Vorlesung 3 Differentialgeometrie in der Physik 13

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 3 Differentialgeometrie in der Physik 13"

Transkript

1 Vorlesung 3 Dfferentalgeometre n der Physk 13 Bemerkung. Ist M Manngfaltgket, p M und φ : U R n Karte mt p U, so nennt man U auch Koordnatenumgebung und φ auch Koordnatensystem n p. Bespel 2.4 Seen R > r > 0 und f : R 2 R 3, f(α, β) = (R + r cos β)(cos α, sn α, 0) + r sn β(0, 0, 1). Wr setzen T 2 := f(r 2 ) und für jedes p T 2, p = f(x, y) setzen wr φ 1 (x,y) : ( π, π) ( π, π) f((x π, x + π) (y π, y + π)), φ 1 (x,)(α, β) = f(x + α, y + β). Dann st {φ p p T 2 } Atlas von T 2 und φ p st Koordnatensystem n p. Bemerkung. Wr werden m folgenden nur noch Manngfaltgketen mt abzählbarer Bass betrachten. Bemerkung. Ist M n-dmensonale Manngfaltgket und U M offen, so wrd U mt allen Karten von M, deren Defntonsbereche ganz n U legen selbst zu ener n-dmensonalen Manngfaltgket. U heßt dann offene Untermanngfaltgket von M. Snd M und N m- bzw. N-dmensonale Manngfaltgketen, so wrd M N auf kanonsche Wese selbst zu ener (m + n)-dmensonalen Manngfaltgket. 4 Bespel 2.5 R n = R R glt auch als Manngfaltgketen gelesen. S 1 S 1 st ene 2-dmensonale Manngfaltgket. 2.3 Dfferenzerbarket Wr werden jetzt den Begrff der Dfferenzerbarket auf Manngfaltgketen übertragen. We zu erwarten, gescheht das durch lften der Begrffe vom R n. 4 Man wählt auf M N de Produkttopologe. Snd dann φ : U R m und η : V R n Karten auf M bzw. N, so st U V offen n M N und (φ, η) : U V : R m R n wrd zu ener Karte auf M N. 13

2 14 Dfferentalgeometre n der Physk Vorlesung 3 Defnton 2.11 Seen M und N m- bzw. N-dmensonale Manngfaltgketen. f : M/toN heßt dfferenzerbar, falls für alle Karten φ : U R m auf M und η : V R n auf N dfferenzerbar st 5. Bemerkung. η f φ 1 : φ(u) R n Dfferenzerbarket n enem Punkt defnert man entsprechend. Es genügt de Dfferenzerbarketfür hnrechend vele Karten zu prüfen, so dass M und f(m) abgedeckt snd. Dfferenzerbarket auf offenen Telmengen folgt auch unmttelbar, da dese offene Untermanngfaltgketen snd. Ist f : M R ene Funkton, so kann man als Karte auf R de Identtät wählen. D. h. f st dfferenzerbar, falls es für jedes p M en Koordnatensystem φ : U R n gbt, so dass f φ 1 : φ(u) R dfferenzerbar st. Defnton 2.12 En Dffeomorphsmus st ene dfferenzerbare Abbldung mt dfferenzerbarer Umkehrabbldung. Bespel 2.6 Jede Karte st en Dffeomorphsmus. Φ : S 1 S 1 T 2, (x, y) f(arg x, arg y) mt f we m Bespel 2.4 st en Dffeomorphsmus. Her lesen wr S 1 als Telmenge von R 2 = C. De dfferenzerbaren Funktonen auf ener Manngfaltgket werden glech noch ene wchtge Rolle spelen, da wr se zur Defnton von Tangentalvektoren ensetzen werden. Defnton 2.13 F(M) bezechne den (kommutatven) Rng 6 (mt Ens) der dfferenzerbaren Funktonen auf M. 5 Auch her gelte de Bedngung weder als trval erfüllt, falls V f(m) = st 6 En Rng st grob gesagt en Körper, be dem es kene multplkatven Inversen geben muss: Ene Menge R mt zwe Verknüpfungen +, : R R R heßt Rng, falls glt 14

3 Vorlesung 3 Dfferentalgeometre n der Physk Der Tangentalraum Ist g : V R m W R n dfferenzerbar, so kann man das totale Dfferental von g D p g : R m R n m Punkt q V betrachten. D q g(v) = n =1 v g q st dann de Rchtungsabletung von g n Rchtung v = (v 1,..., v n ). Aber so weng we v n V legen muss, muss de Rchtungsabletung D q g(v) = v g q n W sen. Bede Vektoren leben n anderen Räumen, als de Funkton g. Dese Räume werden wr jetzt auch für jeden Punkt ener Manngfaltgket konstrueren. Zunächst bemerken wr, das man für Funktonen g : V R de Rchtungsabletung v g q ncht nur als Abbldung v v g q sondern genauso gut auch als g v g q verstehen kann: Im Punkt q operert v als Rchtungsabletung auf der Menge aller dfferenzerbaren Funktonen v : F(V ) R. Haben wr ene Manngfaltgket M und p M mt Koordnatensystem φ : U R n. so können wr g = f φ 1 : φ(u) R betrachten und f := f p p := f φ 1 φ defneren dese partellen Abletungen von f hängen allerdngs von der Karte φ ab. Nchtsdestotrotz können wr jetzt auch für v = (v 1,..., v n ) R n v f p = n v f p. =1 erklären. Auch her können wr jetzt de Rollen vertauschen und v als Funkton auf F (M) betrachten. Nach we vor st aber unsere Beschrebung deser Tangentalvektoren abhängg von der gewählten Karte. Wollen wr de Rchtungsabletung unabhängg von ener gewählten Karte erklären müssen wr hre Egenschaften axomatsch fassen: Defnton 2.14 Se M ene Manngfaltgket und p M. En Tangentalvektor v an M n p st ene Abbldung v : F(M) R mt folgenden Egenschaften: (R, +) st abelsche Gruppe (R, ) st Halbgruppe für alle a, b, c R glt a(b + c) = ab + ac und (b + c)a = ba + ca (Dstrbutvgesetz) Ist (R, ) kommutatve Halbgruppe, so nennt man den Rng (R, +, ) kommutatv, st (R, +, ) Halbgruppe mt 1 so heßt (R, +, ) en Rng mt q

4 16 Dfferentalgeometre n der Physk Vorlesung 3 1. v st R-lnear: Für alle λ, µ R und f, g F(M) glt v(λf + µg) = λv(f) + µv(g). 2. v erfüllt de Lebnzregel: Für alle f, g F(M) glt: v(fg) = v(f)g(p)+ f(p)v(g). De Menge aller Tangentalvektoren an M n p heßt Tangentalraum an M n p und wrd mt T p M bezechnet. Man überprüft lecht, das T p M en R-Vektorraum st (en Untervektorraum der Raumes aller Funktonen auf /F (M)). Das Folgende st Lemma, Defnton und Bespel n enem: Lemma 2.15 De partellen Abletungen bezüglch ener Karte heßen Gaußvektoren und snd Tangentalvektoren. Bewes. Se M Manngfaltgket, p M und φ Koordnatensystem n p. Wr müssen zegen, das de R-lnear und Lebnz snd. Es st aber für f, g F(M), λ, µ R und q = φ(p): (λf + µg) p = (λf + µg) φ q = λ λf φ q + µ g φ q = λ f p + µ g p und (fg) p = (fg) φ q = (λf) φ q g φ 1 (q) + f φ 1 (q) (λg) φ q = f p g(p) + f(p) g p. Bemerkung. Ist ene Funkton konstant f c, so st für alle v T p M v(f) = 0, denn für g 1 glt v(g) = v(g 2 ) = v(g)g(p) + g(p)v(g) = 2v(g), also v(g) = 0 und mt f = cg folgt v(f) = v(cg) = cv(g) = 0. Da T p M en Vektorraum st snd also auch de Rchtungsabletungen bezüglch ener Karte Tangentalvektoren und wr zegen jetzt, dass das n der Tat alle snd. Satz 2.16 Ist M n-dmensonale Manngfaltgket und p M, so st T p M n-dmensonaler R-Vektorraum. Ist φ Koordnatensystem n p, so blden de Gaußvektoren (de partellen Abletungen bzgl. φ) ene Bass, de sog. Gaußbass von T p M. Bewes. Se φ Koordnatensystem n p. Wr werden lokal n desem Koordnatensystem argumenteren und danach kurz betrachten, warum das erlaubt st. 16

5 Vorlesung 3 Dfferentalgeometre n der Physk 17 Insbesondere betrachten wr de Komponentenfunktonen φ = (φ,..., φ n ) als Funktonen auf M (de wr mt Tangentalvektoren ableten können) obwohl se zunächst nur auf ener offenen Telmenge defnert snd. Zunächst zegen wr, das de lnear unabhängg snd: Se 0 = λ ene Lnearkombnaton der Null. Dann glt für alle j {1,..., n} ( ) 0 = λ (φ j ) = φ j φ 1 λ φp = λ x j φp = λ j. Also snd alle λ j = 0 und de Lnearkombnaton war trval. Damt st gezegt, das de lnear unabhängg snd. 17

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Ko- und kontravariante Darstellung

Ko- und kontravariante Darstellung Ko- und kontravarante Darstellung Physkalsche Sachverhalte snd vom verwendeten Koordnatensystem unabhängg. Sehr oft st es snnvoll, se n verschedenen Koordnatensystemen darzustellen. Berets erwähnt wurden

Mehr

1 Differentialrechnung in mehreren Variablen

1 Differentialrechnung in mehreren Variablen 1 Dfferentalrechnung n mehreren Varablen 1.1 De Geometre eukldscher Räume Zur Ernnerung De Elemente des R n schreben wr normalerwese als Zelenvektoren: x = (x 1,..., x n ). Kommen Matrzen ns Spel, so st

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

arxiv: v1 [math.nt] 10 Apr 2014

arxiv: v1 [math.nt] 10 Apr 2014 Über de ratonalen Punkte auf der Sphäre von Nkolay Moshchevtn 1 Moskau) arxv:1404.907v1 [math.nt] 10 Apr 014 Wr beschäftgen uns her mt der Approxmaton von Punkten auf der n-dmensonalen Sphäre durch ratonale

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Einführung in die theoretische Physik 1

Einführung in die theoretische Physik 1 Enführung n de theoretsche hysk 1 rof. Dr. L. Mathey Denstag 15:45 16:45 und Donnerstag 10:45 12:00 Begnn: 23.10.12 Jungus 9, Hörs 2 Mathey Enführung n de theor. hysk 1 1 Grundhypothese der Thermostatk

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Lineare Algebra B. Herzog, Universität Leipzig, Institut für Mathematik und Informatik, Vorlesung des ersten Studienjahrs im Herbstsemester 2007

Lineare Algebra B. Herzog, Universität Leipzig, Institut für Mathematik und Informatik, Vorlesung des ersten Studienjahrs im Herbstsemester 2007 Lneare Algebra B. Herzog, Unverstät Lepzg, Insttut für Mathematk und Informatk, Vorlesung des ersten Studenjahrs m Herbstsemester 2007 Hnwese Aufgaben Am Anfang jeder Woche werden jewels 3 Aufgaben ns

Mehr

Die Transzendenz der Eulerschen Zahl e

Die Transzendenz der Eulerschen Zahl e De Transzendenz der Eulerschen Zahl e nach Jean-Paul Delahaye Der n [1, Seten 21-22] skzzerte Bewes der Transzendenz der Eulerschen Zahl e wrd m folgenden ausgeführt. En alternatver Bewes, der auf Ideen

Mehr

3 g-adische Ziffernentwicklung reeller Zahlen

3 g-adische Ziffernentwicklung reeller Zahlen 1 3 g-adche Zffernentwcklung reeller Zahlen In deem Kaptel e tet 2 g N und Z g = {0, 1, 2, 3,..., g 1} N. Motvaton: Wr wollen jede potve reelle Zahl x > 0 n der Ba g 2 dartellen (g-adche Dartellung von

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Äquivalenzen stetiger und glatter Hauptfaserbündel

Äquivalenzen stetiger und glatter Hauptfaserbündel Äquvalenzen stetger und glatter Hauptfaserbündel Chrstoph Müller Chrstoph Wockel Fachberech Mathematk Unverstät Darmstadt 31. Süddeutsches Kolloquum über Dfferenzalgeometre Glederung 1 De Problemstellung

Mehr

3 Elastizitätstheorie

3 Elastizitätstheorie 3 Elastztätstheore Für en elastsches Medum nmmt man enen spannungsfreen Referenzzustand an, der n Eulerkoordnaten durch x = Ax, t) gegeben st. Abwechungen werden beschreben durch de Verschebung ux, t)

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Semnar Enführung n de Kunst mathematscher Unglechungen Cauchys erste Unglechung und de Unglechung vom arthmetschen und geometrschen Mttel Sopha Volmerng. prl 0 Inhaltsverzechns Cauchys erste Unglechung.

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme

Runge-Kutta-Theorie: Adjungierte Verfahren, A-Stabilität, Steife Systeme Runge-Kutta-Teore: Adjungerte Verfaren, A-Stabltät, Stefe Systeme Andre Neubert bat@un-paderborn.de Semnar Numerk für Informatker, SS2004: Runge-Kutta-Teore Sete Glederung : - Adjungerte Verfaren / Symmetrsce

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt

2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt Lneare Algebra Wel Gao September Gauss sches Elmnatonsverfahren a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mnx n = b m Das LGS mt m Glechungen und n Unbekannten n ene erweterte

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

ALGEBRAISCHE TOPOLOGIE

ALGEBRAISCHE TOPOLOGIE ALGEBRAISCHE TOPOLOGIE OLIVER C. SCHNÜRER Zusammenfassung. Be desem Manuskrpt handelt es sch um Notzen zu ener Vorlesung Algebrasche Topologe an der Freen Unverstät Berln m Sommersemester 2007 und an der

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Die Leistung von Quicksort

Die Leistung von Quicksort De Lestung von Qucsort Jae Hee Lee Zusammenfassung Der Sorteralgorthmus Qucsort st als ens der effzenten Sorterverfahren beannt. In deser Ausarbetung werden wr sene Komplextät zuerst möglchst präzse schätzen

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Noethertheorem. 30. Januar 2012

Noethertheorem. 30. Januar 2012 Noethertheorem 30. Januar 2012 1 Inhaltsverzechns 1 Symmetre 3 1.1 Symmetre n der Geometre................... 3 1.2 Symmetre n der Mathematk.................. 3 1.3 Symmetre n der Physk.....................

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 12 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 12 Version 1.0 (11. Mathematk für Ökonomen Kompakter Ensteg für Bachelorstuderende Lösungen der Aufgaben aus Kaptel Verson.. September 5) E. Cramer, U. Kamps, M. Kater, M. Burkschat 5 Cramer, Kamps, Kater, Burkschat Lösungen

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Übung zur Vorlesung - Theorien Psychometrischer Tests II

Übung zur Vorlesung - Theorien Psychometrischer Tests II Übung zur Vorlesung - Theoren Psychometrscher Tests II N. Rose 9. Übung (15.01.2009) Agenda Agenda 3-parametrsches logstsches Modell nach Brnbaum Lnkfunktonen 3PL-Modell nach Brnbaum Modellglechung ( =

Mehr

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan Lneare Algebra IIa - 04 orlesung - Pro Dr Danel Roggenkamp & Sen Balnojan 93 Untäre ektorräume hermtesche Form au enem C ektorraum sesqulnear (ant-lnear m ersten lnear m zweten Argument (, w (w, (, 2 R

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

Komplexe Zahlen. Roger Burkhardt 2008

Komplexe Zahlen. Roger Burkhardt 2008 Komplexe Zahlen Roger Burkhardt (roger.burkhardt@fhnw.ch) 008 Enführung De Unvollkommenhet des Körpers der reellen Zahlen N 1,,,,... snd sowohl { } In der Menge der natürlchen Zahlen Addton we Multplkaton

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

14 Exakte Statistik nichtwechselwirkender Teilchen

14 Exakte Statistik nichtwechselwirkender Teilchen Woche 4 Exakte Statstk nchtwechselwrkender Telchen 4 Bose-Ensten Statstk Engeführt von Satyendra ath Bose 924) für Photonen von A Ensten für massve Telchen 925) Voraussetzung: Bosonen Telchen mt ganzzahlgen

Mehr

Theoretische Physik II Elektrodynamik Blatt 2

Theoretische Physik II Elektrodynamik Blatt 2 PDDr.S.Mertens M. Hummel Theoretsche Physk II Elektrodynamk Blatt 2 SS 29 8.4.29 1. Rechnen mt Nabla. Zegen Se durch Auswertung n kartesschen Koordnaten de folgende Relaton und werten Se de anderen Relatonen

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Dskrete Mathematk Chrstna Kohl Georg Moser Oleksandra Panasuk Chrstan Sternagel Vncent van Oostrom Insttut für Informatk @ UIBK Sommersemester 2017 Zusammenfassung der letzten LVA ene Telmenge

Mehr

Grundlagen der stochastischen Integration

Grundlagen der stochastischen Integration Ruhr-Unverstät Bochum 2. November 29 Glederung Vorbemerkungen Vorberetungen (Fltratonen, Stoppzeten, Martngale) Lévy-Prozesse Stochastsche Integraton Itô-Formel Lteratur R. Cont, P. Tankov (24). Fnancal

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

Alternative Beweise. Man notiere jede positive rationale Zahl im Stellenwertsystem zur Basis 2; der Bruch 5 7. zum Beispiel hat also dann die Form 101

Alternative Beweise. Man notiere jede positive rationale Zahl im Stellenwertsystem zur Basis 2; der Bruch 5 7. zum Beispiel hat also dann die Form 101 Alternatve Bewese Klaus-R. Löffler Inhaltsverzechns Vorbemerkungen De nachfolgend angegebenen Bewese oder Bewesvaranten snd n gewsser Wese der Unterhaltungsmathematk zuzurechnen: Es geht darum, zu engen

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Andreas Schulz. 18. Juni Lokal- orthogonale Koordinatesysteme Math. Hilfsmittel: Antisymmetrischer Tensor: Kreuzprodukt, Spatprodukt,

Andreas Schulz. 18. Juni Lokal- orthogonale Koordinatesysteme Math. Hilfsmittel: Antisymmetrischer Tensor: Kreuzprodukt, Spatprodukt, Tutorum zur G2 Srker - SS3 Mathematscher Notfallkoffer : Dfferentaloperatoren und Integraton n allgemenen, krummlng-orthogonalen Korrdnatensystemen Andreas Schulz 8. Jun 23 Inhaltsverzechns Bevor es losgeht...

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

4. Rechnen mit Wahrscheinlichkeiten

4. Rechnen mit Wahrscheinlichkeiten 4. Rechnen mt Wahrschenlchketen 4.1 Axome der Wahrschenlchketsrechnung De Wahrschenlchketsrechnung st en Telgebet der Mathematk. Es st üblch, an den Anfang ener mathematschen Theore enge Axome zu setzen,

Mehr

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation

Kapitel 8: Kernel-Methoden. Maschinelles Lernen und Neural Computation Kaptel 8: Kernel-Methoden SS 009 Maschnelles Lernen und Neural Computaton 50 Ausgangsbass: Perceptron Learnng Rule Δw y = Kf = 0Ksonst K"target" = Kf Rosenblatt (96) Input wrd dazugezählt (abgezogen),

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n.

Asymptotische Stochastik (SS 2010) Übungsblatt 1 P X. 0, n. Insttut für Stochastk PD. Dr. Deter Kadelka Danel Gentner Asymptotsche Stochastk (SS 2) Übungsblatt Aufgabe (Arten von Konvergenz reeller Zufallsvarablen und deren Zusammenhänge) Es seen X,, n N reelle

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T.

29 zweite Ableitungen der thermodynamischen Potentiale spezifische Wärme (thermischer response) E = = = T V N V N V N = = κ T. hermodynamsche resonse -unktonen: 9 zwete Abletungen der thermodynamschen Potentale sezfsche Wärme (thermscher resonse) E C S be konstantem olumen (sochor):,,, be konstantem Druck (sobar): C S Komressbltät

Mehr

2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1

2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1 2 VEKTOREN 1 2 Vektoren 2.1 Vektorraum In der Physk unterscheden wr skalare Grössen von vektorellen. En Skalar st ene reelle Messgrösse, mathematsch enfach ene Zahl, phykalsch ene dmensonsbehaftete Zahl.

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

6 Die Sobolev-Räume H m,p (Ω)

6 Die Sobolev-Räume H m,p (Ω) 6 De Sobolev-Räume H m,p () 6.1 Das Fundamentallemma der Varatonsrechnung In desem Abschntt snd ausnahmswese alle Funktonen reellwertg. We zuvor bezechnen wr mt L 1 loc () den Raum der messbaren Funktonen

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Kapitel 5 Systeme von Massenpunkten, Stöße

Kapitel 5 Systeme von Massenpunkten, Stöße Katel 5 ystee von Massenunkten, töße Drehoente und Drehuls enes Telchensystes O t : z r r r F x r F F F y F F t (acto = reacto) : F t äußeren Kräften F und F und nneren Kräften F = -F Drehoente : D D r

Mehr

5 Das Lebesgue Integral

5 Das Lebesgue Integral 5 AS LEBESGUE INTEGRAL 5 as Lebesgue Integral er Remann sche Integralbegrff m R n, den wr m ersten (für n = 1) und drtten Kaptel kennengelernt haben, eröffnet uns de Möglchket zur Berechnung ener sehr

Mehr