼¼¼º¼¼¼ ÝØ» º¼¼¼ ÝØ» Ø» Ù Ö Ö Ø Ò ÖØÖ ÙÒ Ñ Ò Ù Ö Ö Ø Ò ÖØÖ ÙÒ µ Ø Ò Ò Ö ÐÓÙ ½¼Ì µ = º¾ËØÙÒ Ò ½ Å ÒÙØ Ò = = Ò Ö Ø ËÄ Ã Ø» µ Ò Ö Ø ËÄ Ò ÝØ» ÝØ ½¼º¼¼¼º¼¼¼º¼¼¼º¼¼¼ ÝØ»¾º¼¼¼º¼¼¼ ÝØ» º¼¼¼º¼¼¼ ÝØ» Ø» Ù Ö Ö Ø Ò ÖØÖ ÙÒ Ñ Ò Ù Ö Ö Ø Ò ÖØÖ ÙÒ Ù Ö Ö Ø Ò ÖØÖ ÙÒ Ù Ö Ö Ø Ò ÖØÖ ÙÒ = º Ì ¾¼ËØÙÒ Ò Å ÒÙØ Ò = = = : , : ,3 : ,8 : 24 57,87

13 Ù µ µ ÈÙÒ Ø ººººººººººººººººººººº ÑÙÐ Ø ÓÒ Ð Ø ÓÑÔÐ ØØ À Ö Û Ö Ò Ê Ò Ö Ý Ø Ñ Ò ÙÑ Ò ÙÖ Î ÖØÙ Ð ÖÙÒ Û Ö Ò Ê ÓÙÖ Ò Ò Ê Ò Ö Ý Ø Ñ Ù Ø ÐØ È͵ Ù Ð Ø Ø ÞÙ ØÖ Ò ÙÒÚ ÖÒ ÖØ ØÖ Ý Ø Ñ Ö Ò Ò Ö À Ö Û Ö Ö Ø ØÙÖ µâ Ú Î ÖØÙ ÐÅ Ò ÂÎÅµÓ ÖÎÅÛ Ö Ì Ò ÔÔ ÙÒ ÚÓÒÑ Ö Ö ÒÙÒ Ò Ò ØÖ Ý Ø Ñ¹ÁÒ Ø ÒÞ Ò ÒÙØÞØ µ ÖÎÅÅÚ ÖØ ÐØ À Ö Û Ö Ö ÓÙÖ Ò Ê Ò Ö Ò ÎÅ ºÌ ÐÛ ÑÙ¹ Ð ÖØ ÖÎÅÅÀ Ö Û Ö Ò Ø Ö Ò Ð Þ Ø Ò Ù Ö Ñ Ö Ö Ö ØÖ ¹ Ý Ø Ñ Ù Ð Ø Øº ÒÎÅÅ Þ Ò ØÑ Ò Ù Ð ÌÝÔ¹¾¹ÀÝÔ ÖÚ ÓÖº Ö ÎÅÅÐÙ Ø Ó Ø Ð ÒÛ Ò ÙÒ ÙÒØ Ö ÑÀÓ Ø¹ ØÖ Ý Ø Ñº

Abschlussklausur Cluster-, Grid- und Cloud-Computing (CGC) M.Sc. Christian Baun

Abschlussklausur Cluster-, Grid- und Cloud-Computing (CGC) M.Sc. Christian Baun ÐÙ Ð Ù ÙÖ ÐÙ Ø Ö¹ Ö ¹ ÙÒ ÐÓÙ ¹ ÓÑÔÙØ Ò µ ½ º ÂÙÐ ¾¼½¼ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò

Mehr

= = = = =

= = = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Â Æ» ¾¼½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ù Ñ Ð Ò Û Ö Ê Ð Ñ Ø Ñ Ö Û Ö ÓÖÑØ Ò Òº Ø ÐÐ Ù Ø ÐÐØ Ò ËØ Ò Ñ Ö ÚÓÖ Ò Òº µ Ï Ú Ð Ú Ö Ò ÓÑÑ Ò ÚÓÖ µ Ï Ð Ø Ñ Ù Ø Ò Ú ÖØÖ Ø Ò µ Ï Ð Ø Ù Ñ ÐØ Ò Ø Ò ¾ À Ï Ò

Mehr

Ê Ê ÙÒ ÒØ ÖÖ Ý Ó ÁÒ Ô Ò ÒØ ÙØÓÖ ÖÒ Ö Ë Ñ Ø Å Øº ÆÖº ¾ à ÒÒÞº ½ ½ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ÁÒ ÐØ Ú ÖÞ Ò ½ ÅÓØ Ú Ø ÓÒ ¾ Ì Ð Ò Ê ËÝ Ø Ñ ÖÖ Ý Å Ò Ñ ÒØ ËÓ ØÛ Ö Ê Ä Ú Ð º½ Ö «Ò Ø ÓÒ Ò ººººººººººººººººººººººººººººººº

Mehr

½ Ï ÐÐ ÓÑÑ Ò ÞÙÑ ËØÙ Ý Ù ÁÒ Ø ÐÐ Ø ÓÒ Ò ÓÒ ÙÖ Ø ÓÒ Á² ½µ ÖØ Þ ÖÙÒ º Ø Ö Ö Ø ÚÓÒ Ú Ö ÃÙÖ Ò ÞÙÑ Ë Ö Ä ÒÙÜ Ò ÆÍ ÖØ Ñ Ò ØÖ ØÓÖ Ä µº Ò Ö Ò Ö ÃÙÖ Ò ËÝ Ø Ñ Ñ Ò ØÖ Ø ÓÒ Ë ½µ Æ ØÛÓÖ Ò Æ Ì½µ ÙÒ Ë ÙÖ ¹ ØÝ Ë È½µº

Mehr

Ã Ô Ø Ð ¾ ØÙ ÐÐ Ö ËØ Ò ÙÒ Ì Ò ÒÞ Ò Ö Ã Þ¹ÁÒÒ ÒÖ ÙÑ ÖÛ ÙÒ ÁÒ ÐØ Ò ¾º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ ÁÒÒ ÒÖ ÙÑ ÙØÞ Ñ Ã Þ¹ÁÒÒ ÒÖ ÙÑ º º º º º º º º º º º º º º

Mehr

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö

Ò Ù Ù Ò Ë ØÞÚ ÒØ Ð Ó Ò ÖÓ ÐÛ Ö ÙÒ µ ÙÒ ÃÓÐ ÒÚ Ò¹ Ø Ð Ñ Ø ÖÓ ÐÛ Ö ÙÒ µ B A B A ØØ ÙÒ Ö Ø ÙÖ Ñ Ò Ð ØÖÓÑ Ò Ø Ý Ö ÙÐ Ó Ö ÔÒ ÙÑ Ø ËØ ÐÐ Ò Ø Ò Ò Ö Ø ÙÖ Ý Ö ËÔ ÖÖÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑÖ ØÙÒ ËÔ ÖÖ Òµ ÖÙ Ú ÒØ Ð Ø ÑÑØ Ð Ø ÖÙ Ñ ËÝ Ø Ñ Ö Ò¹ Å Ò ÖÒ Ù ÐØ Òµ Þ Ò ËØÖÓÑÚ ÒØ Ð Ø ÑÑØ ÎÓÐÙÑ Ò ØÖÓÑ Ñ ËÝ Ø Ñ ÖÓ ÐÒ Î ÒØ Ð Ä ØÙÒ Ù ÙÖ Ò Ù ÙÒ ÚÓÒ p ËØ Ù ÖÙÒ ÙÒ ËØÖ ÑÙÒ Ö ØÙÒ

Mehr

Abschlussklausur Grundlagen der Informatik (GDI) Dr. Christian Baun

Abschlussklausur Grundlagen der Informatik (GDI) Dr. Christian Baun Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ÖÙÒ Ð Ò Ö ÁÒ ÓÖÑ Ø Áµ º ÖÙ Ö ¾¼½¾ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò

Mehr

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = =

15+9 = 24 8 = 41 6 = 44+4 = 45 5 = = = = = 26 7 = 13 6 = = 27+6 = = = Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ Ë ÈÌ»ÇÃÌ ¾¼½¾ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ Ï Ú Ð Ö ÒÒ Ø Ù Ò Ö ÙÖ ÒØ Ò Ù ¹½¾ Ù Ô Ø Ö ÊØ ÐÖ Ø Ö ÙØ Å Ù Ò ÙÒ Ò Ã Ø Ö ÍÒ ÒÒ Ö Ò Ø Ù Û Ò Û ÐØ ÛÓ Ð Ò Ò Ò ÏÓ Òµ À ÒÛ ÙÒ Ò Û Ð Ò Ò Ð Ò Ò ÈÙÒ Ø ÙÒØ

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) Ä ÙÒ ÞÞ Ò ÞÙÖ ÐÙ Ð Ù ÙÖ ØÖ Ý Ø Ñ Ì˵ º ÂÙÐ ¾¼½½ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò Ò Ø Û

Mehr

ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ Ò À ÙÔØ Ñ Ò Ö Ñ ËÓÑÑ Ö Ñ Ø Ö ½ ÈÖÓ º Öº Àº º À Ö Ò Î ÖÞ Ò Ò Ø ÙÒ Ö ÒÛ Ò ÙÒ Ò Ñ Æ ØÞ¹ ÙÒ ËÝ Ø ÑÑ Ò Ñ ÒØ Ä È Ú Ä ØÛ Ø Ö ØÓÖÝ ÈÖÓØÓÓÐ Î Ö ÓÒ Ê Ö ÒØ Ò Ö Ë ÐÐÑ

Mehr

ÌĹËÝ Ø Ñ ¾

ÌĹËÝ Ø Ñ ¾ Ê Ú Ö Ò Ò Ö Ò ÞÙÖ ÈÖÓ Ö ÑÑ ÖÛ Ø ÖÙÒ ÎÓÑ Ò Ö ÖÛ Ø ÖØ Ò Ë Ö ÔØ ÔÖ Ò Ò Ñ Ê Ð ÖÙÒ ËÓ ØÛ Ö ¹ ÐØ Ý Ø Ñ ÞÙÖ ÃÖ Ø ÐÐ Ò ÐÝ Ú ÑÑ ÂÙÐÝ ¾¼¼ ½ ÌĹËÝ Ø Ñ ¾ ÅÓØ Ú Ø ÓÒ ÙÒ Ù Ò Ø ÐÐÙÒ ÙÒ Ø ÓÒ Ð ÙÒ ÓÑ ÓÖØ Ð À Ð Ñ ØØ Ð Ò

Mehr

Verteilte Systeme/Sicherheit im Internet

Verteilte Systeme/Sicherheit im Internet ruhr-universität bochum Lehrstuhl für Datenverarbeitung Prof. Dr.-Ing. Dr.E.h. Wolfgang Weber Verteilte Systeme/Sicherheit im Internet Intrusion Detection und Intrusion Response Systeme (IDS & IRS) Seminar

Mehr

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾»

Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ Ò ØÓÖ Ö Ë Ö Ø Ñ Ò Ñ Ò Ë Ö Ø Ñ Ò Ñ ÒØÔÖÓÞ Ë ÙÖ Øݵ ÈÓÐ È ¹ÅÓ ÐÐ ËØ Ò Ö ÙÒ ÆÓÖÑ Ò ÞÙ ÁÌ¹Ë Ö Ø Ë Ö Ø ÓÒÞ ÔØ Ä Ø Ö ØÙÖ ¾» ØÓ Ë ÙÖ ØÝ ÎÇ ÁÒØÖÓ ÙØ ÓÒ Ë Ö Ø»Ë Ö Ø Ñ Ò Ñ ÒØ ÇÖ Ò ØÓÖ ÁÒ Ù ØÖ Ð ËÓ ØÛ Ö ÁÆËÇ Ö Ê Ò Ö Ø ØÞØ ÙØÓÑ Ø ÓÒ ÙÐØØ Ö ÁÒ ÓÖÑ Ø Ì Ò ÍÒ Ú Ö ØØ Ï Ò ÁÒ Ø ØÙØ ÐÓÖ Ò Ò Ù Ö Ö ÒÞ Å Ö Ó Ö Ò Ì Ò Ú º ÓÖ Ò ØÓÖ Ë Ö Ø Ô Ð ÇÖ

Mehr

R ψ = {λ ψ, λ 0}. P ψ P H

R ψ = {λ ψ, λ 0}. P ψ P H Ã Ô Ø Ð Ç ÖÚ Ð Ù ØÒ ÙÒ ÍÒ Ø ÑÑØ Ø ÒØ Ò ÐÐ Ò Ö Ö ØØÐ Ò Ñ ÙÒ Ò ººº Ò Û Ö Ø ¹ Ø Ø Ö Ø Ö Ö È ¹ ÙÒ Ø ÓÒ ÙÒ Ñ Ø Ö Æ ØÙÖ ØÞ ººº Ò ËØ Ð Ö ØÞ Û Ò Ø Ò Ö Ò Â Ö ÙÒ ÖØ Ø ÑÑ Ò Û Ö ººº ÎÓÒ Ò Ñ Ï ÞÙÖ ÞÙ ØÖÙÑ Ò ÞÙÖ ÞÙÑ

Mehr

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø

ÅÓØ Ú Ø ÓÒ ÅÓØ Ú Ø ÓÒ ØÞØ ÐÐ ÒÞ Ð Ñ ÒØ Ö Ù Ø Ò ÆÙÒ À Ö Û Ö Ò Ö ÖÙÒ Û Ø Ò ÙÖ Ö µ ÌÓÓÐ ÒÙØÞÙÒ ÚÓÒ ËØ Ò Ö ÓÑÔÓÒ ÒØ Ò Ù ÒÑ Ö Ñ Ö Ù ËÓ ØÛ Ö Ø ËÓ Ø ÁÈ ÈÖÓÞ ÓÖ Ò ÙÒ Ò ØØ ËÝ Ø Ñ Ò ÖÙÒ ÈÖ Ø ÙÑ È Ö ÐÐ Ð Ê Ò Ö Ö Ø ØÙÖ Ò Ñ Û Ø ÐÐÙÐ Ö ÙØÓÑ Ø Å Ö Ê Ò Ä Ö ØÙ Ð Ö ÁÒ ÓÖÑ Ø Ê Ò Ö Ö Ø ØÙÖµ Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÏË ¾¼½¼»½½ ÅÓØ Ú Ø ÓÒ ÅÓØ Ú

Mehr

= 27

= 27 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¹ ÇÃÌ»ÆÇÎ ¾¼½½ ½ ÎÓÖ ÙÐ ½ Ù ¹½½ ÁÒ ÂÙÐ Ë Ù Ö Ò Ø Ò Ö È Ö Ë Ù º Ë Ò ÑÑØ Ñ ÙÒ ÐÒ Ú Ö ÒÞ ÐÒ Ë Ù Ö Ù º Á Ø Ò ÞÙ ÑÑ Ò Ö Ò È Ö Ù ¹½¾ Û ÚÓÒ Ò Ð Ö Ò Ò Ú ÐÐ Ð º Ï Ð Ò ¾ À Ï Ò ÐÚÓ ÛÛÛº Ð

Mehr

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾

Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ Ø ÓÒ ÒÙÑ Ö ÁÒØ Ö Ø ÓÒ º ÎÓÖÐ ÙÒ ½ ¼ ¼¼ ÆÙÑ Ö Å Ø Ó Ò Á º Ö Ò ÙÒ º À Ù Ò Ð ¾ º Å ¾¼½ ½» ¾ Ð ÖÙÒ ½ ÁÒØ ÖÔÓÐ Ø ÓÒ ÔÓÐÝÒÓÑ Ð ËÔÐ Ò ¾ ÆÙÑ Ö ÁÒØ Ö Ø ÓÒ ÃÐ Æ ÛØÓÒ¹ ÓØ Ï Ø Ö ÉÙ Ö ØÙÖ ÓÖÑ ÐÒ ¾» ¾ ÁÒØ ÖÔÓÐ

Mehr

Þ ÒÞÙÒØ Ö Ù ÙÒ Ò Ò Ö ÎÓÖ Ð Ò ÙÒ Î ÖØ Ù Ò ¹Å Ø Ó Ö ÙÓÖ ÒÙÒ ÔÖÓ Ð Ñ ÔÐÓÑ Ö Ø Ñ ÁÒ ÓÖÑ Ø Ò º Ò ÓÖѺ Ê Ò Ö À ÖÖÐ Ö ØÖ Ù Ö ÈÖÓ º Öº Ö Ò ÈÙÔÔ Ôк ÁÒ ÓÖѺ Ù Ä Ö ØÙ Ð Ö Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ ÙÒ Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÍÒ

Mehr

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë

Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ ÙÒ Ö ØÖÖ Ð Ü Ð µ ÁÒ ÓÖÑ Ø ÓÒ Û Ö Ö Ø ÔØ Ò Ö Ë ÈÓ Ø ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Á È Ð ÔÔ Ï Ö ÍÒ Ú Ö ØØ Ä ÔÞ Ô Ð ÔÔºÛ ÖÙÒ ¹Ð ÔÞ º Ô Ð ÔÔÛ Öº ½ º ÔÖ Ð ¾¼½ ½» Ź Ö ÑÑ Ø ÑÓ ÐÐ ÖØ Ù Ö Á ÝÒØ Ø ÇÔ Ö Ø ÓÒ Ò Ð Ð Ñ ØØ Ð ØÖ Ø Ö ÑÓÖÔ Ó ÝÒØ Ø Ö Å Ö Ñ Ð ÙÒ Ø ÓÒ Ö Òº È ÓÒÓÐÓ

Mehr

δ x := x x ε x := x x

δ x := x x ε x := x x Ì Ð Á Ð ÖØ ÓÖ ½ Ð Ö ÖØ Ò Ò Ø ÓÒ ½º½º Ò Ð ÓÖ Ø ÑÙ Ø Ò Ö Ò Ñ Ð Ò ÐÐ Ò¹ ÙØ Ø Ð Ø ÓÐ ÚÓÒ Ð Ñ ÒØ Ö Ò Ê ÒÓÔ Ö Ø ÓÒ Ò ÙÒØ Ö Ò Þ ÙÒ Ñ Ø Ñ Ø Ö ÙÒ Ø ÓÒ Ò ÙÒ Ò ÙÒ Òº Ð Ñ ÒØ Ö Ê ÒÓÔ Ö Ø ÓÒ Ò Ò ÖÙÒ Ö Ò ÖØ Ò ÐÓ ÇÔ

Mehr

Ä ÓÔÓÐ ¹ Ö ÒÞ Ò ¹ÍÒ Ú Ö ØØ ÁÒÒ ÖÙ ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ø Ò Ò Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ËÓ Ð¹Å ÃÓÒÞ ÔØ Ò È Ö ÓÒ Ð¹ÁÒ ÓÖÑ Ø ÓÒ¹Å Ò Ñ ÒعËÝ Ø Ñ Ò ÐÓÖ¹ Ö Ø ØÖ ÙØ ÚÓÒ ÏÓÐ Ò Ð Ö Ú Ò ÖÐ ÁÒÒ ÖÙ ½ º ÂÙÒ ¾¼½¾ Ù ÑÑ

Mehr

ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ù Ø ÙÒØ Ö Ù ÙÒ ÙÒ Æ ÒÓ ØÖÙ ØÙÖ ÖÙÒ Ñ Ø Ñ Ê Ø Ö Ö ØÑ ÖÓ ÓÔ ÜÔ Ö Ñ ÒØ ÙÒ Ð Ò ÐÝ Ò ÔÐÓÑ Ö Ø ÚÓÖ Ð Ø ÚÓÒ ËÚ Ò È ÙÐÙ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø È Ý ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ¼º ÆÓÚ Ñ Ö ½ Ö Ø ÙØ Ø Ö

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½

ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ ÃÓÑÔÐ Ü ØØ Ö Ò Ï ÖÙÑ Ø ÒØ Ö ÒØ Ï ÖÙÑ Ø Û Ø Ì Ð Á Ò ÖÙÒ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ¾»½ ËÓÖØ Ö Ò ÙÒ ËÙ Ò ÎÓÖØÖ Ñ À ÙÔØ Ñ Ò Ö À ÐÐÓ Ï ÐØ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö Ô Ð Ôº Ò ÓÖÑ Ø ºÙÒ ¹ ÖÐ Ò Òº Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò»Æ ÖÒ Ö ½º Å ¾¼¼ ÂÓ ÒÒ Ë ÐÙÑ Ö Ö ËÓÖØ Ö Ò ÙÒ ËÙ Ò ½»½ ËÓÖØ ÖÔÖÓ Ð Ñ ËÙ ÔÖÓ Ð Ñ

Mehr

Lehrstuhl und Institut für Strömungslehre

Lehrstuhl und Institut für Strömungslehre ÙÒ Ò ÞÙÑ È Ø ËØÖ ÑÙÒ Ð Ö Ö Ñ Ò Ò ÙÖÛ Ò ÙÒ Î Ö Ö Ò Ø Ò ½º Ù Ò Ð ØØ ËØÖ ÑÙÒ Ö ÀÝ ÖÓ Ø Ø Ù ½º½ ÙÒ Ù ËØÖ ÑÙÒ Ñ Ò Ù ¾º½º½µ º ½º½ ÃÖ Ø ÖÞ Ù ÙÑ ØÖ ÑÙÒ Ò ÃÖ Ø ÖÞ Ù Û Ö ÚÓÒ Ò Ö Ö ÙÒ Ö Ò È Ö ÐÐ Ð ØÖ ÑÙÒ Ö Û Ò Ø

Mehr

Peter Gienow Nr.11 Einfach heilen!

Peter Gienow Nr.11 Einfach heilen! Peter Gienow Nr.11 Einfach heilen! Reading excerpt Nr.11 Einfach heilen! of Peter Gienow Publisher: Irl Verlag http://www.narayana-verlag.com/b4091 In the Narayana webshop you can find all english books

Mehr

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û

Å Ø Ò Ñ ÙÒ Ö Å Þ Ò Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ Å Ò Ò Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ ¾º Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº ØÐ ÃÙÒÞ Å Ø Ö Ø Ö Ø ØØ Ö ÈÖÓ º Öº À Ò ¹È Ø Ö Ë Û Ù Ñ ÁÒ Ø ØÙØ Ö ËÓÞ Ð È ØÖ ÙÒ ÂÙ Ò Ñ Þ Ò Ö ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÎÓÖ Ø Ò ÃÓÑÑ Ö Ö Ä Ø Öµ ÈÖÓ º Öº Ê Ö ÚÓÒ ÃÖ Ê Ó ØÓÖ Ò Ö Ò Ð ÔÓ Ø ÍÒØ Ö Ð Ø ÒÓÖÑ Ð¹ ÙÒ Ö Û Ø Ò Ã Ò ÖÒ ÖØ Ø ÓÒ ÞÙÑ ÖÛ Ö Ó ØÓÖ Ö

Mehr

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½

½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ Ê Ö ÓÒ ½ ÆÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ ÙÒØ Ö Î ÖÛ Ò ÙÒ Ý Ò Ö Î Ö Ð Ò Ð Ø ÓÒ ¹ źËÑ Ø ² ʺÃÓ Ò ¹ ½º ÒÐ ØÙÒ ¾º Î Ö Ð Ò Ð Ø ÓÒ Ð Ò Ö Ö Ê Ö ÓÒ º ÍÒ Ú Ö Ø ÒÓÒÔ Ö Ñ ØÖ Ê Ö ÓÒ º Ø ÒØÖ Ò ÓÖÑ Ø ÓÒ º ÊÓ Ù Ø Ë ØÞÙÒ º Ø Ú Ñ Ô Ö Ñ ØÖ

Mehr

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1

(t M (x)) 1/k L(M) = A. µ(x) c. Prob µ [M( x,1 m ) χ A (x)] < 1 m. x 1 T U M Á Æ Ë Ì Á Ì Í Ì Ê Á Æ Ç Ê Å Ì Á à ¼º ÏÓÖ ÓÔ Ö ÃÓÑÔÐ Ü ØØ Ø ÓÖ Ø Ò ØÖÙ ØÙÖ Ò ÙÒ Þ ÒØ Ð ÓÖ Ø Ñ Ò ÖÒ Ø Ïº Å ÝÖ ËÚ Ò ÃÓ Ù ÀÖ ºµ ÀÁ ÃÄÅÆÇ ÌÍŹÁ¼ ¼ ÅÖÞ ¾¼¼ Ì À Æ Á Ë À Í Æ Á Î Ê Ë Á Ì Ì Å Æ À Æ ÌÍŹÁÆ

Mehr

ÒØÛ ÐÙÒ ÚÓÒ Å ØÖ Ò Ö ÅĹ Ó ÙÑ ÒØ ÓÐÐ Ø ÓÒ Ò ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ ÊÓ ØÓ Ö ÁÒ ÓÖÑ Ø ÚÓÖ Ð Ø ÚÓÒ ÓÖ Ò Ñ Ä Ö Ë Ò Ö ¾½º ÔÖ Ð ½ Ò ÊÓ ØÓ ØÖ Ù Ö ÈÖÓ º Öº Ò Ö À Ù Ö ÈÖÓ º Öº Ð Ñ Ò Ô Öº¹ÁÒ º Å ÃÐ ØØ ØÙÑ ¾ º Þ Ñ Ö

Mehr

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å

Î ÖÞ Ò Ö ÖÞÙÒ Ò ÔÛº Ô Ð Û Ôغ ÓÔØÖ Ò ÁÇÄ ÁÒØÖ Ó ÙÐ ÖÐ Ò Ä ËÁÃ Ä Ö Ò Ë ØÙ Ã Ö ØÓÑ Ð Ù ÑÑ Å ÐÐ Ñ Ø Ö µm Å ÖÓÑ Ø Ö ÈÊÃ È ÓØÓÖ Ö Ø Ú Ã Ö Ø ØÓÑ ÊÅË ÊÓÓØ Å Ò Ù ÚÓÒ È ÒÝÐ Ô Ö Ò ÙÒ ÌÖÓÔ Ñ Ù Ï ÐÐ Ò ÖÓÒØ ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ñ Ò Ö ÓØÓÖ Ñ Ò Öº Ñ ºµ ÚÓÖ Ð Ø Ñ Ê Ø Ö Å Þ Ò Ò ÙÐØØ Ö Ö Ö ¹Ë ÐÐ Ö¹ÍÒ Ú Ö ØØ Â Ò ÚÓÒ Ø Ò ÄÓÓ Ö ÓÖ Ò Ñ ¼¾º Ç ØÓ Ö ½ Ò Ç Ö Ù Ò ¾º ÔÖ Ð ¾¼¼ Î

Mehr

Abschlussklausur Betriebssysteme (BTS) M.Sc. Christian Baun

Abschlussklausur Betriebssysteme (BTS) M.Sc. Christian Baun ÐÙ Ð Ù ÙÖ ØÖ Ý Ø Ñ Ì˵ º ÂÙÐ ¾¼½½ Æ Ñ ÎÓÖÒ Ñ Å ØÖ ÐÒÙÑÑ Ö ËØÙ Ò Ò À ÒÛ ÌÖ Ò Ë ÞÙ Ö Ø Ù ÐÐ Ò ÐØØ ÖÒ Ò Ð Ð Ð ØØ µ Á Ö Ò Æ Ñ Ò Á Ö Ò ÎÓÖÒ Ñ Ò ÙÒ Á Ö Å ØÖ ÐÒÙÑÑ Ö Òº Ä ÙÒ Ò Ó Ò Ò Ò ÒÒ Ò Ò Ø Û ÖØ Ø Û Ö Òº Ë

Mehr

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼

Ò Ê Ö ÒØ ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Ñ º ÖØ ÅÙ Ö ÈÖÓ º Öº Ñ º Ã Ö Ø Ò Ë Ñ Ö ÈÖ Úº ÓÞº Öº Ñ º ËØ Ô Ò Ö Ò Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ¾ º½½º¾¼¼ Ù Ö Æ ÙÖÓ ÖÙÖ Ò ÃÐ Ò ÃÒ ÔÔ Ø Ö Ò Ò Ù Ó ÙÑ¹Ä Ò Ò Ö Ö ¹ ÍÒ Ú Ö ØØ Ð Ò ¹ Ö ÊÙ Ö¹ÍÒ Ú Ö ØØ Ó ÙÑ Ö ØÓÖ ÈÖÓ º Öº Ñ º º À Ö Ö Ê ØÖ ÖÙÒ ÚÓÒ ¹ÍÐØÖ Ðй ÙÒ Ì¹ Ø Ò Ö Ä Ò ÒÛ Ö Ð ÙÐ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ Ò Ú ÖØ Ö È Ð Ö Ù

Mehr

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim

: lim. f(x) = o(1) Ö x 0. f(x) = o(g(x)) Ö x. x 2 = lim. x 0 lim Ì Ð ÁÁ Ä Ò Ö Ð ÙÒ Ý Ø Ñ ¹ Ö Ø Å Ø Ó Ò Ä Ò Ù¹ËÝÑ ÓÐ Ä Ò Ù¹ËÝÑ ÓÐ Ð Ò Î Ö ÐØ Ò ÚÓÒ ÙÒ Ø ÓÒ Ò Ò Ò Ö ÍÑ ¹ ÙÒ ÚÓÒ Ø ÑÑØ Ò Ï ÖØ Ò ÞÙ Ð Þ Ö Òº Ò Ø ÓÒ º½º Ò f,g : D R R ÙÒ Ø ÓÒ Ò ÙÒ a D Ò ÀÙ ÙÒ ÔÙÒ Øº ÐØ f(x)

Mehr

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº

Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº Ö Å Ò Ò Ò Á Ò Ò ÃÓÐÐ Ò Ê Ò Ö Ë Ñ ÐÞ¹ ÖÙÒ Ê Ò Ö Ë Ñ Ø ÙÒ ÊÙ Ë Ñ Ö Ù ÖÓÖ ÒØÐ Ð Ö Ä Ø Ö ØÙÖ ÒÛ Ò Ö Ñ Ö Ò Ò Ö Ò Ù Ò ÞÙ Ñ Ö ÙÒÚ ÖØÖ ÙØ Ò Þ ÔÐ Ò Ò ÖÑ Ð Ø Òº ÁÒ ÐØ Ú ÖÞ Ò Ù Ò ÔÙÒ Ø ½ ½ ÖÔ ÖÐ ¹ Ø ½º½ Ö Û ÙÒ ÔÔ

Mehr

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å

Ø Ò Ö Ù Ò Â ÓÚ Ò Ò Ò ÀÒ Ò Ò Ï ØØÙÖÑ ÙÒ ÖÛ Ø Ò Û ÖÛ ÒØ Ö Ð Ò Óº Å Ö Ð Ù Ù Ö Û ÒÐ Ø Ò ÒÞ ÐÔ Ö ÓÒ Ö Ù Ò Â ÓÚ Ö Ð Ò Ò Ð ËØ ÐÐ Ø ÐÐØ ÙÒ Â ÓÚ ÓØ Ø Ò Ø Øº Å Å Ò ÂÙ Ò Ò Ù Ò Â ÓÚ Ò Ù Ø Ö Ò Ö Ø Ø Ø Ö Ö ÏÓ Ò Ö Ð Ö ÙÒ Û ÐØ Ò ÙÐ Ö ÜØÖ Ñ ÑÙ Ö Ò Ò¹ Ò Ò Ñ Ò Û Ö Ì Ö Ì Ò Ò Æ Ö Ø Ò Ò ÙÒ Ö Ò Ó Ö Ò Ö ØÙÒ Ð Òº Ò Ò Û Ö ÒÙÖ ÒÑ Ð Ò Ö Ò ÖÙÒ ÙÑ Ò ½½º Ë ÔØ Ñ Ö ¾¼¼½ Ó Ö Ö Ð Ë ØÙ

Mehr

α : Σ γ Σ α γ : Σ α Σ γ

α : Σ γ Σ α γ : Σ α Σ γ Ë Ñ Ò Ö Ö Ø ØÖ Ø ÁÒØ ÖÔÖ Ø Ø ÓÒ Á È Ò ½¼º ÂÙÐ ¾¼¼ ÄÙ Û ¹Å Ü Ñ Ð Ò ¹ÍÒ Ú Ö ØØ Å Ò Ò ÁÒ Ø ØÙØ Ö ÁÒ ÓÖÑ Ø Ä Ö¹ ÙÒ ÓÖ ÙÒ Ò Ø Ì ÓÖ Ø ÁÒ ÓÖÑ Ø ØØ Ò Ò ØÖ ¹ ¼ Å Ò Ò Î Ö Ö ÓÞ ÒØ ØÖ Ù Ö Æ Þ Å ÝÐÓÚ ÈÖÓ º Å ÖØ Ò ÀÓ

Mehr

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ

R = λ 1 f(r) = sf(x 1,x 2,...,x n ) ¾º µ Ë Ñ Ò Ö ÞÙÖ Ì ÓÖ Ö ØÓÑ Ã ÖÒ ÙÒ ÓÒ Ò ÖØ Ò Å Ø Ö Æ ØÞÐ Ì ÓÖ Ñ ÙÒ Ö ÒÛ Ò ÙÒ Ò Ö ÅÓÐ ÐÔ Ý Ä Ä Ò ¾ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ¾ ÙÐ Ö¹Ì ÓÖ Ñ ¾º½ ÀÓÑÓ Ò ØØ Ò Ö ÙÒ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º

Mehr

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ

Ð ÖØ Ø ÓÒ Ò Ñ Ø ÚÓÒ Ò Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö ÍÒ Ú Ö¹ ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ ÎÓÖ ØÞ Ò Ö Ö ÈÖÓÑÓØ ÓÒ ÓÑÑ ÓÒ Ö Ø Ö Ø Ö Ø ØØ Ö Û Ø Ö Ø Ö Ø ØØ Ò Ò Ø Ó ÍÒØ Ö Ù ÙÒ Ö Ð ØÖÓÒ Ò ÄÓ Ð ÖÙÒ Ò Ò Ö Ñ Ò ÓÒ Ð Ò À Ð Ð Ø Ö ØÖÙ ØÙÖ Ò Ñ Ø Ï ÐÛ Ö ÙÒ ÙÒ ÍÒÓÖ ÒÙÒ Ò Ò ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ò Ö Ö Ö ¹ Ð Ü Ò Ö¹ÍÒ Ú Ö ØØ ÖÐ Ò Ò¹Æ ÖÒ Ö ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö ÚÓÖ Ð Ø ÚÓÒ Å Ö

Mehr

Sicher ist sicher: Backup und restore Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast.

Sicher ist sicher: Backup und restore Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast. Einleitung Hallo Schatz, habe die Diskette gefunden,...... die du gestern so verzweifelt gesucht hast. Ä ÒÙܹÁÒ Ó¹Ì Ù ÙÖ ¹¾ ºÅÖÞ¾¼¼ à ÖÐ ÙØ Á̹ÏÇÊÃ˺ Ǻ ̹ ÓÒ ÙÐØ Ò ²ËÓÐÙØ ÓÒ Einleitung Willkommen Karl

Mehr

9 Dynamische Programmierung (Tabellierung)

9 Dynamische Programmierung (Tabellierung) 9 (Tabellierung) PrinzipºÊ ÙÖ ÓÒ ÒÑ Ø ĐÙ ÖÐ ÔÔ Ò ÒÌ Ð Ù ÒÛ Ö Ò 9.1 Grundlagen Ì ÐÐ ÖÙÒ Ö ÖÄĐÓ ÙÒ Ò Ù Û ÖØ Ø ÙÑÛ Ö ÓÐØ ÆÞ ÒØ Ö ÙÖ Ý Ø Ñ Ø ÙÖ Ð Ù Ò ÖÌ Ð Ù ÒÙÒ Ö ÒÙÒ ÒÞÙÚ ÖÑ Òº Ì ÐÐ Ò ĐÓÒÒ Ò Ø Ø Ø ÖÁÒ Ü Ö

Mehr

Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ö Ö Ò Ò Ò ÙÒ Ò Ò Ö Ø ÓÒ Ø Ò¹ Ò Ñ Ò Ñ Ò

Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ö Ö Ò Ò Ò ÙÒ Ò Ò Ö Ø ÓÒ Ø Ò¹ Ò Ñ Ò Ñ Ò ÒØÛ ÙÒ Ò Æ Û ÖÙÔÔ Ò¹Ë ÖÚ Ö Ñ Ø Ø Ò Ò Ò Ò ÙÒ ÙÒ Å Ò Ø Ò¹ Ø Û Ý Ö Ø Ò Ä Ò Ö Ø Òº Ò ¹Ó Ò ÖÙ º ¾ º ÂÙÒ ¾¼¼ Ö Ø Ö Ø ÃÓÒÞ ÔØ ÓÒ ÙÒ Ê ÖÙÒ Ò Ö Ù ÓÒ Ô Øع ÓÖÑ Ù ÒÒØ Ò Í Ò Ø ÍÒ Ü Í Ö Æ ØÛÓÖ µº Ä ÙÒ ÙÑ Ø Ò Ò Æ Û

Mehr

PTBS Belastung unterschiedlicher Populationen

PTBS Belastung unterschiedlicher Populationen Ù Ö È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö Ò Ö ÖÙÒ Ö Ø Ä ÓÒ Ö ÃÖ ØÞ Ö Ö ÒÞ È ØÞ Ö È Ø Ö À ÒÞ È Ý ÓØÖ ÙÑ ØÓÐÓ ËØ Ø ÓÒ Ö ÃÐ Ò Ëغ ÁÖÑ Ò Ö ÈÖ Ò Ñ Ñ È Ý ÓØ Ö Ô ÓÖ ÙÒ Ö ÃÐ Ò ÙÒ ÈÓÐ Ð Ò Ö È Ý ØÖ ÙÒ È Ý ÓØ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º

ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ½º¾ à ÖÞ Ø ¹Ï ¹ Ð ÓÖ Ø Ñ Ò º º Ö ÒÙÒ ÖÞ Ø Ö È ÙÒØ Ö ØÙÒ ÚÓÒ Ú Ö ÓØ Ò Ã Ö ÐÐ Å ÐÐ Ö ËØÙ Ò Ö Ø Ñ ÁÒ Ø ØÙØ Ö Ì ÓÖ Ø ÁÒ ÓÖÑ Ø Ä Ö ØÙ Ð ÈÖÓ º Öº ÓÖÓØ Ï Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÙÐØØ Ö ÁÒ ÓÖÑ Ø ¾ º Ç ØÓ Ö ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ½ ½º½ ÅÓØ Ú

Mehr

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º

Ò Ö Ø Ö ÙØ Ø Ö Û Ø Ö ÙØ Ø Ö Ì Ö Ñ Ò Ð Ò ÈÖ ÙÒ Ì Ö ÈÖÓÑÓØ ÓÒ ÈÖÓ ÓÖ Öº ƺ Ë Ñ ØÞ ÈÖÓ ÓÖ Öº Ϻ º Ë ØØ Ö ÈÖÓ ÓÖ Öº Àº Ö ¾ º¼ º ¾ º¼ º ËÌÊÇÆÇÅÁ ÆÙØÞÙÒ ØÖÓÒÓÑ Ö ÈÐ ØØ Ò Ö Ú ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö Æ ØÙÖÛ Ò Ø Ò Ñ Ö È Ý Ö Å Ø Ñ Ø Æ ØÙÖÛ Ò ØÐ Ò ÙÐØØ Ö Ï Ø Ð Ò Ï Ð ÐÑ ÍÒ Ú Ö ØØ Å Ò Ø Ö ÚÓÖ Ð Ø ÚÓÒ Ê Ò Ø Ù ÐÐ Ù ÓØØÖÓÔ ½ Ò Ö Ø

Mehr

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG Å ÙÖ ØØÐ Ö ÃÓÒÞ ÔØÓÔØ Ñ ÖÙÒ ÙÒ ÒØÛ ÐÙÒ Ò Ö Ó ÒØ Ö ÖØ Ò Ä Ø ÖÔÐ ØØ ÔÐÓÑ Ö Ø À ¹ÃÁȹ½¼¹ KIRCHHOFF-INSTITUT FÜR PHYSIK ÙÐØÝ Ó È Ý Ò ØÖÓÒÓÑÝ ÍÒ Ú Ö ØÝ Ó À Ð Ö ÔÐÓÑ Ø

Mehr

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø

½ Î Ê ÆÌÄÁ ÀÍÆ Æ ¾ º ʺ À ÔÔÐ Ö Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ È ÓØÓ Ð ØÖÓÒ¹ Ô ØÖÓ ÓÔÝ Ó ÅÙÐØ Ô ÓØÓÒ ÓÒ Þ Ø ÓÒ Ó Ê Ö Û Ø ÖÙÖ¹ Ð ÖÐÝ Ò Ð Ò ÖÐÝ ÔÓÐ Ö Þ Ð Ø Ø Ö Ø ÈÖÓ º Öº Ë Ö Â ØÞ Ä Ø Ö Î Ö ÒØÐ ÙÒ Ò ÎÓÖØÖ Ä ÖÚ Ö Ò Ø ÐØÙÒ Ò ÙÒ ÜÔÓÒ Ø Ù Ù Ø ¾¼½½ ½ ½º½ Î Ö ÒØÐ ÙÒ Ò Ø Ö Ø Ò ½º ʺ À ÔÔÐ Ö Àº¹Âº ÀÙÑÔ ÖØ Àº Ë Û Ö ÙÒ ÀºÇº ÄÙØÞ Ò ÙÐ Ö ØÖ ÙØ ÓÒ Ó Ô ÓØÓ Ð ØÖÓÒ ÖÓÑ ÑÙÐØ Ô

Mehr

= S 11 + S 21S 12 r L 1 S 22 r L

= S 11 + S 21S 12 r L 1 S 22 r L ÈÖ Ø ÙÑ Ö ÀÓ Ö ÕÙ ÒÞØ Ò Ö ËØÙ ÒØ Ò Ö Ð ØÖÓØ Ò Ä Ò Ö Ö Ö Ù ÖÑ Ö Ë ¹Î Ö ØÖ Ö Î Ö ÓÒ ½º º Å ¾¼½¾ Ó ÙÐ Ò Ð ØÖÓØ Ò ÙÒ ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ä Ö Ø ÀÓ ¹ ÙÒ À Ø Ö ÕÙ ÒÞØ Ò ÈÖÓ º Öº¹ÁÒ º Àº À Ù ÖÑ ÒÒ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË

Mehr

x y x+y x+15 y 4 x+y 7

x y x+y x+15 y 4 x+y 7 Å ÌÀ Ê ÂÍÆ ÍÆ ÄÌ ¹ Ë ÊÁ ¼ ¹ Â Æ» ¾¼½ ½ ½ ÎÓÖ ÙÐ Ä ÙÒ ¼¹½½ Î ¾ Ï ¾ Ä ÙÒ ¼¹½¾ È Ö Ö Ö Ò ÓÖ Ò Ø Ò ÅÓÓÒ Ñ Ù ÊÓÑ Ó Ä Ë ÒØÓ ÄÓ Ä Ó Ð Ò Ø Ö Ø Ä ÙÒ ¼¹½ Ä ÙÒ ¼¹½ ¹¾ ¹ ¹½ ¹ Ä ÙÒ ¼¹½ Ò Ã Ò Öº Ë Ñ Ò ½ ¾ ÙÒ Ó Ò ØÖÓ

Mehr

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼

Ê Ö ÒØ ÈÖÓ º Öº ÏÓÐ Ò ÖØÑ Ö ÃÓÖÖ Ö ÒØ ÈÖÓ º Öº Â Ò ÖÐØ Ì Ö ÈÖÓÑÓØ ÓÒ ½ º ¼ º ¾¼¼ ÍÐØÖ ÐØ Ø ÖÓÒÙ Ð Ö ¹ÅÓÐ Ð ÎÓÒ Ö ÙÐØØ Ö Å Ø Ñ Ø ÙÒ È Ý Ö ÓØØ Ö Ï Ð ÐÑ Ä Ò Þ ÍÒ Ú Ö ØØ À ÒÒÓÚ Ö ÞÙÖ ÖÐ Ò ÙÒ Ö Ó ØÓÖ Ö Æ ØÙÖÛ Ò Ø Ò ¹ Öº Ö Öº Ò Øº ¹ Ò Ñ Ø ÖØ Ø ÓÒ ÚÓÒ Ôк¹È Ý º Ì ÓÖ Ø Ò À ÒÒ Ò Ö ÓÖ Ò Ñ ¾

Mehr

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { },

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { }, Ã Ô Ø Ð Ì ÜØ Ð ÓÖ Ø Ñ Ò º½ º½º½ ÖÙÒ Ö ÈÖÓ Ð Ñ ÁÒ Ñ Ã Ô Ø Ð Ø ÙÑ ÈÖÓ Ð Ñ Ö Ì ÜØ Ù Ò Ðº Ô ØØ ÖÒ Ñ Ø Ò µº ÁÑ À ÒØ Ö ÖÙÒ Ø Ø ÑÑ Ö Ò ÐÔ Ø Σ Ñ Ø Σ 2 ÞÙÑ Ô Ð {0,1} ÒÖ ÐÔ Ø Ë ÁÁ ÐÔ Ø Ö ¾ Ë ÁÁ¹ Ù Ø Ò {0,1} 8 ÒÖ

Mehr

±0, 1m 2 m 3..m 53 2 e 10e 9..e

±0, 1m 2 m 3..m 53 2 e 10e 9..e Ê Ò Ò Ï ÖÙÑ Ð Ö Ö Ò Ò Ø Ó ÓÑÔÙØ Ö Ì ÐÒ Ñ Ö Ö Ø Ò Ö Ö ÒÒ Å Ò È ØÖ Å ÙØ Ò Ö ÊÓÞ È ØÖ ÃÐ ØÞ Ö ØÓÔ Ö Ë Ñ Ø ÊÓ ÖØ Ë ÐÑ ÒÒ Ò Ö ¹Ç Ö ÙÐ À ÒÖ ¹À ÖØÞ¹Ç Ö ÙÐ ÁÑÑ Ò٠йà ÒØ¹Ç Ö ÙÐ À Ö Ö¹Ç Ö ÙÐ Ò Ö ¹Ç Ö ÙÐ ÁÑÑ ÒÙ

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½ ÎÓÖÛÓÖØ ÚÓÒ Ñ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½¼ ½º¾ ÎÓÖÛÓÖØ ÚÓÒ ÓÑ Ò ÕÙ º º º º º º º ÎÓÖ Ö ØÙÒ Ö Î ÖØ ÙÒ ÔÖ ÙÒ Ã Ò ØÐ ÁÒØ ÐÐ ÒÞ Ï Ò Ö ÔÖ ÒØ Ø ÓÒ ÙÒ Ø Ò Ò Ò Ò Ö ÏÓÖØÑ ÒÒ Ò Ö ºÛÓÖØÑ ÒÒÖÛØ ¹ Òº µ Ö Ò Ù Ò ÎÓÖ Ö ØÙÒ Ò ÚÓÒ ÓÑ Ò ÕÙ ÐÑ Ý Ö ÓÑ Ò ÕÙ ºÞ ÐÑ Ý ÖÖÛØ ¹ Òº µ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ ½¼ ½º½

Mehr

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH

)XQGDPHQWDOH &3$ /DVHU QP 6WHXHUXQJ 'DWHQDXIQDKPH 9HU] JHUXQJV VWUH NH /R N,Q :HL OL KWN YHWWH KURPDWRU 3KRWRGLRGH )LOWHU,) =HUKD NHU 0RQR 3UREH Ã Ô Ø Ð ¾ ÜÔ Ö Ñ ÒØ ÐÐ Å Ø Ó Ò ¾º½ ÒÐ ØÙÒ ÖÓÑÓÔÖÓØ Ò Û Ò Ò Ø Ù Ö ÓÐÓ Ê Ø ÓÒ ÙÖ Ä Ø¹ ÓÖÔØ ÓÒ ÒÞÙØÖ Òº Ù Ñ ÖÙÒ Û Ö Ò Ä Ø ØÖ Ð ÞÙÖ ÒÖ ÙÒ ÈÖÓØ Ò ÙÒ ÞÙÑ ËØ ÖØ Ö Ê Ø ÓÒ Ò Ø Øº Ñ Ø Ú Ö ÙÒ Ò Ò ÖÙÒ Ð ØÖÓÒ Ò Ù Ø

Mehr

ÎÓÖÖØÙÒ ÑØÖÐ ĐÙÖ Ò ËØÙÙÑ Ò Ò ĐÖÒ ÅØÑØ ÙÒ ÁÒÓÖÑØ Ò Ö ÍÒÚÖ ØĐØ ÄÔÞ ÀÖÙ Ò ÚÓÑ ËØÙÒÒ Ö ÙÐØĐØ ĐÙÖ ÅØÑØ ÙÒ ÁÒÓÖÑØ ÏÖÙÑ Ò ÌÙØÓÖÙÑ ÅØÑØ ÁÒ ÐÐÒ ÚÓÒ ÙÒ ÖÖ ÙÐØĐØ ÒÓØÒÒ ËØÙÒĐÒÒ Ø ĐØÙÒ ÑØ ÑØÑØ Ò ËÚÖÐØÒ Ð ØÚÖ ØĐÒк

Mehr

ÁÈÄÇÅ Ê ÁÌ Â ¹Ï Ðع ÒÒ Ñ Ò Ö ÄÓ ÔÖÓ Ö ÑÑ ÖÙÒ Ð È Ö Ñ ÞÙÖ Ï Ò Ú Ö Ö ØÙÒ Ö Ë Ñ ÒØ Ï ÚÓÒ ÌÓ Å ØÞÒ Ö Ò Ö Ø Ñ ½º Ë ÔØ Ñ Ö ¾¼¼ Ñ ÁÒ Ø ØÙØ Ö Ò Û Ò Ø ÁÒ ÓÖÑ Ø ÙÒ ÓÖÑ Ð Ö ÙÒ Ú Ö Ö Ò Ö ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö

Mehr

Ò ĐÙ ÖÙÒ Ò ÒØÛ ÐÙÒ Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ ÃÓÒÞ ÔØ Å Ø Ó Ò ÙÒ Ï Ö Þ Ù ÞÙÖ ÒØÛ ÐÙÒ ÒØ Ö ÖØ Ö ÁÒ ÓÖÑ Ø ÓÒ Ý Ø Ñ Ñ Ø Ò Ò ÍÑ Ð ß ÎÓÖÐ ÙÒ ÙÒØ ÖÐ Ò ß Öº Å ÖØ Ò Ò Ö ÙÒ Ó Ö ÁÒ Ø ØÙØ ĐÙÖ Ö ØÖ ÙÒ ¹ ÙØÓÑ Ø ÖÙÒ Å

Mehr

ÃÔØÐ ÒÓÑÑÒ ¹ ÙÒ ËÙ ØØÙØÓÒ «Ø ËÐÙØÞݹÐÙÒ ÙÒ ËÐÙØ ÞµÝ ¼¹µ Ö ÏÐ ÎÓÖÞÒ Òººº Òкºº Þ Ð ß Ü Ü Ô Ô ßÞÐ ÃÖÙÞÔÖ «Ø ÞÛº ÒÒØ ÑÐ ĐÒÖÙÒÒ Þ Ð ß Ü Ü Ô Ô ÈÖ ĐÒÖÙÒ Ô ¼µØÞÛ «Ø º ĐÒÖÙÒ Ö ÖÐØÚÒ ÈÖ ËÙ ØØÙØÓÒ «Ø ¾º ĐÒÖÙÒ Ö

Mehr

Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø Ë ÑÑÐÙÒ ÙÒ ÆÙØÞÙÒ Ö Ö Ê ÓÙÖ Ò Ò Ï ØÚ Ö Ö Ò ØÞ Ò Å Ð Å Ý ÎÓÐÐ ØĐ Ò Ö ÖÙ Ö ÚÓÒ Ö ÙÐØĐ Ø ĐÙÖ ÁÒ ÓÖÑ Ø Ö Ì Ò Ò ÍÒ Ú Ö ØĐ Ø ÅĐÙÒ

Mehr

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ

Ø ØØÐ Ö ÐÖÙÒ À ÖÑ Ø Ú Ö Ö ÚÓÖÐ Ò ÔÐÓÑ Ö Ø Ó Ò À Ð Ö ØØ Ö ÙÒ ÒÙÖ Ñ Ø Ò Ò Ò Ò ÉÙ ÐÐ Ò ÙÒ À Ð Ñ ØØ ÐÒ Ò ÖØ Ø º Ö Ø Ø Ò Ð Ö Ó Ö ÒÐ Ö ÓÖÑ ÒÓ Ò Ö ÈÖ ÙÒ Ö ÚÓ Ö ÁÒ ÓÖÑ Ø Ø Ë Ö Ø Ò Ö ÁÒ ÓÖÑ Ø ÓÒ Ø Ò Ö ÙÒ Ó Ö¹ÁÒ Ø ØÙØ Ö Ë Ö ÁÒ ÓÖÑ Ø ÓÒ Ø ÒÓÐÓ ËÁÌ ÈÖÓ º Öº Ð Ù ÖØ Ì Ò ÍÒ Ú Ö ØØ ÖÑ Ø Ø ÔÐÓÑ Ö Ø Ë Ö ÐÙ ØÓÓØ ¹ÃÓÑÑÙÒ Ø ÓÒ Ò ¹ Ó¹ËÞ Ò Ö Ò ÂÙÐ Ò Ë ØØ ¾º ÅÖÞ ¾¼¼ ØÖ Ù Ö

Mehr

ÔÐÓÑ Ö Ø ÈÖÓ Ù Ø ÓÒ ÔÐ ÒÙÒ Ñ Ø À Ð ÚÓÒ ÅÙÐØ ÒØ Ò Ý Ø Ñ Ò Ë ÄĐÙ ÔÐÓÑ Ö Ø Ñ Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØĐ Ø ÓÖØÑÙÒ ½ º Ç ØÓ Ö ¾¼¼½ ØÖ Ù Ö ÈÖÓ º Öº Ã Ø Ö Ò ÅÓÖ Ôк ÁÒ ÓÖѺ ËØ Ò À Ù Ø Ò À ÖÑ Ø ØĐ Ø Ö Ø Ð Ø ØĐ Ò Ú

Mehr

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F.

arxiv:math/ v1 [math.ho] 29 Sep 2004 ǫ = 180 (α+β +γ) = C F. º º Ù³ ÈÖÞ ÓÒ Ñ ÙÒ Ò Ø ÖÖ ØÖ Ö Ö ÙÒ Ò ÖÐ ÙÒ Ò ÞÙÖ ÑÔ Ö Ò ÙÒ ÖÙÒ Ö ÓÑ ØÖ Ò Ò ½ ¾¼ Ö Â Ö Ò Ö Ö Ë ÓÐÞ ÏÙÔÔ ÖØ Ð ½ arxiv:math/0409578v1 [math.ho] 29 Sep 2004 Ù ÑÑ Ò ÙÒ ÁÒ Ø ØÓÖ Ð Ð Ø Ö ØÙÖ Ø Ö Ò Ò ÜØ Ò Ù ÓÒ

Mehr

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { },

t r+1 t ÓÖ : {P[1..q] 0 q m} {P[1..q] 0 q < m} { }, Ã Ô Ø Ð Ì ÜØ Ð ÓÖ Ø Ñ Ò º½ º½º½ ÖÙÒ Ö ÈÖÓ Ð Ñ ÁÒ Ñ Ã Ô Ø Ð Ø ÙÑ ÈÖÓ Ð Ñ Ö Ì ÜØ Ù Ò Ðº Ô ØØ ÖÒ Ñ Ø Ò µº ÁÑ À ÒØ Ö ÖÙÒ Ø Ø ÑÑ Ö Ò ÐÔ Ø Σ Ñ Ø Σ 2 ÞÙÑ Ô Ð {0,1} ÒÖ ÐÔ Ø {,,, Ì} ½ Ë ÁÁ Ò Ð Ö Ó Ñ Ø ½¾ Ò Ö ØÑ

Mehr

A BC T EF

A BC T EF ÇϹÈÖÓ Ø ØØÔ»» Ô º Ù¹ ÖÐ Òº»ÓÛ» Ç Ë ÓÛÒÐÓ Ý Ø Ñ ÇÏ Ñ Ä ÔÞ Ö ÓÖÑ Øµ ØØÔ»» Ô º Ù¹ ÖÐ Òº»ÓÛ» ÓÛÒÐÓ» Ò ÖÙÒ Ò Ï ÓÖÔÙ ¹ Ù Ë Ö Ò Ð Ù Ö ¾¼½ ØÓ ÔÔ Öµ ØØÔ»»ÛÛÛºÑÓÖ ÒÐ ÝÔÓÓкÓÑ»ØÓ» ÐØ»½»½ Ð Ü Ð Ù Ö ÙÒ ÊÓÐ Ò Ë Ö ÐÔ

Mehr

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö

Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò Û ÖØ Ò Ù Ä ÙÒ Òº ÆÙÖ ÅÙØ Ù Û ÒÒ Ù Ò Å Ø Ò Ò Ø Ù Ò Ò Ó Ø ÐØ Ø Ù ÞÙÖ Ä ÙÒ Ò Ø ÙÒ Ò Ø Ò Å Ø ¹ËØÓ Ö Ë ÙÐ Ö Ù Øº Î ÐÑ Ö Û Ö Â Ö Ò ¼ À Ø ½¼¾ ÂÙÒ ¾¼½¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Mehr

Ò Ò Ò Ë ÖÒ ½ ¾ Ö ÁÒØ ÖÒ Ø¹ Šع Ö ÙÒ ÙÒ ÐØ ÒØÒÓÑÑ Ò Ò Ö Ñ ØÑ Ø Å Ø Ø ÙÒ ÒØ Ö ÖØ Ã ÒÖ ØÐ Òº ÀÖ Ù ÓÒÖ Ò ØÙ ÙÒ ÃÐ Ò ÙÒ º Þ Ø ÃÓÒ Ø Ò Ñ Ø Ö Ë ÙÐ ÚÓÖÞÙÙÒ Ò

Ò Ò Ò Ë ÖÒ ½ ¾ Ö ÁÒØ ÖÒ Ø¹ Šع Ö ÙÒ ÙÒ ÐØ ÒØÒÓÑÑ Ò Ò Ö Ñ ØÑ Ø Å Ø Ø ÙÒ ÒØ Ö ÖØ Ã ÒÖ ØÐ Òº ÀÖ Ù ÓÒÖ Ò ØÙ ÙÒ ÃÐ Ò ÙÒ º Þ Ø ÃÓÒ Ø Ò Ñ Ø Ö Ë ÙÐ ÚÓÖÞÙÙÒ Ò ÁÒÐØ Ö ÖÓ Ö ÙÒØ ÖÐÒ Ö ÖØ Ú ÓÑÑÓÒ ÙÒØ Ö ÐÒ Ò ÙÒÒ º¼ ÍÒ¹ Æ Ñ Ò Ò ÒÒÙÒ ¹ÏØ Ö ÙØ Ø Ò Ó Ø ÒÐÓ Ù ÓÑÑ ÖÞÐÐ ÆÙØÞÙÒ ÓÐÒÒ Ò ÙÒÒ ÑÐ Ø ÙÒØ Ö Ð ÍÖÖ Ò Û Ö À Ï ÒÐÚÓ Ò ÒÒغ ÇÒÐ Ò ¹ÅÒ Û Ö Ö Ä Þ ÒÞØ ÜØ Ú ÖÐ Ò Øº ÐØ ÖÒ Ø

Mehr

ÊÓ ÖØ Â Ò Ä Ø Ò ÓÖ ÈÖÓ Ù Ø ÓÒ Ö Ø Ö È ÓØÓÒ Ò Ò ÙÐØÖ Ö Ð Ø Ú Ø Ò Ù Ù ËØ Ò Ñ ÈÀ ÆÁ ¹ ÜÔ Ö Ñ ÒØ ¾¼¼ ÜÔ Ö Ñ ÒØ ÐÐ È Ý ÈÖÓ Ù Ø ÓÒ Ö Ø Ö È ÓØÓÒ Ò Ò ÙÐØÖ Ö Ð Ø Ú Ø Ò Ù Ù ËØ Ò Ñ ÈÀ ÆÁ ¹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ

Mehr

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 6740 Superharte, unterschiedlich gradierte PVD-Kohlenstoffschichten mit und ohne Zusätze von Titan und Silizium

Mehr

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø

Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ½¼ ¾ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý Áº Ø ÐÙÒ ØÖÓÒÓÑ Ï Ð Ù Ö ËØÖ ¾¼ Ì Ò Ò Ì Ðº ¼ ¼ ½µ¾ ¹ ¾ Ü ¼ ¼ ½µ¾ ¹ ¹Å Ð Æ Ò Ñ Ø Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¼µ ¼ Ì Ò Ò ÍÒ Ú Ö ØØ Ì Ò Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ¼ ÐÐ Ñ Ò ÁÒ Ø ØÙØ Ö ØÖÓÒÓÑ ÙÒ ØÖÓÔ Ý ÛÙÖ Ñ º  ÒÙ Ö ½ Ö Ò Ø ÙÖ Ù ÑÑ ÒÐ ÙÒ Ö Ö Ò ÒÖ ØÙÒ Ò ØÖÓÒÓÑ ÁÒ Ø ØÙØ Ä Ö¹ ÙÒ ÓÖ¹

Mehr

Ê Ñ Ò¹ËÔ ØÖÓ ÓÔ Ò Ò Ö Ñ Ò ÓÒ Ð Ò Ð ØÖÓÒ Ò Ý Ø Ñ Ò ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö È Ý Ö ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ ÚÓÖ Ð Ø ÚÓÒ Þ Ö ÍÐÖ Ù À Ñ ÙÖ À Ñ ÙÖ ¾¼¼¼ ÙØ Ø Ö Ö ÖØ Ø ÓÒ ÙØ Ø Ö Ö ÔÙØ Ø ÓÒ ØÙÑ Ö ÔÙØ Ø ÓÒ ËÔÖ Ö

Mehr

¾¼¼

¾¼¼ Ù Ù ÙÖ Å Ø Ñ Ø Å Ø Ó Ò ÙÒ Ô Ð ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ÂÓ Ä Ý ÓÐ Ô ÖØÑ ÒØ Ö ËØ Ø Ø ÙÒ Å Ø Ñ Ø Ö Ï ÖØ Ø ÙÒ Ú Ö ØØ Ï Ò ½ º ÂÙÒ ¾¼¼ ¾¼¼ Josef.Leydold@wu-wien.ac.at ÙÒ Ø ÓÒ Ò Ò Ñ Ö Ö Ò Î Ö Ð Ò ½º Ò Ø ÆÙØÞ Ò ÙÒ Ø ÓÒ

Mehr

ÙÐØØ ÁÒ Ò ÙÖ Û Ò Ø Ò ÙÒ ÁÒ ÓÖÑ Ø ÔÐÓÑ Ö Ø Ö Ì Ñ ÃÓÒ ÓÐ ÖÙÒ Ò Á̹ËÝ Ø Ñ ÞÙÖ ÍÒØ Ö Ø ØÞÙÒ ÐÐ ÖØ Ö Ö Ö ËÓ ØÛ Ö Ò ØÐ ØÙÒ Ò ÚÓÖ Ð Ø ÙÖ ÌÓÖ Ø Ò ÁÖÐÒ Ö ¾¼¼ ÌÓÖ Ø Ò ÁÖÐÒ Ö ÓÑ Ö Ø Ö ÖÚ Ï Ö Ø ÙÒØ Ö Ö Ö Ø Ú ÓÑÑÓÒ

Mehr

ß Ð ¹ ÓÜ¹Ï ÖÚ ÖÛ Ò ÙÒ Î Ö ĐÙ Ö Ø ÚÓÒ Ú Ö Ò Ò Ö Ø ÒÙØÞ Ö ÃÐ Ò ÞÙÖ ÁÒ Ø ÒØ ÖÙÒ ÖĐ Ò Ø ÅĐÓ Ð Ø Ò ÞÙÖ ÒÔ ÙÒ Ö Ò Ö Ú ÖÛ Ò Ö ß Ï ÖÚ ÖÛ Ò ÙÒ ÚÓÒ ÃÓÑÔÓÒ ÒØ Ò Ò ÃÓÑÔÓÒ ÒØ Ò Ô Þ ÐÐ ËÛ¹Ì Ð Ò Ô Þ Î Ö ÐØ Ò Ù ¹ Û Ò

Mehr

ÔÐÓÑ Ö Ø ÍÒ Ú Ö ØØ À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö Æ ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Òµ Ò ÁÌ¹Ë Ö Ø ÓÒÞ ÔØ Ö Ò Û Ò ØÐ ÒÖ ØÙÒ Ñ Ô Ð Ö ÁÒ ÓÖÑ Ø Ö ÍÒ Ú Ö ØØ À Ñ ÙÖ Ì Ð ÁÁÁ ÖÐÙØ ÖÙÒ Ò Â Ò Æ ÓÒ Ö ØÖ ¾ ¾¾ ½

Mehr

0 = 2x+2y 5 y = 4x+6

0 = 2x+2y 5 y = 4x+6 ÌÐ ÁÁ ÙÒÒ ÙÒ ½ ½º ÖÒ (((4/3+5/2) 6/5) 2/5) 5/2º 1 ¾º ÖÒ µ )) µ 1 ÙÒ µ (1 ( 2 2 ) ( 3 4 ( (2 3 ) 4 ) ( 3)º 4 º Î ÖÒ µ ( 4 xy + 3 yz )(4z xy 2 y ) µ x y z x 2 x + z y ÙÒ µ x º 1 1 1 x º Û 2 Ò Ö Ø ÓÒ Ð Ð

Mehr

Ø ÑÑÙÒ Ö Ä Ò Ö ØØ ÙÒ Ò Ö Ù ÙÒ ÚÓÒ Ð Ð ÑÓ ÙÐ Ò Ñ Ð ØÖÓÑ Ò Ø Ò Ã ÐÓÖ Ñ Ø Ö Ñ ÇÅÈ Ë˹ ÜÔ Ö Ñ ÒØ ÔÐÓÑ Ö Ø ÚÓÒ ÓÑ Ó ¹Å Ö Ó ÓØ ÁÒ Ø ØÙØ Ö Ã ÖÒÔ Ý ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ Å ÒÞ ¼º ÔÖ Ð ¾¼¼ ÁÒ ÐØ Ú ÖÞ Ò ½ ÒÐ ØÙÒ

Mehr

BS Registers/Home Network HLR/AuC

BS Registers/Home Network HLR/AuC Ë Ö Ø Ñ ÅÓ Ð ÓÑÑÙÒ Ø ÓÒ Ò ØÞ Ö º Ò Ö Ø ÓÒ ÍÅÌ˵ ÃÐ Ù ÚÓÒ Ö À Ý ¾¼¼¾¹¼ ¹¾ ÁÒ ÐØ Ú ÖÞ Ò ½ Ò ÖÙÒ ¾ ½º½ Ï ÖÙÑ Ö ÙÔØ Ë Ö Ø ÓÒÞ ÔØ ÑÓ Ð Ö ÃÓÑÑÙÒ ¹ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Mehr

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ

¾¾ Ö ÙÖ Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ö Ø Ö Ø ÙÒ Î ÖÛ ÐØÙÒ º Ⱥ à ÑÑ Ö Íº ÊÝÒ ÖÞ Û Î ÖÛ ÐØÙÒ Ð ØÙÒ µ Àº ËØÖÓ º ÈÖ Ø Ò Ò Åº Ò Ù Ö ½º½¾ºµº Ì Ò È Ö ÓÒ Â Ö Ö Ø ¾¼¼ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼ µ ¾¾ ¾ ½ Ö ÙÖ º Öº Ã Ô Ò Ù Ö¹ÁÒ Ø ØÙØ Ö ËÓÒÒ ÒÔ Ý Ë Ò ØÖ ½¼ Ö ÙÖ Ì Ðº ¼ ½µ ½ ¹¼ Ü ¼ ½µ ½ ¹½½½ ¹Å Ð Ö ºÙÒ ¹ Ö ÙÖ º ÏÏÏ ØØÔ»»ÛÛÛº ºÙÒ ¹ Ö ÙÖ º Ù Ò Ø ÐÐ Ñ Ç ÖÚ ØÓÖ

Mehr

R n. u(x)e ix y dx, y R n (2π) n 2. f L 1 (Rµ. f(x) cos(yx) dx = 0. f(x) sin(yx) dx = lim. lim. lim. f(x)e ixy dx = 0, Ð Ó ˆf(y) 0 Ö y

R n. u(x)e ix y dx, y R n (2π) n 2. f L 1 (Rµ. f(x) cos(yx) dx = 0. f(x) sin(yx) dx = lim. lim. lim. f(x)e ixy dx = 0, Ð Ó ˆf(y) 0 Ö y ½¾º½ ÓÙÖ ÖØÖ Ò ÓÖÑ Ø ÓÒ ÓÙÖ ÖØÖ Ò ÓÖÑ Ø ÓÒ Ù L µ u L ( n ) Úº ÓÑÔÐ ÜÛ ÖØ µ ÓÙÖ ÖØÖ Ò ÓÖÑ ÖØ û(y) := u(x)e ix y dx, y n (π) n n ÒÚ Ö ÓÙÖ ÖØÖ Ò ÓÖÑ ÖØ ǔ(y) := u(x)e ix y dx, y n (π) n n Ñ ½µ ÁÒØ Ö Ð ÓÒÚ

Mehr

Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Û Ö Ò Ù Ó Ó ÖÙÒ Ò Ò Ó Ò ÒÒØ Ö ÑÙ Ð Ö Ò¹ Ö Ö ÙÒØ Ö Ù Øº ËÓÐ Ò Ö Ö Ø ÙÑ Ò Ð µ Ò Ö Û Ð ÅÙ Ø Ö ÔÖ ÒØ Ø Ú Ì Ð Þº º Ê Ö Ò ËØÖÓÔ ºººµº Ò Ø

Ù ÑÑ Ò ÙÒ ÁÒ Ö Ö Ø Û Ö Ò Ù Ó Ó ÖÙÒ Ò Ò Ó Ò ÒÒØ Ö ÑÙ Ð Ö Ò¹ Ö Ö ÙÒØ Ö Ù Øº ËÓÐ Ò Ö Ö Ø ÙÑ Ò Ð µ Ò Ö Û Ð ÅÙ Ø Ö ÔÖ ÒØ Ø Ú Ì Ð Þº º Ê Ö Ò ËØÖÓÔ ºººµº Ò Ø Ù Ó Ó ÖÙÒ ÙÖ ÑÙ Ð Ò Ö Ö ÔÐÓÑ Ö Ø ÌÓ ÅÙÖ ØÖ Ù Ö ÍÒ Úº º Á Öº ÐÓ ËÓÒØ ÙØ Ø Ö ÓºÍÒ Úº ÈÖÓ º Å º Á Öº ÊÓ ÖØ À Ð Ö ÁÒ Ø ØÙØ Ö Ð ØÖÓÒ ÅÙ ÙÒ Ù Ø ÍÒ Ú Ö ØØ Ö ÅÙ ÙÒ Ö Ø ÐÐ Ò ÃÙÒ Ø Ö Þ Ø ÖÖ Ë ÔØ Ñ Ö ¾¼¼ Ù ÑÑ Ò ÙÒ

Mehr

ÙÐØĐ Ø ĐÙÖ È Ý ÙÒ ØÖÓÒÓÑ ÊÙÔÖ Øßà ÖÐ ßÍÒ Ú Ö ØĐ Ø À Ð Ö ÔÐÓÑ Ö Ø Ñ ËØÙ Ò Ò È Ý ÚÓÖ Ð Ø ÚÓÒ Ö Ø Ò Å Ö Ù ÄÙ Ó»ÊÙÑĐ Ò Ò ½ Æ ¹ÁÒ Ö ÖÓØ È ÓØÓÑ ØÖ ÚÓÒ ÉÙ Ö Ò Ñ Ø Þ ÔÐÓÑ Ö Ø ÛÙÖ ÚÓÒ Ö Ø Ò Å Ö Ù ĐÙ ÖØ Ò Ö Ä Ò

Mehr

Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series

Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series Daniel Senkowski: Neuronal Correlates of Selective Attention. Leipzig: Max Planck Institute for Human Cognitive and Brain Sciences, 2004 (MPI Series in Human Cognitive and Brain Sciences; 42) Æ ÙÖÓÒ Ð

Mehr

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ

ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ½ È Ö ÓÒ Ð ÙÒ Ù Ø ØØÙÒ ½º½ È Ö ÓÒ Ð Ø Ò ÚÓÑ ½º½¾º¾¼¼½ Ï Ò ØÐ Ö ÎÓÖ Ø Ò ÈÖÓ º Öº ÃÐ Ù º ËØÖ Ñ Ö Ñ Ò ØÖ Ø Ú Ö ÎÓÖ Ø Ò È Ø Ö º ËØ Â Ö Ö Ø ¾¼¼½ Å ØØ ÐÙÒ Ò Ö ØÖÓÒÓÑ Ò ÐÐ Ø ¾¼¼¾µ ½ ÈÓØ Ñ ØÖÓÔ Ý Ð ÁÒ Ø ØÙØ ÈÓØ Ñ ¼ ÐÐ Ñ Ò ËØ ÖÒÛ ÖØ Ð Ö Ò Ö ËØ ÖÒÛ ÖØ ½ ¹½ ¾ ÈÓØ Ñ Ì Ð ÓÒ ¼ ½µ ¼ Ì Ð Ü ¼ ½µ ¾ ¹Å Ð Ö ØÓÖ Ôº ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛº Ôº Ù Ò Ø ÐÐ Ò

Mehr

Á Ãȹû¾¼¼ ¹½½ ÒØÛ ÐÙÒ Ò Ò ÐÐ Ò Ù Ð Ý Ø Ñ Ö Ñ ÒØ ØÖ ÐÑÓÒ ØÓÖ Ñ Å˹ ÜÔ Ö Ñ ÒØ Ö ØÓÔ Ê Ð ½ º ÅÖÞ ¾¼¼ ÔÐÓÑ Ö Ø ÁÒ Ø ØÙØ Ö ÜÔ Ö Ñ ÒØ ÐÐ Ã ÖÒÔ Ý Á ÃÈ ÍÒ Ú Ö ØØ Ã ÖÐ ÖÙ ÌÀµ Ê Ö ÒØ ÈÖÓ º Öº Ï Ñ Ó Ö ÃÓÖÖ Ö ÒØ

Mehr

[π i, π j ] = p i e c A i, p j e ] c F ij = ie. c ǫ ijkb k, t ρ + = 0. H = 1. c c 2 2

[π i, π j ] = p i e c A i, p j e ] c F ij = ie. c ǫ ijkb k, t ρ + = 0. H = 1. c c 2 2 Ã Ô Ø Ð ½¼ Ð Ò Ì Ð Ò Ñ Ð ØÖÓÑ Ò Ø Ò Ð ÁÒØ Ö ÒØ Ø Ö Ø ÒÛÖØ ÜÔ Ö Ñ ÒØ ÚÓÒ ËØ ÖÒ ÙÒ Ö¹ Ð º Ò Ø ÐÐÙÒ Ö ØÓÑ Ó Ò Ù ÑÑ Ò Ø Ø Ò Ò ØÞ Ò ÖÐ ÙÒ Ñ Ø Ó Ò ÙÖ ËØÖ ÐÙÒ Ò Ø ÞÙ Ú Ö Ø Ò Ò Ò Ø ÐÐÙÒ ÓÐй Ø ÚÓÒ Ê Ø Û Ò Ñ Ö

Mehr

ÖÓÒÐÝ ÒÙÒ ÎÖÖÒ ÞÙÖ ÈÁƹÖÒÙÒ ÙÒ ÈÁƹÈÖĐÙÙÒ ĐÙÖ ¹ÃÖØÒ ÖÓÒÐÝ ÒÙ ÈÁƹÎÖÖÒ ½ ÁÒÐØ ÚÖÞÒ ½ Ù ÑÑÒ ÙÒ Ö Ê ÙÐØØ ¾ ¾ ÒÙ ÎÖÖÒ ¾º½ ÈÁƹÒÖÖÙÒ º º º º º º º º º º º º º º º º º º º º º º º º º ¾º½º½ ÈÁƹÒÖÖÙÒ Ù ÃÖØÒÒÓÖÑØÓÒÒ

Mehr

Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò ÚÓÒ ÅÓ Ð ÁÈ ÞÙ Đ ØÞÐ Ñ ÃÓÒØ ÜØØÖ Ò Ö ËØ Ò Ê Ò ÓÖ ÙÒ ¹ ÙÒ Ä Ö Ò Ø ÁÒ ÓÖÑ Ø ÎÁÁÁ ÈÖÓ º Öº Â Ò Ê Ò Ö ÓÑÑÙÒ Ø ÓÒ Å Ò ÐÐ Ù Ø ÓÒ Ë ÑÙÐ Ø Ú ÍÒØ Ö Ù ÙÒ À Ò ÓÚ Ö Î Ö ÐØ Ò

Mehr

ÖÖ Ö Ø ÚÓÒ ÓÑÔÙØ Ö Ý Ø Ñ Ò Ë Ö ÔØ ÞÙÑ Ë Ñ Ò Ö ËÓÑÑ Ö Ñ Ø Ö ½ À Ö Ù Ö Å Ò Ö Ã Ö Ö Ü Ð ÈÖĐ Ð Ò Ö ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø Ã Ö Ð ÙØ ÖÒ ¹ ¼ Ã Ö Ð ÙØ ÖÒ Ï Ø ÖÑ ÒÝ ÁÒ ÐØ Á Ø Ò ÙØÞ ½ Ø Ò ÙØÞ ß Ö ØÐ Ä ½º½ ÏÓ Ö ÓÑÑØ

Mehr

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø

ÞÙ ØÞÒ Øº Ö Ù ĐÓ ÙÒ ÚÓÒ ºµ ÒØ ºÄºÂÓÒ ÌÖÒ ÓÖÑØÓÒ ºµ Ü Ê Ø ¼ Å Ë ÐÖØ ÙÒ ºµ Ü Ü¼ Ü ¼ µø Ü Ü¼ µø ܼ Ü ¼ µø ÙÒ ÑØ Ò ºµ Ù ÄÒÞØÚÖÐØÒ ËÝ ØÑ ºµ Ü ÐÑ Ø Ü Ü ÐÑ Ø ÖÐØÙÒ Ö ÖØÒÚÐÐØ ÙÖ ÅÖØÓÒ ÒØÓÒÓ ËØÒÖ ÙÒ ÅÖØÒ Âº ÒÖ ØÖØ Ï ÒÚ ØØ Ø Ò ÙÒ Ó ÑÖØÓÒ ÓÒ Ø ÚÓÐÙØÓÒ Ó ÓÒ Ò ØÛÓ Ô ÐÚÒ Ò ÖÓÒ ÙÒÖ ÙÒØÒ ÓÒØÓÒ Û Ô Ø ØÓØÐ ÒÙÑÖ Ó ÒÚÙÐ ÓÒ ØÒغ ÁÒÚÙÐ ÑÖØ ÖÓÑ Ò Ö ÛØ ØØÖ ÐÚÒ ÓÒØÓÒ ØÓ Ò Ö

Mehr

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22

f : N R a 1 = = 2 a 2 = = 1 a 3 = = 6 a 4 = = 13 a 5 = = 22 Å Ø Ñ Ø º Ë Ñ Ø Ö ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ ÓÐ Ò Ä ½º½ Ö Ö Ö ÓÐ ½Ä º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÜÔÐ Þ Ø ÙÒ Ö ÙÖ Ú Ö ÙÒ ÚÓÒ ÓÐ Ò Ä º º º º º º º º º ½º ËÙÑÑ Ò¹ ÙÒ ÈÖÓ Ù

Mehr

Ò ÖØ Ö ÑÙÐØ Ñ Ð ÒÛ Ò ÙÒ Ò Ö Ø Ã Ö Ð ÓÖÒÖ Ò ¼ Ø ØØ Ò Ö Ø Ö ÐºÒ Ø ¾ º Å ¾¼¼½ Ù ÑÑ Ò ÙÒ Ö Ø Ñ Ø Ò Ò Ö Ð Ö ÒÓÖÑ Ò ÓØ Ò ÑÙÐØ Ñ Ð Ò Ò ÖØ Ò Ò ÙÒ Ò ÒØ Ö ÒØ ÙÒ Ò Ù Ì ÒÓÐÓ Ò ÙÖ ÔÖ Ø ¹ Ì Ø Ò Ù Ö ÙÒØ Ö ÄÙÔ Ò Ñ Òº

Mehr

Ë Ö Ø ÒĐÙ ÖØÖ ÙÒ ĐÙ Ö ÁÒØ ÖÒ Ø Ñ ØØ Ð ÁÈË ËØÙ Ò Ö Ø ÎÓÖ Ð Ø ÚÓÒ Ì ÐÓ ÊÙ ÞÙÖ ÙØ ØÙÒ ÙÖ ÈÖÓ º Öº ÃÐ Ù ÖÙÒÒ Ø Ò ½ º Þ Ñ Ö ½ ÍÒ Ú Ö ØĐ Ø À Ñ ÙÖ Ö ÁÒ ÓÖÑ Ø Ö Ø Ö ÒÛ Ò ÙÒ Ò Ö ÁÒ ÓÖÑ Ø Ò Ø ¹ ÙÒ Æ ØÙÖÛ Ò Ø Ò ÁÒ

Mehr

¾ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË º ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º º½ Æ Ø¹ ØÖ Ø ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º

¾ ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË º ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º º½ Æ Ø¹ ØÖ Ø ÜÔÙÒ Ø Ñ ÒØ º º º º º º º º º º º º º º ÙÒ Ø ÓÒ Ð ÈÖÓ Ö ÑÑ ÖÙÒ ÈÖÓ º Öº ú ÁÒ ÖÑ Ö Ä Ö ØÙ Ð ĐÙÖ ÁÒ ÓÖÑ Ø ÁÁ Ê Ò ¹Ï Ø Đ Ð Ì Ò ÀÓ ÙÐ Ò ÓÖÒ ØÖ ¾¼ ¾ Ò ÏÏÏ ØØÔ»»ÛÛÛ¹ ¾º Ò ÓÖÑ Ø ºÖÛØ ¹ Òº» È» ÏË ½» Ë Ö ÔØ ½ ß½ À Ò ¹ ÓÖ Ö ÊÓ ÖÑÓÒ Ö ËØÖº ¾ ¾¼ ¾ Ò º

Mehr

ÁÒ ÐØ Ú ÖÞ Ò ½ ÂÓ ÒÒ Ö ÌĐ Ù Ö ½ ¼ ½ º½ÂÓ ÒÒ Û Ö Æ ÖĐ Ö ½ º¾ Ö ÌÓ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ º º º º º º

ÁÒ ÐØ Ú ÖÞ Ò ½ ÂÓ ÒÒ Ö ÌĐ Ù Ö ½ ¼ ½ º½ÂÓ ÒÒ Û Ö Æ ÖĐ Ö ½ º¾ Ö ÌÓ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ¼ º º º º º º ÍÖ ÒØ Ù ½ ¹ ÂÓ ÒÒ Ö ÌĐ Ù Ö Á ÁÁ ÁÁÁ ÁÎ ÒØÖ ÐÙÒ Ú Ö ÙÑ ÙÒ ËÙÔ ÖÙÒ Ú Ö Ò ÄÓ ÐÙÒ Ú Ö ÙÑ Ø ÍÖ ÒØ Ä Ò ÙÒ Ä Ö Ò Â Ù ÛÛÛºÙÖ ÒØ ºÓÖ ½ ÛÛÛºØÖÙØ ÓÓ ºÓÑ ¾ ½ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºÙÖ ÒØ ºÓÖ» º ¾ ÁÒØ ÖÒ Ø ØØÔ»»ÛÛÛºØÖÙØ

Mehr

ÔÐÓÑ Ö Ø Ú ÀÓÖÒ Ö ½ ÌÀ ÖÑ Ø Ø Ö ÁÒ ÓÖÑ Ø ØÖ Ù Ö ÈÖÓ º Ϻ À Ò ÔÐ ÁÒ ÓÖÑ Ø ÈÖÓ º ĺ ÈÓÒ Ö ØÞ ÈĐ Ó Öº ź À Ö À ÖÙÒ ÞĐÙ Ö ÁÒ ÓÖÑ Ø Á ß Ø Ò ÐÝ ĐÍ ÙÒ ØÖ ß ÒÖ ÙÒ Ò ÞÙÖ Æ Ù ÓÒÞ ÔØ ÓÒº Ú ÖĐÓ«ÒØÐ Ø Ð À ¹ Ö Ø Ö Ø

Mehr

Grundtypen von Lägern

Grundtypen von Lägern º Ä Ö Ý Ø Ñ Ñ Ö Î Á¹Ê ØÐ Ò ¾ ½½ Ø Ä ÖÒ ÔÐ ÒØ Ä Ò Ö Ø ¹ Ò Ø Ò Ñ Å Ø Ö Ð Ù º Ä Ö Ø Ò Ê ÙÑ ÞÛº Ò Ð ÞÙÑ Ù Û Ö Ò ÚÓÒ ËØ ¹ ÙÒ»Ó Ö Ë ØØ ÙØ Ò ÓÖÑ ÚÓÒ ÊÓ ØÓ Ò Û ¹ ÒÔÖÓ Ù Ø Ò Ó Ö ÖØ Û Ö Ò Ñ Ò Ò¹ ÙÒ»Ó Ö Û ÖØÑ Ö Ø

Mehr

ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ Î ØÓÖ ÓÑ ØÖ Ò ÖÙÑÐ Ò ÃÓÓÖ º Ò Ò ¾ ½º½ ÃÓÓÖ Ò Ø Ò Ð ÙÒ º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º¾ Ò Ø Ä Ò

ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ Î ØÓÖ ÓÑ ØÖ Ò ÖÙÑÐ Ò ÃÓÓÖ º Ò Ò ¾ ½º½ ÃÓÓÖ Ò Ø Ò Ð ÙÒ º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º¾ Ò Ø Ä Ò Å Ø Ñ Ø º Ë Ñ Ø Ö ÁÆÀ ÄÌËÎ Ê Á ÀÆÁË ½ ÁÒ ÐØ Ú ÖÞ Ò ½ Î ØÓÖ ÓÑ ØÖ Ò ÖÙÑÐ Ò ÃÓÓÖ º Ò Ò ¾ ½º½ ÃÓÓÖ Ò Ø Ò Ð ÙÒ º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º¾ Ò Ø Ä Ò ÚÓÒ Ò Ò º º º º º º º º º º º º

Mehr

ÎÓÒ Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ Ò ÒÓѹ Ñ Ò ÖØ Ø ÓÒº Ö Ø Ö ÙØ Ø Ö À ÖÖ ÈÖÓ º Öº ÊÓÐ È Ð Ø Ö Û Ø Ö ÙØ Ø Ö À ÖÖ È Öº Ò Ö À Ø Ù Ò Ö ØØ Ö ÙØ

ÎÓÒ Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ Ò ÒÓѹ Ñ Ò ÖØ Ø ÓÒº Ö Ø Ö ÙØ Ø Ö À ÖÖ ÈÖÓ º Öº ÊÓÐ È Ð Ø Ö Û Ø Ö ÙØ Ø Ö À ÖÖ È Öº Ò Ö À Ø Ù Ò Ö ØØ Ö ÙØ ÖÛ Ø ÖØ Å Ð Ø Ò Ö ÜÔ Ö Ñ ÒØ Ö Ò Ñ È Ý ÙÒØ ÖÖ Ø ÙÖ Ò Ò ØÞ Ò Ò Ù ÒØÛ ÐØ Ò Ò Ö Ù Ò Ò Ø ØÓÖ Ö Ê ÒØ Ò ØÖ Ð Ò ÁÒ Ù ÙÖ Ð ÖØ Ø ÓÒ ÞÙÖ ÖÐ Ò ÙÒ Ó ØÓÖ Ö Ö ÖÞ ÙÒ Û Ò ØÐ Ò ÙÐØØ Ö ÍÒ Ú Ö ØØ ÞÙ Ã ÐÒ ÚÓÖ Ð Ø ÚÓÒ ÖØ Ñ

Mehr

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2

c 2 = a 2 + b 2 ab c 2 = h 2 + (a b 2 )2 = 3 4 b2 + a 2 ab b2 = a 2 + b 2 abº c 2 = a 2 + b 2 ab 2 h 2 = 1 2 b2 ÙÒ h = 2 Â Ö Ò ¾ À Ø Ë ÔØ Ñ Ö ¾¼¼ Ò Ñ Ø Ñ Ø Ø Ö Ø Ö Ë Ð Ö ÒÒ Òµ ÙÒ Ä Ö Ö ÒÒ Òµ ½ ¼ Ö Ò Ø ÚÓÒ Å ÖØ Ò Å ØØÐ Ö ÒÛÖØ Ö Ù Ò ÚÓÑ ÁÒ Ø ØÙØ Ö Å Ø Ñ Ø Ò Ö ÂÓ ÒÒ ÙØ Ò Ö ¹ÍÒ Ú Ö ØØ ÞÙ Å ÒÞ Ä Ä Óµ Ö Ò Ð Ö Ä Óµ Ö Ò Ù Ò Ù Ò

Mehr

Von Zeit zu Zeit ist man gezwungen, ein fsck manuell auszuführen. Sehen Sie sich dazu einfach das folgende Beispiel an:

Von Zeit zu Zeit ist man gezwungen, ein fsck manuell auszuführen. Sehen Sie sich dazu einfach das folgende Beispiel an: º Ø Ý Ø Ñ Ö Ô Ö Ö Ò ¾ ½ mounten. Der Parameter blocksize definiert die Blockgröße des Loop-Back-Geräts. Als Nächstes wird nun die Datei linux in /mnt (oder dort, wohin Sie das Image gemountet haben) mit

Mehr