8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

Größe: px
Ab Seite anzeigen:

Download "8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim"

Transkript

1 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig fortgesetzt werden kann. Wir nennen dann f(x) f(x 0 ) lim =: f (x 0 ) x x 0 die Ableitung von f in x 0. Ist f in jedem x 0 I diffbar, dann eißt f auf I diffbar, und f : I R wird zu einer Funktion. Ist f stetig, dann eißt f auf I stetig diffbar. Satz Ist f in x 0 diffbar, dann auc stetig in x 0. Dies ergibt sic aus der Darstellung f(x) = f(x 0 ) + ( ) f,x0 (x), denn alle drei Terme rects sind in x 0 stetig. Beispiele. Die Funktionen f(x) =, g(x) = x, (x) = x 2 sind diffbar auf R mit f (x) = 0, g (x) =, (x) = 2x, denn durc Einsetzen allein ergibt sic scon für x x 0, und f,x0 (x) = 0, g,x0 (x) =,x0 (x) = x2 x 2 0 = x + x 0, was mit x = x 0 die Formel (x 0 ) = 2x 0 bestätigt. Änlic können wir für die Funktion f : R\{0} R, x x recnen, denn für x 0 0 ist f,x0 (x) = x x 0 x x 0 xx = 0 =. xx 0 Also ist x auf R\{0} stetig diffbar, Ableitung ist x 2 Satz 2 Seien f, g : I R in x 0 I diffbar. Dann sind auc f + g und f g in x 0 diffbar, und es gelten (f + g) (x 0 ) = f (x 0 ) + g (x 0 ), (fg) (x 0 ) = f (x 0 )g(x 0 ) + g (x 0 )f(x 0 ) Die Regel für die Differentiation eines Produkts eisst Produkt- oder Leibnizregel. Für die Summe zweier Funktionen ergibt sic der Satz aus die Produktregel kann aus f+g,x0 (x) = f,x0 (x) + g,x0 (x), f(x)g(x) f(x 0 )g(x 0 ) = ( (f(x) f(x 0 )) + f(x 0 ) ) g(x) f(x 0 )g(x 0 ) = (f(x) f(x 0 ))g(x) + f(x 0 )(g(x) g(x 0 ))

2 nac Division durc abgelesen werden, denn dann ergibt sic fg,x0 (x) = f(x) f(x 0) g(x) + f(x) g(x) g(x 0). Wir gewinnen jetzt einige neue Beispiele. Für jedes n N sind die Monome f(x) = x n auf R differenzierbar mit f (x) = nx n. Für n = und 2 ist dies scon bekannt und ergibt sic jetzt mit Induktion auc für größere n. Polynome sind Funktionen der Gestalt p(x) = a n x n a 0 mit Koeffizienten a j R. Nac Satz 2 sind diese diffbar auf R mit p (x) = na n x n + (n )a n x n a. Satz 3 Die Funktionen exp, cos und sin sind auf R stetig diffbar mit exp = exp, sin = cos, cos = sin. Scritt. exp ist diffbar in 0 mit exp (0) =, denn aus exp,0 (x) = exp x x 0 = x ) (x + x2 2! + x3 3! = + x2! + x2 3! +... kann lim x 0 exp,0 (x) = abgelesen werden. Scritt 2. Sei x 0 R beliebig. Dann ist exp(x) exp(x 0 ) = exp(() + x 0 ) exp(x 0 ) = exp(x 0 ) exp(), mit = ergibt aus Scritt lim x x 0 ( exp(x 0 ) exp() ) = exp(x 0 ) lim 0 exp() Scritt 3. Die Funktionen cos und sin sind in 0 diffbar, es gilt cos (0) = 0, sin (0) =, denn aus 7 wissen wir sin,0 (x) = sin(x) 0 x 0 für x 0. Das Argument für cos ist änlic. Scritt 4. Additionsteoreme anwenden. Mit = ist cos,x0 (x) = cos(x) cos(x 0) = cos(x 0 + ) cos(x 0 ) = (cos(x 0) cos() sin(x 0 ) sin() cos(x 0 )) = cos(x 0 ) cos() auc ier ist das Argument für sin dasselbe. sin(x 0 ) sin() sin(x 0 ), Satz 4 (Kettenregel) Seien I, J R Intervalle, f : I J sei in x 0 I diffbar, g : J R sei in f(x 0 ) diffbar. Dann ist g f : I R in x 0 diffbar mit (g f) (x 0 ) = g (f(x 0 )) f (x 0 ). 2

3 Screibe und mit y 0 = f(x 0 ) genauso f(x) f(x 0 ) = ( ) f,x0 (x) g(y) g(y 0 ) = (y y 0 ) g,y0 (y). Dann ergibt sic g(f(x)) g(f(x 0 )) = (f(x) f(x 0 )) g,y0 (f(x)) = ( ) f,x0 (x) g,f(x0)(f(x)), und wir können ablesen. g f,x0 = f,x0 (x) g,f(x0)(f(x)) Als erstes Beispiel betracten wir eine Funktion f : I R, die in x 0 I diffbar ist mit f(x 0 ) 0. Dann ist auc f(x) in x 0 diffbar, und es gilt: denn y ( ) (x 0 ) = f (x 0 ) f f(x 0 ) 2, ist diffbar mit Ableitung y 2, den Rest liefert die Kettenregel. Kombinieren wir diese Regel mit der Leibnizregel, ergibt sic die Quotientenregel: Seien f, g : I R in x 0 diffbar, g(x 0 ) 0. Dann ist f g in x 0 diffbar, und es gilt: ( ) f (x 0 ) = f (x 0 )g(x 0 ) f(x 0 )g (x 0 ) g g(x 0 ) 2 Wir wollen noc prüfen, ob die Umkerfunktion einer streng monotonen differenzierbaren Funktion wieder differenzierbar ist. Dazu brauct man eine weitere Voraussetzung, denn x x 3 ist auf R streng monoton wacsend und diffbar, die Umkerfunktion 3 x ingegen ist in 0 nict diffbar. Satz 5 Sei I R ein Intervall, f : I R streng monoton und differenzierbar mit f (x) 0 auf I. Dann ist auf J = f(i) die Umkerfunktion f : J R definiert, im selben Sinne monoton, diffbar, und es gilt (f ) (x) = f (f (x)). Dies ergibt sic mit y = f(x), y 0 = f(x 0 ) aus f (y) f (y 0 ) = y y 0 f(x) f(x 0 ) f (x 0 ). Das vielleict wictigste Beispiel ist die Exponentialfunktion. Wir wissen bereits, dass exp : R (0, ) streng monoton wäcst und auf den angegebenen Intervallen eine bijektive Abbildung ist; ferner ist exp = exp stets positiv. Es gibt also eine diffbare Umkerfunktion, den (natürlicen) Logaritmus log : (0, ) R, die ebenfalls monoton wäcst mit log (x) = exp log(x) = x. 3

4 Ser änlic kann sin : ( π 2, π 2 ) (, ) beandelt werden, wieder ist dies eine bijektive Abbildung zwiscen den beiden Intervallen, sin ist streng monoton wacsend mit sin (x) = cos(x) > 0. Desalb ist auc arcsin : (, ) ( π 2, π 2 ) streng monoton wacsend und diffbar mit arcsin (x) = cos(arcsin(x)) = = sin 2 (arcsin(x)) x 2 Die Ableitung wird u.a. in der Kurvendiskussion eingesetzt. Sei f : I R eine auf einem Intervall I definierte Funktion. Gibt es δ > 0 gibt mit f(x) f(x 0 ) für alle < δ, dann eisst x 0 I lokales Maximum von f. Analog ist lokales Minimum erklärt. Ein lokales Extremum ist ein lokales Minimum oder Maximum. Satz 6 Ist f in x 0 diffbar und at dort ein lokales Extremum, dann ist f (x 0 ) = 0. Beweis: Der Differenzenquotient at für x < x 0 und x > x 0 versciedene Vorzeicen. Satz 7 (Mittelwertsatz der Differentialrecnung) Sei f : [a, b] R stetig und auf (a, b) diffbar. Dann gibt es ein ξ (a, b) mit f(b) f(a) b a = f (ξ). Man siet sofort, dass es genügt, den folgenden Spezialfall zu begründen: Satz 8 (Satz von Rolle) Sei f : [a, b] R stetig und auf (a, b) diffbar mit f(a) = f(b) = 0. Dann gibt es ξ (a, b) mit f (ξ) = 0. Fall : f(x) = 0 für alle x. Dann f (x) = 0 auf I. Fall 2: es gibt x mit f(x) > 0. Dann gibt es ξ (a, b), wo f sein Maximum annimmt. Nac dem vorigen Satz ist dann f (ξ) = 0 Fall 3: at f negative Werte, betracte f und wende Fall 2 an. Dieser Satz ist ser wictig. Hier einige direkte Anwendungen: Ist f : I R diffbar auf I mit f (x) > 0 für alle x I, dann ist f streng monoton wacsend. Denn für x < y gibt der Mittelwertsatz f(y) f(x) = f (ξ)(y x) > 0. Sei f : I R diffbar auf dem Intervall I, es gelte f (x) = c für alle x I. Dann ist f(x) = cx + d mit geeignetem d R. Zur Begründung wäle x 0 I fest, x I. Der Mittelwertsatz gibt dann f(x) f(x 0 ) = c( ). Sei f : I R auf dem Intervall I diffbar, es gelte f (x) = f(x) für alle x I. Dann gilt: f(x) = c exp(x) mit geeignetem c R. Zur Begründung untersceiden wir 3 Fälle. Im ersten gebe es ein x 0 mit f(x 0 ) > 0, wegen der Stetigkeit von f ist dann f(x) > 0 zumindest für kleine Werte von. Dort ist nac Kettenregel = f (x) f(x) = (log(f)) (x), 4

5 also nac dem vorigen Absatz log(f(x)) = x + d, was f(x) = exp(x + d) = exp(x) exp(d) zur Folge at. Zumindest für kleine Werte von x x 0 folgt die Beauptung mit c = exp d > 0. Die Funktion f(x) = c exp x löst aber f = f und ist auf ganz R positiv. Hat f negative Werte, dann ist: g = f ebenfalls eine Lösung von g = g, auf die wir den bereits erledigten Fall anwenden können. Hat scliesslic f weder positive noc negative Werte, entsprict dies dem Fall c = 0. Höere Ableitungen: Ist f wieder diffbar, dann eißt f (x) = (f ) (x) zweite Ableitung. Soweit existent, setze ( f (n) (x) = f (n )), dies ist die n-te Ableitung. Hier ist speziell f () = f, mancmal wird auc f (0) = f gescrieben. Auc die zweite Ableitung lässt sic geometrisc interpretieren: da die erste Ableitung die Steigung des Grapen misst, liefert die zweite Ableitung Information, wie sic die Steigung ändert, d.. wie der Grap gekrümmt ist. Ist etwa f (x) > 0 auf einem Intervall I, dann liegt die Sene zwiscen zwei Punkten des Grapen stets oberalb von f, solce Funktionen eißen konvex. (Gegenteil: konkav) Ändert sic das Krümmungsveralten von konvex zu konkav, sprict man von einem Wendepunkt. Ist f stetig, muss f (x) = 0 gelten. Diese Bedingung wird äufig benutzt, solce Wendepunkte aufzufinden. 5

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

Ableitung und Mittelwertsätze

Ableitung und Mittelwertsätze Ableitung und Mittelwertsätze Definition. Sei I R ein Intervall und f : I R. ) f eißt differenzierbar an 0 I, wenn der Grenzwert eistiert. f() f( 0 ) lim 0 0 = f ( 0 ) = lim 0 f( 0 + ) f( 0 ) Ist dabei

Mehr

Die Ableitung einer Funktion

Die Ableitung einer Funktion Die Ableitung einer Funktion I. Definition der Ableitung Definition. Sei I R ein Intervall und f : I R. 1) f eißt differenzierbar an x 0 I, wenn der Grenzwert f(x) f(x 0 ) lim = f (x 0 ) x x 0 x x 0 existiert.

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrecnung für Funktionen einer Variablen Ist f eine ökonomisce Funktion, so ist oft wictig zu wissen, wie sic die Funktion bei kleinen Änderungen verält. Bescreibt etwa f einen Wacstumsprozess,

Mehr

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 8. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 8. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching April 9, 207 Grenzwerte Korollar 5.2.2 (Bernoulli-de l Hôpital) Seien f, g : [a, b] R stetig und differenzierbar

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante

(1) gegeben. Für x a (und stetige f ) nähert sich (x,f(x)) dem Punkt (a,f(a)), und die Sekante 88 III. Grundlagen der Differential - und Integralrecnung III. Grundlagen der Differential- und Integralrecnung 8. Differenzierbare Funktionen 88 9. Maima und Minima 93 0. Mittelwertsätze und Anwendungen

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 14 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 03.02.2019 Dr. Markus Lange Analysis 1 Aufgabenzettel 14 Dieser Zettel wird in der letzten Übung des Semesters am 08.02.2019 besprochen Aufgabe

Mehr

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x)

5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105. f(x) = O(g(x)) für x x 0, f(x) < M g(x). f(x) g(x) 5.2. ABLEITUNGEN BEKANNTER FUNKTIONEN 105 Definition 5.2.4 (Landau Symbole (Fortsetzung)) Wir sagen f(x) = O(g(x)) für x falls es ein K > a ein M R + gibt, so dass für alle x > K gilt f(x) < M g(x), f(x)

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 18 Differenzierbare Funktionen In dieser Vorlesung betracten wir Funktionen, wobei D K eine offene Menge in K ist. Das ist eine Menge derart,

Mehr

Analysis I. Guofang Wang , Universität Freiburg

Analysis I. Guofang Wang , Universität Freiburg Universität Freiburg 10.1.2017, 11.1.2017 Definition 1.1 (Ableitung) Die Funktion f : I R n hat in x 0 I die Ableitung a R n (Notation: f (x 0 ) = a), falls gilt: f(x) f(x 0 ) lim = a. (1.1) x x 0 x x

Mehr

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018

HM I Tutorium 9. Lucas Kunz. 19. Dezember 2018 HM I Tutorium 9 Lucas Kunz 19. Dezember 2018 Inhaltsverzeichnis 1 Theorie 2 1.1 Definition der Ableitung............................ 2 1.2 Ableitungsregeln................................ 2 1.2.1 Linearität................................

Mehr

Thema 5 Differentiation

Thema 5 Differentiation Thema 5 Differentiation Definition 1 Sei f : D R. Dann ist f im Punkt x 0 differenzierbar, falls f(x) f(x 0 ) x x 0 x x 0 auf der Menge D \ {x 0 } existiert. Der Limes ist dann die Ableitung von f im Punkt

Mehr

6 Di erentialrechnung, die Exponentialfunktion

6 Di erentialrechnung, die Exponentialfunktion 6 Di erentialrechnung, die Exonentialfunktion 6. Exonentialfunktion Wir führen die Exonentialfunktion ein, die eine stetige Funktion mit folgenden Eigenschaften ist: ex(x + y) =ex(x)ex(y) (8) ex(0) =,

Mehr

IV. Stetige Funktionen. Grenzwerte von Funktionen

IV. Stetige Funktionen. Grenzwerte von Funktionen IV. Stetige Funktionen. Grenzwerte von Funktionen Definition. Seien X und Y metrische Räume und E X sowie f : X Y eine Abbildung und p ein Häufungspunkt von E. Wir schreiben lim f(x) = q, x p falls es

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof. Dr. Stefan Etschberger Hochschule Augsburg Sommersemester 2012 7. Differentialrechnung einer Veränderlichen 7.2. Differentialquotient und Ableitung

Mehr

Á 5. Differenzierbarkeit

Á 5. Differenzierbarkeit Á. Differenzierbarkeit Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 Materialien zur Vorlesung Elementare Analysis, Wintersemester 3 4 . Differenzierbarkeit Zur Berecnung der Steigung

Mehr

Stetigkeit vs Gleichmäßige Stetigkeit.

Stetigkeit vs Gleichmäßige Stetigkeit. Stetigkeit vs Gleichmäßige Stetigkeit. Beispiel: Betrachte ie Funktion f(x) = 1/x auf em Intervall D = (0, 1]. f ist in jeem Punkt p (0, 1] stetig. Denn: Sei p (0, 1] un ε > 0 gegeben. Setze δ = min (

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

Differentialrechnung

Differentialrechnung Differentialrechnung Um Funktionen genauer zu untersuchen bzw. sie zu analysieren, ist es notwenig, etwas über ihren Verlauf, as qualitative Verhalten er Funktion, sagen zu können. Das heisst, wir suchen

Mehr

10 Differenzierbare Funktionen

10 Differenzierbare Funktionen 10 Differenzierbare Funktionen 10.1 Definition: Es sei S R, x 0 S Häufungspunkt von S. Eine Funktion f : S R heißt im Punkt x 0 differenzierbar, wenn der Grenzwert f (x 0 ) := f(x 0 + h) f(x 0 ) lim h

Mehr

Differenzierbare Funktionen

Differenzierbare Funktionen Kapitel 5 Differenzierbare Funktionen In diesem Kapitel widmen wir uns dem Begriff der Differenzierbarkeit und entwickeln die Eigenscaften differenzierbarer Funktionen. Darüberinaus wollen wir auc unsere

Mehr

Lösungen zu Aufgabenblatt 10P

Lösungen zu Aufgabenblatt 10P Analysis Prof. Dr. Peter Becker Fachbereich Informatik Sommersemester 05 9. Juni 05 Lösungen zu Aufgabenblatt 0P Aufgabe (Funktionsgrenzwerte) Berechnen Sie die folgenden Grenzwerte: cos(x) x cos( x )

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Übersicht. 1. Motivation. 2. Grundlagen

Übersicht. 1. Motivation. 2. Grundlagen Übersicht 1. Motivation 2. Grundlagen 3. Analysis 3.1 Folgen, Reihen, Zinsen 3.2 Funktionen 3.3 Differentialrechnung 3.4 Extremwertbestimmung 3.5 Nichtlineare Gleichungen 3.6 Funktionen mehrerer Variabler

Mehr

Kapitel 5: Differentialrechnung

Kapitel 5: Differentialrechnung Kapitel 5: Differentialrechnung Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Kapitel 5: Differentialrechnung 1 / 23 Gliederung 1 Grundbegriffe 2 Abbildungen

Mehr

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag-

Übungen zur Vorlesung Differential und Integralrechnung II (Unterrichtsfach) -Bearbeitungsvorschlag- MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN D. Rost, M. Gebert SS 015 Blatt 9 19.6.015 Übungen zur Vorlesung Differential und Integralrecnung II (Unterrictsfac) -Bearbeitungsvorsclag- 1. Sei n N 0.

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de SS 2017 Vorlesung 7 MINT Mathkurs SS 2017 1 / 25 Vorlesung 7 (Lecture 7) Differentialrechnung differential

Mehr

Den Kern dieser Definition kann man in der folgenden Formel zusammenfassen: = f (x 0 ) 0 = 0

Den Kern dieser Definition kann man in der folgenden Formel zusammenfassen: = f (x 0 ) 0 = 0 Kapitel 4 Differentialrecnung 4. Ableitung einer differenzierbaren Funktion Die Ableitung einer Funktion ist der zentrale Begriff der Differentialrecnung. Diese Teorie wurde unabängig voneinander von Leibniz

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg elementarer Funktionen Gegeben: f : D R, mit D R und a > 0, b R. Dann gilt: f(x) f (x) 1 ln x x 1 log a x x ln a e x e

Mehr

4 Differenzierbarkeit

4 Differenzierbarkeit 7 4 DIFFERENZIERBARKEIT Sei dazu 0 < ρ < s < r. Dann gilt lim sup k k a k

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Eigenschaften stetiger Funktionen Buch Kap. 2.5

Eigenschaften stetiger Funktionen Buch Kap. 2.5 Eigenschaften stetiger Funktionen Buch Kap. 2.5 Satz 2.6: (Nullstellensatz) Ist f : [a, b] R stetig und haben f (a) und f (b) unterschiedliche Vorzeichen, so besitzt f in (a, b) mindestens eine Nullstelle.

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum Anwendungen der Potenzreienentwicklung: Approximation, Grenzwerte; Wacstum Lokale Näerung einer Funktion durc ganzrationale Funktionen Ganzrationale Funktionen aben viele angeneme Eigenscaften. Man weiß

Mehr

Funktionentheorie A. K. Hulek

Funktionentheorie A. K. Hulek Funktionenteorie A K. Hulek 1 Holomorpe Funktionen Die wictigsten Objekte dieser Vorlesung sind die olomorpen Funktionen. Es sei U C offen, f : U C eine Abbildung und z 0 U ein Punkt. Definition (i Die

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

Differentiation und Taylorentwicklung. Thomas Fehm

Differentiation und Taylorentwicklung. Thomas Fehm Differentiation und Taylorentwicklung Thomas Fehm 4. März 2009 1 Differentiation in R 1.1 Grundlagen Definition 1 (Ableitung einer Funktion) Es sei f eine Funktion die auf dem Intervall I R definiert ist.

Mehr

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen

MIA Analysis einer reellen Veränderlichen WS 06/07. Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen Version 01.02. Januar 2007 MIA Analysis einer reellen Veränderlichen WS 06/07 Kurzfassung Martin Schottenloher Kapitel VI. Differenzierbare Funktionen in einer Veränderlichen In diesem Kapitel werden differenzierbare

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

V. Differentialrechnung

V. Differentialrechnung V.. Die Ableitung 97 V. Differentialrecnung Ausgeend von der Frage nac der Approximierbarkeit von Funktionen durc affine Funktionen, d.., Funktionen, deren Grap eine Gerade ist, werden wir in diesem Kapitel

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 6. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 6. Übung: Woche vom bis Übungsaufgaben 6. Übung: Woche vom 17. 11. bis 21. 11. 2014 Heft Ü1: 9.1 (d,n,t); 9.2 (b,h,i); 9.3 (b,e); 9.4 (b,e,f) Übungsverlegung (einmalig!): Gruppe VIW 02 nach Mo., 5. DS; WIL C 204 (für Mittwoch,

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure (Wintersemester 2008/09) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 9. November 2008) Die

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

6.1 Die Ableitung einer reellwertigen Funktion

6.1 Die Ableitung einer reellwertigen Funktion 6 Differenzierbarkeit In diesem Kapitel sind alle Funktionen, sofern nicht anders angegeben, reellwertige Funktionen, die auf Intervallen definiert sind. Es bezeichnet I in diesem Kapitel stets ein Intervall.

Mehr

Kompetenz: Verinnerlichung des Mittelwertsatzes Daraus ergibt sich leicht der wichtige Mittelwertsatz der Differentialrechnung:

Kompetenz: Verinnerlichung des Mittelwertsatzes Daraus ergibt sich leicht der wichtige Mittelwertsatz der Differentialrechnung: 16 Mittelwertsätze und Anwendungen 71 16 Mittelwertsätze und Anwendungen Lernziele: Konzepte: Konvexität und Konkavität Resultate: Mittelwertsätze der Differentialrechnung Methoden: Regeln von de l Hospital

Mehr

Vorlesung: Analysis I für Ingenieure

Vorlesung: Analysis I für Ingenieure Vorlesung: Analysis I für Ingenieure Michael Karow Thema: Satz von Taylor Die Taylor-Entwicklung I Satz von Taylor. Sei f : R D R an der Stelle x n-mal differenzierbar. Dann gilt für x D, n f (k) (x )

Mehr

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner

Differential- und Integralrechnung. Biostatistik, WS 2010/2011. Inhalt. Nochmal: Exponentielles Wachstum. Matthias Birkner Biostatistik, WS 200/20 Differential- und Integralrecnung Mattias Birkner ttp://www.matematik.uni-mainz.de/~birkner/biostatistik0/ 2..200 Inalt Ableitung Änderung und Steigung Recenregeln Anmerkungen 2

Mehr

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17

Lösungen zur Klausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL..7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Lösungen zur Klausur zur Analysis, WiSe 6/7 Klausureinsicht:

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 6: Differenzialrechnung einer Veränderlichen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. Dezember 2011)

Mehr

c < 1, (1) c k x k0 c k = x k0

c < 1, (1) c k x k0 c k = x k0 4.14 Satz (Quotientenkriterium). Es sei (x k ) Folge in K. Falls ein k 0 existiert, so dass für k k 0 gilt x k 0 und x k+1 x k c < 1, (1) so ist x k absolut konvergent. Beweis. Aus (1) folgt mit vollständiger

Mehr

Kapitel 6. Differentialrechnung. 6.1 Die Ableitung einer Funktion

Kapitel 6. Differentialrechnung. 6.1 Die Ableitung einer Funktion Kapitel 6 Differentialrechnung 6. Die Ableitung einer Funktion 6.2 Rechenregeln 6.3 Mittelwertsätze 6.4 Die Regeln von L Hospital 6.5 Konvexe Funktionen 6.6 Wichtige Ungleichungen und l p Normen 6. Die

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 7 MINT Mathkurs WS 2016/2017 1 / 20 Stetigkeit einer Funktion (continuity of a

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am

Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 2017/18, am Musterlösung zur Klausur Analysis I für Lehramt Gymnasium Wintersemester 07/8, am 9.3.08 Aufgabe : Zeigen Sie, dass für alle n N gilt: n n+ n ( ) (8 Punte) Beweis mittels vollständiger Indution n : ( )

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 008/009 Anweseneitsaufgaben Übung 4 Einleitung Es soll darauf ingewiesen werden, daß es in der Woce vor der Klausur

Mehr

Mathematik zum Mitnehmen

Mathematik zum Mitnehmen Mathematik zum Mitnehmen Zusammenfassungen und Übersichten aus Arens et al., Mathematik Bearbeitet von Tilo Arens, Frank Hettlich, Christian Karpfinger, Ulrich Kockelkorn, Klaus Lichtenegger, Hellmuth

Mehr

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 8. sin(x) sin (x) = cos(x) dx x + log x e x log x = (1 + log x)x x.

D-ITET Analysis I HS 2018 Prof. Alessandra Iozzi. Musterlösung 8. sin(x) sin (x) = cos(x) dx x + log x e x log x = (1 + log x)x x. D-ITET Analysis I HS 08 Prof Alessanra Iozzi Musterlösung 8 a) Der Ausruck log(sin x) ist für x (0, π) wolefiniert, a ann sin(x) > 0 gilt Anwenung er Kettenregel ergibt x (log(sin(x))) sin(x) sin (x) cos(x)

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 6. (n+1)!. Daraus folgt, dass e 1/x < (n+ D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger Lösung - Serie 6 1. MC-Aufgaben (Online-Abgabe) 1. Für alle ganzen Zahlen n 1 gilt... (a) e 1/x = o(x n ) für x 0 + (b) e 1/x = o(x n ) für x 0 + (c)

Mehr

Klausur zur Analysis I WS 01/02

Klausur zur Analysis I WS 01/02 Klausur zur Analysis I WS 0/0 Prof. Dr. E. Kuwert. Februar 00 Aufgabe (4 Punkte) Berechnen Sie unter a) und b) jeweils die Ableitung von f für x (0, ): a) f(x) = e sin x b) f(x) = x α log x a) f (x) =

Mehr

Abbildung 11.1: Approximation einer Tangente

Abbildung 11.1: Approximation einer Tangente Analysis, Woche Differentialrechnung I A. Ableitung einer Funktion Sei f : R R eine Funktion. Die Gerade durch die Punkte (a, f (a)) und (b, f (b)) findet man als Graph der Funktion l : R R mit l (x) =

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

2 INHALTSVERZEICHNIS. 4.4 Trigonometrische Funktionen Die Exponentialfunktion

2 INHALTSVERZEICHNIS. 4.4 Trigonometrische Funktionen Die Exponentialfunktion Inhaltsverzeichnis Grundlagen 3. Elemente der Mengenlehre............................... 3. Zahlenbereiche..................................... 7.3 Das Auflösen von Gleichungen und Ungleichungen..................

Mehr

Ableitungsfunktionen und Ableitungsregeln

Ableitungsfunktionen und Ableitungsregeln Ableitungsfunktionen und Ableitungsregeln Ableitung einer Funktion f an einer Stelle, Begriff der Ableitungsfunktion Bilden einiger Ableitungsfunktionen Ableitungsregeln und Möglickeiten irer Herleitung

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2017/18 04.10.2017 Einführung, R, Grundlagen 1 11.10.2017 Grundlagen, Aussagen 2 18.10.2017 Aussagen

Mehr

Differentialrechnung

Differentialrechnung KAPITEL 4 Differentialrechnung. Eigenschaften der Ableitung und Differentationsregeln.. Definition der Ableitung. Definition 4.. Ableitung. Die Funktion f sei auf dem Intervall I R deniert und x 0 I. )

Mehr

Nicht differenzierbare Funktionen

Nicht differenzierbare Funktionen Nicht differenzierbare Funktionen Wir haben schon ein Beispiel gesehen (senkrechte Tangente). Differenzierbare Funktionen sind stetig wegen den Grenzwertregeln: 0 f (x) + f(x) (u x) f(u) f(x) u x Also

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

f(x + h) f(x) Ableitungsfunktion (kurz: Bemerkung 6.2: Ist eine Funktion an einem Punkt differenzierbar, so ist sie dort auch stetig:

f(x + h) f(x) Ableitungsfunktion (kurz: Bemerkung 6.2: Ist eine Funktion an einem Punkt differenzierbar, so ist sie dort auch stetig: Kapitel 6 Differentialrecnung 6. Definitionen un Sätze Im Prinzip könnten ie meisten er folgenen Überlegungen un Definitionen one große Änerungen für komplexe Funktionen f : C C urcgefürt weren. Wir bescränken

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

3.2 Funktionsuntersuchungen mittels Differentialrechnung

3.2 Funktionsuntersuchungen mittels Differentialrechnung 3. Funktionsuntersuchungen mittels Differentialrechnung 46 3. Funktionsuntersuchungen mittels Differentialrechnung In diesem Abschnitt betrachten wir Funktionen f: D, welche je nach Bedarf zumindest ein-

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze

Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze Analysis I, WS 14/15 Verzeichnis der wichtigsten Definitionen und Sätze Prof. Dr. Lorenz Schwachhöfer Inhaltsverzeichnis 1 Mathematische Grundlagen 2 2 Folgen und Reihen 7 3 Stetigkeit 15 4 Differenzierbarkeit

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 22 3. Funktionen. Grenzwerte.

Mehr

Differenzialrechnung

Differenzialrechnung Mathematik I für Biologen, Geowissenschaftler und Geoökologen 19. Dezember 2007 Grenzwerte einiger Funktionen notwendige Bedingung hinreichende Bedingung : Die Funktion f : D R d mit D R m hat den Grenzwert

Mehr

Höhere Mathematik für Physiker II

Höhere Mathematik für Physiker II Universität Heidelberg Sommersemester 2013 Wiederholungsblatt Übungen zur Vorlesung Höhere Mathematik für Physiker II Prof Dr Anna Marciniak-Czochra Dipl Math Alexandra Köthe Fragen Machen Sie sich bei

Mehr

Übungen Analysis I WS 03/04

Übungen Analysis I WS 03/04 Blatt Abgabe: Mittwoch, 29.0.03 Aufgabe : Beweisen Sie, daß für jede natürliche Zahl n gilt: n ( ) n (x + y) n = x i y n i, i (b) n ν 2 = ν= i=0 n(n + )(2n + ), 6 (c) 2 3n ist durch 7 teilbar. Aufgabe

Mehr

f (b) f (a) b a Wenn man nun b immer näher an a nimmt, sieht es aus, als ob die zugehörige Gerade sich der Tangente nähert.

f (b) f (a) b a Wenn man nun b immer näher an a nimmt, sieht es aus, als ob die zugehörige Gerade sich der Tangente nähert. Analysis, Woche Differentialrechnung I A. Ableitung einer Funktion Sei f : R R eine Funktion. Die Gerade durch die Punkte (a, f (a)) und (b, f (b)) findet man als Graph der Funktion l : R R mit l (x) =

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim

Lösung zur Serie 8. x + 2x 2 sin(1/x), falls x 0, f(x) := 0, falls x = 0. = lim Lösung zur Serie 8 Aufgabe 40 Wir zeigen in dieser Aufgabe, dass die Voraussetzung dass die Funktion in einer kleinen Umgebung injektiv sein muss, beim Satz über die Umkehrfunktion notwendig ist. Hierzu

Mehr