Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg. Analysis III

Größe: px
Ab Seite anzeigen:

Download "Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg. Analysis III"

Transkript

1 Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg Analysis III Verbesserung der Zusatzaufgabe von Übungsblatt 4 Zusatzaufgabe Wir definieren die Cantormenge C [0, 1] wie folgt. Zunächst definieren wir eine Folge von Teilmengen C n von R. C 0 sei das Einheitsintervall. Aus C 0 entfernen wir das offene Teilintervall der Länge 1 mit Mittelpunkt 1 2 und definieren C 1 als die Vereinigung der verbliebenen Intervalle I 1,1 und I 1,2. Die Mengen C n werden nun rekursiv definiert. Haben wir C n als Vereinigung der Intervalle I n,1,..., I n,2 n erhalten, so entfernen wir aus den Intervallen I n,j die offenen Intervalle 1 I n,j, deren Mittelpunkte mit denen von I n,j übereinstimmen und erhalten die Menge C n+1 als Vereinigung der verbleibenden Intervalle I n+1,1,..., I n+1,2 n+1. Nun heißt C := n=1 C n Cantormenge. Zeigen Sie, dass C eine Lebesgue-Nullmenge ist. Für einen Würfel W R d sei jeweils r(w ) 0 die Kantenlänge von W. Für eine Menge A R d, s 0 und > 0 setzt man H(A) s := inf{ r(w j ) s A W j mit Würfeln W j mit r(w j ) < }. Dann setzt man H s (A) := lim 0 H s (A) und erhält mit H s eine σ-subadditive und monotone Abbildung auf P(R d ) (dies ist nicht zu zeigen). Zeigen Sie: (i) Zu jedem A R d gibt es ein h [0, ], so dass H s (A) = für s < h und H s (A) = 0 für s > h. Diese Zahl dim H (A) := h heißt die Hausdorff-Dimension von A. (Hinweis: Betrachten Sie zunächst A = W ein Würfel.) (ii) Die Cantormenge C hat Hausdorff-Dimension dim H (C) = log 2 log. Beweis: Wir zeigen zunächst L 1 (C) = 0. C ist als Schnitt über eine Vereinigung von Intervallen natürlich Borelmenge, daher ist ( L 1) (C) = L 1 (C). Wir zeigen per Induktion über n: ( ) 2 n L 1 (C n ) =. n = 0: L 1 ([0, 1]) = 1 = ( 2 0. ) n n + 1: Sei C n = 2 n I n,j und C n+1 = 2 n+1 I n+1,j. Die Intervalle I n+1,j und I n+1,j+1 für ungerades j enstehen nach Konstruktion aus einem I n,l durch die disjunkte Zerlegung I n,l = I n+1,j J I n+1,j+1 in drei gleichlange Intervalle, wobei J das mittlere offene Drittel von I n,j ist. Daher ist L 1 (I n+1,j ) = L 1 (I n+1,j+1 ) = L1 (I n,l ) = 1 L1 (I n,l ). Die Vereinigung dieser 2 n+1 Intervalle I n+1,j hat dann die Länge 2 n+1 L 1 (C n+1 ) = L 1 ( I n+1,j ) = 2 n+1 L 1 (I n+1,j ) = 2 n+1 1 L1 (I n,l ),

2 wobei hier zu beachten ist, dass alle I n,l dieselbe Länge haben. Dann kann man weiterschließen L 1 (C n+1 ) = 2 2 n l=1 L 1 (I n,l ) = 2 L1 (C n ) = 2 ( ) 2 n, wobei im letzten Schritt die Induktionsvoraussetzung ausgenutzt wurde. Für C = n=1 C n gilt dann L 1 ( (C) = lim n L1 (C n ) = lim 2 ) n n = 0. Bemerkung Im weiteren Verlauf wird die Aussage gebraucht, dass C kompakt ist. Dies folgt, da C n als endliche Vereinigung über abgeschlossene Intervalle abgeschlossen ist und dann auch der abzählbare Schnitt über C n wieder abgeschlossen ist. Außerdem ist C als Teilmenge von [0, 1] beschränkt, daher also insgesamt kompakt. Zeigen wir nun die Behauptung (i) über die Existenz der Hausdorff-Dimension. Genauer ist zu zeigen { A R d h [0, ] so dass H s 0 für s < h, (A) = für s > h. Dann setzen wir dim H A := h. Beachte, dass der Wert von H h (A) zunächst nicht bekannt ist. Wir beweisen diesen Teil (i) zunächst im Spezialfall von A = W ein Würfel der Kantenlänge 1 im R d und vermuten dass in diesem Fall die Hausdorff-Dimension gleich der Raumdimension d ist. Beh.: dim H W = d erfüllt die Aussage (i). Dazu: Sei zunächst s > d. Sei > 0 beliebig und m N mit 1 m <. Unterteile W in md gleichgroße Teilwürfel W j der Kantenlänge r(w j ) = 1 m. Betrachte dann in der Definition von Hs die Folge der Würfel W 1,..., W m d,,,... und berechne m d m d ( ) 1 s r(w j ) s = r(w j ) s = = m d s = 1 m m s d < s d (beachte s > d). Daraus erhält man H(W s ) = inf r(w j ) s... s d und schließlich H s (W ) = lim 0 H s (W ) = lim 0 s d = 0. Sei umgekehrt s < d: Wir machen zunächst folgende Beobachtung: Für jede Überdeckung W W j mit r(w j ) < gilt r(w j) d 1. Dies folgt mit r(w j ) d = L d (W j ) und Eigenschaften des Maßes durch r(w j ) d = L d (W j ) L d (W ) = 1.

3 Für s < d folgt mit J := {j N r(w j ) > 0}: r(w j ) s = r(w j )< r(w j ) s = r(w j ) d ( 1 r(w j ) d ( ) 1 d s = r(w j ) ( ) 1 d s ) d s r(w j ) d } {{ } 1 ( ) 1 d s. Daraus erhalten wir H(W s ) ( 1 n s ) und daher ( ) 1 n s H s (W ) = lim H s 0 (W ) lim =. 0 Damit ist der Fall eines Würfels behandelt und wir können uns mit dieser Beweisidee an eine beliebige Menge A R d wagen. Wir zeigen folgende Behauptungen: (I) Ist H t (A) < und s > t, so ist H s (A) = 0. (II) Ist H t (A) > 0 und s < t, so ist H s (A) =. Das bedeutet, dass das Hausdorffmaß an einer bestimmten Stelle von auf 0 herunterspringt, und die Behauptung (i) folgt dann mit h := sup{s [0, ] H s (A) = } = inf{s [0, ] H s (A) = 0} [0, ]}, wobei wir hier die Konvention sup = 0 und inf = benutzen. Vorbemerkung Man sieht leicht dass für festes t die Abbildung (0, 1) R 0, H t (A) monoton fallend ist, also 1 < 2 H t 1 (A) H t 2 (A)). Dies liegt daran, dass bei H t 2 (A) das Infimum über eine größere Menge gebildet wird und daher nur kleiner werden kann. zu (I): Sei also H t (A) = lim 0 H t (A) <, somit gilt nach Vorbemerkung: C > 0 mit H t (A) C für alle > 0. Nach Definition bedeutet das ausgeschrieben H(A) t = inf r(w j ) t A W j, r(w j ) C. Zu > 0 finden wir dann nach Definition des Infimums Würfel Wj r(wj ), so dass mit A W j und r(w j ) t C + 1. (Im Vergleich zu obigen Spezialfall A = W ein Würfel kann man hier also keine endliche Wahl der W j mehr treffen.) Nun gilt für s > t: r(wj ) s = r(wj ) t r(wj ) s t s t r(wj ) t s t (C + 1).

4 Damit hat man H s (A) s t (C + 1) und daher auch H s (A) lim 0 s t (C + 1) = 0. zu (II): Gelte jetzt H t (A) = lim 0 H t (A) > 0 und sei s < t. Nach der Vorbemerkung gilt dann für alle > 0 dass H t (A) ξ > 0 für ein ξ > 0. Nach Definition von H t (A) gilt dann für alle Würfel W j mit A W j und r(w j ), dass r(w j ) t ξ > 0. (Dies ersetzt die Ungleichung r(w j) d 1 im Spezialfall A = W ein Würfel.) Dann ist für s < t mit J := {j N r(w j ) > 0}: r(w j ) s = r(w j ) s = = r(w j ) t ( 1 r(w j ) t ξ Daher gilt dann H s (A) ξ ( 1 ) t s und somit H s (A) lim 0 ξ r(w j ). =. ) t s r(wj ) Damit ist Teil (i) gezeigt. Nun zeigen wir für die Cantormenge C: Beh.: dim H C = log2 log. Bew.: Wir zeigen für h = log 2 log die Ungleichungen 1 2 Hh (C) 1. r(w j ) t Aus der ersten Ungleichung folgt mit (II), dass H s (C) = für alle s < h und daher dim H C h. Aus der zweiten Ungleichung folgt mit (I), dass H s (C) = 0 für alle s > h und daher dim H C h. zu H h (C) 1: Es ist C = k=1 C k mit C k = 2 k I k,j disjunkte Vereinigung von 2 k Intervallen (=1-dim. Würfeln) mit Kantenlänge r(i k,j ) = 1. Für die Überdeckung C C k k = 2 k I k,j gilt also mit h = 2: H h 1 k (C) 2 k Dann ist H h (C) lim k H h 1 k (C) 1. ( ) 1 h ( ) 2 k r(i k,j ) h = 2 k k = h = 1. zu H h (C) 1 2 : Sei > 0 und C W j eine Würfelüberdeckung mit r(w j ). Wir wollen zeigen: r(w j ) h 1 2. (1) Daraus folgt dann H h (C) 1 2 und daher Hh (C) = lim 0 H h (C) 1 2.

5 Zunächst wollen wir uns durch einen Kompaktheitsschluss auf endlich viele W j beschränken. Dazu müssen wir zuerst die W j zu offenen Mengen aufblasen. Mit m(w j ) der Mittelpunkt von W j setzen wir dazu W j := [ ( ) 1 ] h (Wj 2 j m(w j )) + m(w j ), wobei das das Innere einer Menge bezeichnet. Dann ist r( W j ) = ( j ) 1 h r(w j ) =: und r( W j ) h < r(w j ) h + h. Falls wir also die Beh. (1) für W j zeigen können, so folgt im Limes 0 (was äquivalent ist zu 0) noch H h (C) 1 2, was wir eigentlich brauchen. Nun ist aber C W j eine offene Überdeckung einer kompakten Menge, also existieren endlich viele W 1,..., W N, so dass C N W j. Wegen r( W j ) h N r( W j ) h genügt es schließlich für (1) die Ungleichung r( W j ) h 1 2 (2) zu zeigen. Nun lassen wir das wieder weg und können wegen r(w j ) = r(w j ) annehmen, dass die W j abgeschlossen sind. (Dann gilt natürlich immer noch r(w j ) und C N W j, wegen der letzten Inklusion konnten wir übrigens beim Kompaktheitsschluss nicht einfach übergehen auf offene Mengen.) Wir zeigen also für abgeschlossene Intervalle W j mit r(w j ) für j = 1,..., N und C N W j, dass gilt: Für jedes j wähle k = k(j) N mit r(w j ) h 1 2. () ( ) 1 k+1 r(w j ) < ( ) 1 k. (4) (r(w j ) < 1 bekommt man durch Wahl von kleinem immer hin.) Dann kann W j höchstens ein Intervall von C k = 2 k l=1 I k,l schneiden, da der Abstand der Intervalle I k,l mindestens 1 beträgt. k Zw.beh.: Für i k schneidet W j höchstens 2 i k Intervalle von C i. Zw.bew.: durch Induktion. i=k siehe oben. i i + 1 Sei C i+1 = 2 i+1 l=1 I i+1,l und C i = 2 i l=1 I i,l, wobei für ungerades l das I i+1,l und I i+1,l+1 aus einem I i,l0 durch Drittelung entstehen. Falls also W j das Intervall I i,l0 schneidet, so schneidet es im nächsten Schritt höchstens die beiden Intervalle I i+1,l und I i+1,l+1. Nach Induktion hat man dann höchstens 2 2 i k = 2 i+1 k Schnitte von W j mit Intervallen von C i+1. Damit ist die Zwischenbehauptung bewiesen.

6 Nun gilt mit h = 2 und Ungleichung (4) folgende Ungleichung: Wähle nun i so groß, dass 2 i k = 2 i hk 2 i h r(w j ) h. (5) 1 i+1 r(w j) für alle j = 1,..., N. Die Vereinigung N W j schneidet alle 2 i Intervalle von C i der Länge 1, sonst könnte N i W j nicht C überdecken. (Falls ein Intervall I i,l nicht geschnitten würde, so insbesondere kein Randpunkt von I i,l, diese gehören aber zu C.) Beachte: Es wird nicht behauptet, dass C i N W j. Ohne Einschränkung sei außerdem i > k(j) für alle j = 1,..., N. Nach obiger Zwischenbehauptung gilt dann und daher auch 2 i k(j) #{Intervalle aus C i, die von W j geschnitten werden} 2 i k(j) #{Intervalle aus C i, die von N W j geschnitten werden}, wobei die rechte Seite nach obiger Aussage 2 i beträgt. Es gilt also und damit schließlich 2 i (5) i k(j) 2 2 i h r(w j ) h r(w j ) h h = 1 2. Bemerkung Mit mehr Aufwand kann für h = log 2 log sogar gezeigt werden, dass Hh (C) = 1.

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger

Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger Hausdorff-Maß und Hausdorff-Dimension Jens Krüger Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen aus der Maßtheorie 3 3 Die Konstruktion des Hausdorff-Maßes 4 4 Eigenschaften des Hausdorff-Maßes und Hausdorff-Dimension

Mehr

( ) ( ) < b k, 1 k n} (2) < x k

( ) ( ) < b k, 1 k n} (2) < x k Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie

Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie Dr. Christoph Luchsinger Übungsblatt 5 zur Vorlesung Wahrscheinlichkeitstheorie Allgemeine Masse Herausgabe des Übungsblattes: Woche 13, Abgabe der Lösungen: Woche 14 (bis Freitag, 16.15 Uhr), Besprechung:

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ),

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ), D-MATH Topologie FS 15 Theo Bühler Musterlösung 11 1. a) Da (C n, d n ) kompakt ist, nimmt die stetige Funktion d n : C n C n [0, ), (x, y) d(x, y) ihr Maximum diam C n an. Ersetzen wir d n durch d n =

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

{ Anzahl Elemente in A wenn endlich, sonst,

{ Anzahl Elemente in A wenn endlich, sonst, Analysis 3, Woche 3 Maße II 3.1 Äußeres Maß Man könnte hoffen, nachdem man durch die Erweiterung von X, A, µ zu X, A, µ einen vollständigen Maßraum konstruiert hat, dass auch alle Mengen messbar sein sollten.

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Hauptseminar Fraktale: Andere Begriffe der Dimension

Hauptseminar Fraktale: Andere Begriffe der Dimension Hauptseminar Fraktale: Andere Begriffe der Dimension 21. November 2006 Überblick 1 Einleitung 2 Fraktale Dimension Begriffsklärung Gewünschte Eigenschaften Beispiel: Teilerdimension 3 Boxdimension Definition

Mehr

Lemma (Eigenschaften elementarer Mengen) 1. Jede elementare Menge lässt sich als disjunkte Vereinigung halboffener Intervalle schreiben.

Lemma (Eigenschaften elementarer Mengen) 1. Jede elementare Menge lässt sich als disjunkte Vereinigung halboffener Intervalle schreiben. 12.3. DIE LEBESGUE ALGEBRA 19 Bemerkung 12.3.2 (Bezeichnungen) Im Buch von Bauer [2] werden elementare Mengen als Figuren bezeichnet. Wir folgen mit unserer Nomenklatur Rudin [15]. Natürlich kann man auf

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 38. Einschränkung eines Maßes TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}.

1 Das Lebesgue-Maß. 1.1 Etwas Maßtheorie. Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. 1 Das Lebesgue-Maß 1.1 Etwas Maßtheorie Sei stets X eine nichtleere Menge mit Potzenzmenge P(X) := {A : A X}. Definition 1.1. Ein nichtleeres Mengensystem A P(X) heißt σ-algebra, wenn: (A1) X A (A2) Wenn

Mehr

Übungen zur Analysis 3

Übungen zur Analysis 3 Mathematisches Institut der Universität München Prof. Dr. Franz Merkl Wintersemester 013/01 Blatt 17.10.013 Übungen zur Analysis 3.1ε σ-subadditivität. a Es sei µ ein Inhalt auf einer Mengenalgebra A.

Mehr

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß:

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß: Universität Regensburg Sommersemester 013 Daniel Heiß: 9: Metrische äußere Maße II I Das mehrdimensionale Lebesguemaß 1.1 Definition (i) Für reelle Zahlen a b, c d ist ein Rechteck im R die Menge R = a,

Mehr

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :

Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 : 24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012 Darstellungssatz von Riesz in vollständig regulären Räumen Carina Pöll 0726726 Wintersemester 2012 Inhaltsverzeichnis 1 Einleitung 1 2 Definitionen und Resultate aus der Topologie 1 3 Der Darstellungssatz

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4 D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

3 Das n-dimensionale Integral

3 Das n-dimensionale Integral 3 Das n-dimensionale Integral Ziel: Wir wollen die Integrationstheorie für f : D R n R entwickeln. Wir wollen den Inhalt (beziehungsweise das Maß ) M einer Punktmenge des R n definieren für eine möglichst

Mehr

Lösungsvorschlag zu den Hausaufgaben der 3. Übung

Lösungsvorschlag zu den Hausaufgaben der 3. Übung FAKULTÄT FÜR MATHEMATIK Prof. Dr. Patrizio Neff 30.0.204 Lösungsvorschlag zu den Hausaufgaben der 3. Übung Aufgabe : (6 Punte) Welche der folgenden Tupel sind Maßräume? Beweisen Sie Ihre Behauptung. {

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

Mathematik III. Henri Léon Lebesgue ( ) Das Borel-Lebesgue-Maß auf R.

Mathematik III. Henri Léon Lebesgue ( ) Das Borel-Lebesgue-Maß auf R. Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 67 Wir haben jetzt alle Hilfsmittel zusammen, um auf den Borel-Mengen des R n ein Maß zu definieren, dass für einen Quader, dessen Seiten

Mehr

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0 D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang Lösung - Serie 2 Abgabetermin: Mittwoch, 07.03.2018 in die Fächli im HG F 28. Homepage der Vorlesung: https://metaphor.ethz.ch/x/2018/fs/401-2284-00l/

Mehr

Musterlösung Analysis 3 - Maßtherorie

Musterlösung Analysis 3 - Maßtherorie Musterlösung Analysis 3 - Maßtherorie 10. März 2011 Aufgabe 1: Zum Aufwärmen (i) Zeige, dass die Mengensysteme {, X} und P(X) σ-algebren sind. Es sind jeweils nur die Charakteristika nachzuweisen. (1)

Mehr

Symmetrische Ableitungen von Massen

Symmetrische Ableitungen von Massen Symmetrische Ableitungen von Massen Hyuksung Kwon 5. Juni 203 Inhaltsverzeichnis Einführung 2 Hardy-Littlewood Maximaloperator 2 3 Symmetrische Ableitung vom positiven Maß 7 Einführung Definition. (Borelmaß

Mehr

Das Lebesgue-Maß im R p

Das Lebesgue-Maß im R p Das Lebesgue-Maß im R p Wir werden nun im R p ein metrisches äußeres Maß definieren, welches schließlich zum Lebesgue-Maß führen wird. Als erstes definieren wir das Volumen von Intervallen des R p. Seien

Mehr

Skript zur Vorlesung Analysis 3

Skript zur Vorlesung Analysis 3 Skript zur Vorlesung Analysis 3 Wintersemester 2013/2014 Prof. Dr. Benjamin Schlein Inhaltsverzeichnis 1 Masstheorie 2 1.1 σ-algebren.................................. 6 1.2 Masse.....................................

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 202/3 Institut für Analysis 26..202 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 7. Übungsblatt Aufgabe Untersuchen

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom

Übungsaufgaben zu Analysis 1 Lösungen von Blatt VI vom Prof. Dr. Moritz Kaßmann Fakultät für Mathematik Wintersemester 04/05 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt VI vom 0..4 Aufgabe VI. (6 Punkte) Gegeben sind die Folgen (a n)

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

Kapitel 19. Das Lebesgue Maß σ Algebren und Maße

Kapitel 19. Das Lebesgue Maß σ Algebren und Maße Kapitel 19 Das Lebesgue Maß 19.1 σ Algebren und Maße 19.2 Das äußere Lebesgue Maß 19.3 Das Lebesgue Maß 19.4 Charakterisierungen des Lebesgue Maßes 19.5 Messbare Funktionen 19.1 σ Algebren und Maße Wir

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 013/1 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

Existenz des Lebesgue-Borel-Maßes

Existenz des Lebesgue-Borel-Maßes A Existenz des Lebesgue-Borel-Maßes In diesem (nicht prüfungsrelevanten) Anhang tragen wir u.a. die Existenz des Lebesgue- Borel-Maßes nach. 52 Es empfiehlt sich, diesen Anhang erst nach Kapitel 5 zu lesen

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen.

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen. Ergänzungen zu offenen und abgeschlossenen Mengen Definition Ist L Teilmenge eines topologischen Raums M, so heißt x L innerer Punkt von L, wenn es eine offene Umgebung von x gibt, die ganz in L liegt.

Mehr

(y ) 2 0 bis t, so erhalten wir 1 y (t) (t t 0). L sen wir diese Ungleichung nun nach y (t) auf, so folgt

(y ) 2 0 bis t, so erhalten wir 1 y (t) (t t 0). L sen wir diese Ungleichung nun nach y (t) auf, so folgt 0.. Lösung der Aufgabe. Wir nehmen an, es existiere eine nicht-triviale globale L sung y. Dann lesen wir direkt von der Gleichung ab, dass y 0 gilt auf ganz R, das heisst, die Funktion ist konvex. Da wir

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

Techniken zur Berechnung der Dimension

Techniken zur Berechnung der Dimension Seminarvortrag Ulm, 21.11.2006 Übersicht Masse-Verteilungs-Prinzip Berechnung der Dimension von Fraktalen Es ist oft nicht einfach die Hausdorff - Dimension allein durch deren Definition zu berechnen.

Mehr

3 Bedingte Erwartungswerte

3 Bedingte Erwartungswerte 3 Bedingte Erwartungswerte 3.3 Existenz und Eindeutigkeit des bedingten Erwartungswertes E A 0(X) 3.6 Konvexitätsungleichung für bedingte Erwartungswerte 3.9 Konvergenzsätze von Levi, Fatou und Lebesgue

Mehr

fraktal kommt von f : C C : x x 3.

fraktal kommt von f : C C : x x 3. Kapitel 4 Fraktale und Dimension 4.1 Selbstähnlichkeit Was sind Fraktale? Das Wort fraktal kommt von zerbrochen und steht für die nicht-ganzzahlige Dimension. Wir betrachten also Objekte deren Dimension

Mehr

Klausur - Analysis I Lösungsskizzen

Klausur - Analysis I Lösungsskizzen Klausur - Analysis I Lösungsskizzen Aufgabe 1.: 5 Punkte Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind. Kennzeichnen Sie wahre Aussagen mit und falsche Aussagen mit. Es sind keine Begründungen

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018

Lösungsvorschlag zum 2. Übungsblatt zur Vorlesung Analysis II im Sommersemester Mai 2018 Institut für Analysis Prof. Dr. Michael Plum M.Sc. Jonathan Wunderlich Lösungsvorschlag zum. Übungsblatt zur Vorlesung Analysis II im Sommersemester 08 3. Mai 08 Aufgabe 5 (K: Es seien n N und A R n eine

Mehr

A. Maß- und Integrationstheorie

A. Maß- und Integrationstheorie A. Maß- und Integrationstheorie Im folgenden sind einige Ergebnisse aus der Maß- und Integrationstheorie zusammengestellt, die wir im Laufe der Vorlesung brauchen werden. Für die Beweise der Sätze sei

Mehr

Serie 5 Lösungsvorschläge

Serie 5 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 5 Lösungsvorschläge 1. Finden Sie eine stetige Funktion f : [, ) R, so dass f nicht Lebesgue-integrierbar T ist, jedoch der Grenzwert lim f(t)

Mehr

12 Reihen mit beliebigen abzählbaren Indexmengen

12 Reihen mit beliebigen abzählbaren Indexmengen 12 Reihen mit beliebigen abzählbaren Indexmengen 12.2 Großer Umordnungssatz 12.3 Umordnungssatz für Doppelreihen 12.4 Produktreihe In 3 waren endliche Summen j J a j mit Hilfe einer Bijektion ϕ zwischen

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Aufbau der Projektiven Geometrie

Aufbau der Projektiven Geometrie Seminararbeit zum Seminar aus Reiner Mathematik Aufbau der Projektiven Geometrie Leonie Knittelfelder Matr. Nr. 1011654 WS 2012/13 Inhaltsverzeichnis 1 Einleitung 3 2 Linearmengen 4 2.1 Satz (1.3.1): Das

Mehr

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy

Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck

Mehr

KONSTRUKTION VON MASSEN

KONSTRUKTION VON MASSEN KONSTRUKTION VON MASSEN MARCUS HEITEL 1. Einleitung Wir wollen im Folgenden das Lebesguemaß konstruieren. Dieses soll die Eigenschaft λ ( [a, b = b a für a, b R besitzen. Nun ist ein Maß aber auf einer

Mehr

Metrische äußere Maße, Borel-Maße

Metrische äußere Maße, Borel-Maße Metrische äußere Maße, Borel-Maße Zum einen haben wir mit dem Fortsetzungssatz gesehen, dass man mit einem äußeren Maß (auf P(X) ) stets eine σ-algebra und ein Maß auf dieser bekommt. Liegt nun ein metrischer

Mehr

Ferienkurs in Maß- und Integrationstheorie

Ferienkurs in Maß- und Integrationstheorie Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien

Mehr

2 Differenzierbare Mannigfaltigkeiten

2 Differenzierbare Mannigfaltigkeiten $Id: diff.tex,v 1.6 2014/05/12 09:25:07 hk Exp hk $ 2 Differenzierbare Mannigfaltigkeiten 2.1 Topologische Räume In der letzten Sitzung haben wir begonnen den Kompaktheitsbegriff in allgemeinen topologischen

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Maßtheorie. Wie interpretiert man Volumenmessung? Ziel :

Maßtheorie. Wie interpretiert man Volumenmessung? Ziel : 23 Maßtheorie Ziel : Entwicklung allgemeiner Konzepte, die es gestatten, z.b. Volumina und Oberflächen von Körpern R 3 sinnvoll zu definieren und zu berechnen; sinnvoll soll heißen : für den Einheitswürfel

Mehr

Aufgabe 4.1 Beweise: Jede abzählbare, lokalkompakte Gruppe G ist diskret.

Aufgabe 4.1 Beweise: Jede abzählbare, lokalkompakte Gruppe G ist diskret. 4. Übungsettel ur Vorlesung Lokalkompakte Gruppen Lösung WiSe 2017/18 WWU Münster Prof. Dr. Linus Kramer Nils Leder Antoine Beljean Aufgabe 4.1 Beweise: Jede abählbare, lokalkompakte Gruppe G ist diskret.

Mehr

Skriptbausteine zur Vorlesung Maßtheorie

Skriptbausteine zur Vorlesung Maßtheorie Skriptbausteine zur Vorlesung Maßtheorie Vorlesender: Prof. Dr. Bernd Hofmann Der folgende Text soll die Nacharbeit der Vorlesung erleichtern und dabei an Definitionen, Sätze und Beispiele erinnern. Das

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 8 Prof. Roland Gunesch Sommersemester 2010 Übungen zur Vorlesung Einführung in Dynamische Systeme Musterlösungen zu Aufgabenblatt 8 Aufgabe 1: Sei (X, d) ein kompakter metrischer Raum. Die Hausdorff-Metrik

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Kapitel 3 Sätze der offenen Abbildung

Kapitel 3 Sätze der offenen Abbildung Kapitel 3 Sätze der offenen Abbildung Wir werden in diesem Abschnitt uns folgender Frage zuwenden: Wann ist ein Morphismus f: G H von topologischen Gruppen offen, d.h. wann gilt für eine offene Menge U

Mehr

Wahrscheinlichkeitstheorie und Maßtheorie

Wahrscheinlichkeitstheorie und Maßtheorie KAPITEL 7 Wahrscheinlichkeitstheorie und Maßtheorie 7.1. Vorüberlegungen Die folgenden drei Beispiele sind Spezialfälle des Oberbegriffs Maß. Beispiel 7.1.1 (Verteilung der Ladung oder der Masse). Man

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

{, wenn n gerade ist,, wenn n ungerade ist.

{, wenn n gerade ist,, wenn n ungerade ist. 11 GRENZWERTE VON FUNKTIONEN UND STETIGKEIT 60 Mit anderen Worten, es ist lim f(x) = b lim f (, a)(x) = b, x a x a wobei f (, a) die Einschränkung von f auf (, a) ist. Entsprechendes gilt für lim x a.

Mehr

2.7. TEILMENGEN VON R 51

2.7. TEILMENGEN VON R 51 2.7. TEILMENGEN VON R 51 für M. Denn zu x M, x > K, gibt es ein b Q mit b (K, x), insbesondere b > K. Dann ist aber K nicht die reelle Zahl, die dem Dedekindschen Schnitt der Mengen A, B entspricht. Ist

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

3.3 Konvergenzkriterien für reelle Folgen

3.3 Konvergenzkriterien für reelle Folgen 3.3 Konvergenzkriterien für reelle Folgen Satz: Eine monoton wachsende, nach oben beschränkte reelle Folge a n ) n N ist konvergent mit Grenzwert lim a n = sup{a n n N} Beweis: Sei a n ) n N nach oben

Mehr

Seminarvortrag Schnitte von Fraktalen

Seminarvortrag Schnitte von Fraktalen Seminarvortrag Schnitte von Fraktalen Matthias Schmid matthias.schmid@uni-ulm.de Universität Ulm 9. Februar 2007 Inhaltsverzeichnis 1 Einleitung 2 1.1 Einordnung................................... 2 1.2

Mehr

Übungsblatt 5. D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. 1. Berechnen Sie die Ableitung v f(x, y) der Funktion

Übungsblatt 5. D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. 1. Berechnen Sie die Ableitung v f(x, y) der Funktion D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler Übungsblatt 5 1. Berechnen Sie die Ableitung v f(x, y) der Funktion ( ) ( ) x f : R 2 R 2 x 3 1 + y, 2 y (1 + e x ) 1. entlang des Vektors

Mehr

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte. Analysis, Woche 5 Folgen und Konvergenz A 5. Cauchy-Folgen und Konvergenz Eine Folge in R ist eine Abbildung von N nach R und wird meistens dargestellt durch {x n } n=0, {x n} n N oder {x 0, x, x 2,...

Mehr

Analysis 3. Stand 12. April Alle Rechte beim Autor.

Analysis 3. Stand 12. April Alle Rechte beim Autor. Analysis 3 Steffen Börm Stand 12. April 2011 Alle Rechte beim Autor. Inhaltsverzeichnis 1 Einleitung 5 2 Grundlagen der Maßtheorie 7 2.1 Motivation................................... 7 2.2 Systeme von

Mehr

die gewünschte Schranke gefunden, denn es gilt (trivialerweise) für n N

die gewünschte Schranke gefunden, denn es gilt (trivialerweise) für n N .5. VOLLSTÄNDIGKEIT VON R 37 Lemma.5. (Beschränktheit konvergenter Folgen) Konvergente Folgen in R sind beschränkt. Beweis. Angenommen die Folge a n n N konvergiert gegen A R. Zu ε > 0 existiert ein N

Mehr

B A C H E L O R A R B E I T

B A C H E L O R A R B E I T B A C H E L O R A R B E I T Die Dimension von topologischen Räumen ausgeführt am Institut für Analysis & Scientific Computing der Technischen Universität Wien unter der Anleitung von Ao.Univ.Prof. Dipl.-Ing.

Mehr

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 2013/14 24.10.2013 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschlag zum Präsenzübungsblatt

Mehr

Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge.

Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge. Folgen Eine Folge stellt man sich am einfachsten als eine Aneinanderreihung von Zahlen (oder Elementen irgendeiner anderen Menge) vor, die immer weiter geht Etwa,,,,,, oder,,, 8,,,, oder 0,,,,,,,, In vielen

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 11. Oktober 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 11. Oktober 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 11. Oktober 2013 3 Fortsetzung von Prämassen zu Massen Der Begriff des Prämasses ist nicht ausreichend, um eine geschmeidige Integrationstheorie

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Kompaktheit in topologischen Räumen

Kompaktheit in topologischen Räumen Kompaktheit in topologischen Räumen Joel Gotsch 21. Januar 2011 Inhaltsverzeichnis 1 Notation und Allgemeines 2 2 Definitionen 2 2.1 Allgemeine Definitionen..................... 2 2.2 Globale Kompaktheitseigenschaften...............

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Satz von Sarkovskii und Periode 3 impliziert Chaos

Satz von Sarkovskii und Periode 3 impliziert Chaos Satz von Sarkovskii und Periode 3 impliziert Chaos Florian Lindemann 10 Februar 2003 Vortrag für das Seminar Differentialgleichungen, WS 02/03 Dozent: Prof Lauterbach Wir wollen uns das Feigenbaum-Diagramm

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,...} = N {0} N. Rationale Zahlen Q := { m } n m Z, n N. Beachte:

Mehr

Definitionen und Aussagen zur Maßtheorie

Definitionen und Aussagen zur Maßtheorie Definitionen und Aussagen zur Maßtheorie Man möchte den Teilmengen eines Raumes ein Gewicht zuordnen. Wir werden sehen, daß dies in sinnvoller Weise häufig nicht für alle Teilmengen möglich ist, sondern

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 2. Folgen Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies Grundlagen Mathematik

Mehr