Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Größe: px
Ab Seite anzeigen:

Download "Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015"

Transkript

1 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

2 1 Mengen 2 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen Mehrstellige Relationen 3 Abbildungen 4 Algebraische Strukturen 5 Ordnungen und spezielle Relationen

3 FM2 (WS 2014/15, Geck) 19 Definition und Beispiel Definition 2.1 Mengen der Form R M 1 M k heißen k-stellige Relationen (über M 1,..., M k ). Bemerkungen: zunächst nur binäre Relationen (später weitere) Beispiel 2.2 (Studienergebnisse) Wir betrachten Relationen über folgenden Mengen Veranstaltungen = {RS, Logik, GTI, IS}, Notenwerte = {1.0, 1.3,..., 3.7, 4.0, 5.0} und Notennamen = {sehr gut, gut, befriedigend, ausreichend, nicht bestanden}. Die Ergebnisse von Anna und Bert werden beschrieben durch die Relationen Ergebnisse Anna = {(RS, 1.7), (Logik, 1.0)} und Ergebnisse Bert = {(RS, 3.0), (GTI, 5.0), (GTI, 4.0), (IS, 2.7)} und die Zuordnung von Notenwerten zu Notennamen durch die Relation Noten = {(1.0, sehr gut), (1.3, sehr gut), (1.7, gut),..., (5.0, nicht bestanden)}

4 FM2 (WS 2014/15, Geck) 20 Weitere Beispiele Beispiel 2.3 (Familienbande) Wir betrachten die Mengen Erwachsene = {Homer, Marge, Ned, Maude} und Kinder = {Bart, Lisa, Maggie, Rod, Todd} und darüber die binären Relationen Vater, Mutter Erwachsene Kinder: Vater = {(Homer, Bart), (Homer, Lisa), (Homer, Maggie), (Ned, Rod), (Ned, Todd)} und Mutter = {(Marge, Bart), (Marge, Lisa), (Marge, Maggie), (Maude, Rod), (Maude, Todd)}. Bemerkung: Um die Zugehörigkeit eines Paares zu einer binären Relation zu notieren, wird gelegentlich die Infixnotation verwendet: mrn, falls (m, n) R. Beispiel 2.4 (Teilbarkeit) Wir betrachten die Teilbarkeitsrelation auf den natürlichen Zahlen N 0 : T = {(p, n) Es gibt ein q N 0 mit n = pq}. Unter Verwendung des Infixsymbols für T gilt etwa: 3 6, 3 12, 4 12, , 4 13, 8 4

5 FM2 (WS 2014/15, Geck) 21 Operationen: Definition und Beispiel Aus Relationen können durch verschiedene Operationen Relationen abgeleitet werden. Definition 2.5 Zu einer binären Relation R M N ist die Umkehrrelation definiert als Relation R 1 N M mit R 1 = {(n, m) (m, n) R}. Für binäre Relationen R M N und S N P ist die Komposition R S M P definiert als Relation R S = {(m, p) es gibt ein n N mit (m, n) R, (n, p) S} Beispiel 2.6 (Umkehrrelation) Für Vater = {(Homer, Bart), (Homer, Lisa), (Homer, Maggie), (Ned, Rod), (Ned, Todd)} gilt Vater 1 = {(Bart, Homer), (Lisa, Homer), (Maggie, Homer), (Rod, Ned), (Todd, Ned)} Beispiel 2.7 (Komposition) Für Ergebnisse Bert Veranstaltungen Notenwerte und Noten Notenwerte Notennamen mit Ergebnisse Bert = {(RS, 3.0), (GTI, 5.0), (GTI, 4.0), (IS, 2.7)} Noten = {(1.0, sehr gut), (1.3, sehr gut), (1.7, gut),..., (5.0, nicht bestanden)} gilt ergibt sich die Komposition Ergebnisse Bert Noten Veranstaltungen Notennamen als {(RS, befriedigend), (GTI, nicht bestanden), (GTI, ausreichend), (IS, befriedigend)}

6 FM2 (WS 2014/15, Geck) 22 Operationen: Kurzaufgaben Zur Erinnerung: Definition 2.8 Zu einer binären Relation R M N ist die Umkehrrelation definiert als Relation R 1 N M mit R 1 = {(n, m) (m, n) R}. Für binäre Relationen R M N und S N P ist die Komposition R S M P definiert als Relation R S = {(m, p) es gibt ein n N mit (m, n) R, (n, p) S} Aufgaben Betrachten Sie die Relation Vater = {(Abe, Homer), (Homer, Bart), (Homer, Hugo), (Bart, Bart Jr.)}. Geben Sie die Umkehrrelation (Vater ) 1 an. Geben Sie die Komposition Vater Vater an. Geben Sie die Relation (Vater ) 1 Vater an. Geben Sie die Relation Vater (Vater ) 1 an.

7 FM2 (WS 2014/15, Geck) 23 Eigenschaften (1/3) Definition 2.9 (Totalität, Eindeutigkeit) Wir betrachten eine binäre Relation R M N. Sie heißt linkstotal, wenn es zu jedem m M ein n N mit (m, n) R gibt; rechtstotal, wenn es zu jedem n N ein m M mit (m, n) R gibt; linkseindeutig, wenn es für alle n N mit (m, n) R und (k, n) R stets m = k gilt; rechtseindeutig, wenn es für alle m M mit (m, n) R und (m, p) R stets n = p gilt. Beispiele 2.10 Die Relation Vater Erwachsene Kinder über den Mengen Erwachsene = {Homer, Marge, Ned, Maude} und Kinder = {Bart, Lisa, Maggie, Rod, Todd}, Vater = {(Homer, Bart), (Homer, Lisa), (Homer, Maggie), (Ned, Rod), (Ned, Todd)}, ist rechtstotal und linkseindeutig, aber weder linkstotal noch rechtseindeutig. Fragen Ist die Teilbarkeitsrelation T = {(p, n) Es gibt ein q N 0 mit n = pq} linkstotal, rechtstotal? linkseindeutig, rechtseindeutig?

8 FM2 (WS 2014/15, Geck) 24 Eigenschaften (2/3) Nun: Beschränkung auf binäre Relationen auf einer Menge M Definition 2.11 (Reflexivität, Symmetrie, Transitivität) Wir betrachten eine binäre Relation R M M. Sie heißt reflexiv, wenn (m, m) R gilt; irreflexiv, wenn (m, m) R gilt; symmetrisch, wenn (m, n) R stets (n, m) R impliziert; asymmetrisch, wenn (m, n) R stets (n, m) R impliziert; antisymmetrisch, wenn (m, n) R und (n, m) R stets m = n impliziert; transitiv, wenn (m, n) R und (n, p) R stets (m, p) R impliziert (jeweils für alle m, n, p M). Beispiel 2.12 (Teilbarkeitsrelation) Die Teilbarkeitsrelation T = {(p, n) Es gibt ein q N 0 mit n = pq} ist reflexiv (1 1, 2 2,... ) antisymmetrisch transitiv (2 6, )

9 FM2 (WS 2014/15, Geck) 25 Eigenschaften (3/3) Zur Erinnerung: Definition 2.13 (Reflexivität, Symmetrie, Transitivität) Wir betrachten eine binäre Relation R M M. Sie heißt reflexiv, wenn (m, m) R für alle m M gilt; irreflexiv, wenn (m, m) R für alle m M gilt; symmetrisch, wenn (m, n) R stets (n, m) R impliziert; asymmetrisch, wenn (m, n) R stets (n, m) R impliziert; antisymmetrisch, wenn (m, n) R und (n, m) R stets m = n impliziert; transitiv, wenn (m, n) R und (n, p) R stets (m, p) R impliziert (jeweils für alle m, n, p M). Beispiel 2.14 (Vergleichsrelation) Die Relation < N 0 N 0 mit < = {(m, n) es existiert ein c N mit m + c = n} ist irreflexiv (x x) asymmetrisch (x < y y x) transitiv (x < y, y < z x < z)

10 FM2 (WS 2014/15, Geck) 26 Äquivalenzrelationen: Definition, Beispiel Definition 2.15 (Äquivalenzrelation) Eine binäre Relation R auf einer Menge M heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist. Bemerkung: Für jede Menge M existieren (triviale) Äquivalenzrelationen: die Identität id = {(m, m) m M} und die Allrelation all = {(m, n) m, n M}. Interessanter sind die folgende Klassen von Äquivalenzrelationen. Definition 2.16 (Zahlentheoretische Kongruenz) Für jedes k N ist die Kongruenz modulo k die Relation k N 0 N 0, wobei m k n genau dann gilt, wenn m und k denselben Rest bei Division durch k besitzen. Beispiele 2.17 Zwei Zahlen m, n stehen genau dann in Relation m 2 n, wenn sie entweder beide gerade oder beide ungerade sind: 0 2 2, , ; 1 2 4, ,

11 FM2 (WS 2014/15, Geck) 27 Äquivalenzklassen Definition 2.18 Für eine Äquivalenzrelation R auf einer Menge M ist die Äquivalenzklasse [m] R eines Elementes m die Menge zu m äquivalenter Elemente in M: [m] R = {n M (m, n) R}. Beispiel 2.19 Betrachten wir die Äquivalenzrelation 2 auf der Menge N 0, so besitzt diese die Klassen [0] 2 = {2n n N 0 }= {0, 2, 4, 6,... } und [1] 2 = {2n + 1 n N 0 }= {1, 3, 5, 7,... }. Fakt 2.20 Aufgrund der Symmetrie jeder Äquivalenzrelation R auf einer Menge M gilt für alle m, n M, dass genau dann n [m] R gilt, wenn m [n] R ist. Folgerung: m und n sind genau dann äquivalent, wenn sie dieselben Äquivalenzklassen besitzen eine Äquivalenzklasse wird durch jedes ihrer Elemente gleichermaßen beschrieben; die Elemente nennen wir auch Repräsentanten der Klasse

12 FM2 (WS 2014/15, Geck) 28 Äquivalenzklassen und Partitionen Äquivalenzklassen und Partitionen sind eng miteinander verwandt Aufgabe Zeigen Sie, dass für eine Äquivalenzrelation R auf M mit Elementen m, n M gilt: (m, n) R [m] R [n] R =. Fakt 2.21 (Partition und Äquivalenzklassen) Die Klassen einer links- bzw. rechtstotalen Äquivalenzrelation R auf einer Menge M bilden eine Partition von M, den Quotienten M/ R = {[m] R m M} Jede Partition M = {M i i I} einer Menge M induziert eine Äquivalenzrelation R M = {(m, n) es gibt ein i I mit m M i und n M i }. Beispiel 2.22 ({0,..., 11}/ 3 )

13 FM2 (WS 2014/15, Geck) 29 Äquivalenzklassen: Beispiel Q Die rationalen Zahlen Q können durch Bildung von Äquivalenzklassen auf Paaren aus Z Z + konstruiert werden: Definition 2.23 Wir definieren die Äquivalenzrelation auf Z Z + durch (p, q) (r, s) p s = q r. Die Äquivalenzklasse von (p, q) bezeichnen wir durch p q. Es gilt dann Q = (Z Z +)/. Operatoren auf Äquivalenzklassen können über ihre Repräsentanten definiert werden. Beispiel 2.24 (Addition rationaler Zahlen) Für die Klassen p q, p q Q sei die Summe p q + p q definiert als pq +p q qq. Es gilt etwa = 3 6 = 18 = 18 Zu beachten: Wohldefiniertheit der Operatoren (Unabhängigkeit von den Repräsentanten) Beispiel 2.25 (Wohldefiniertheit der Addition) Die Elemente (2, 3) und (4, 6) aus Z Z + repräsentieren dieselbe Klasse 2 3 Q. Es sollte also bei Rechnung mit dasselbe Ergebnis (die Klasse 18 ) herauskommen.

14 FM2 (WS 2014/15, Geck) 30 Äquivalenzklassen: Beispiel Q (Wohldefiniertheit von +) Zu zeigen: Es gelte für Repräsentanten (p, q) (r, s) und (p, q ) (r, s ) (also für die Klassen p q = r p s und q = r s ), dann soll auch p q + p q = pq +p q qq = rs +r s ss = r s + r s gelten. Erinnerung: Die Gleichheit der Klassen gilt genau dann, wenn ihre Repräsentanten (pq + p q, qq ) und (rs + r s, ss ) äquivalent sind. Wir wissen: (a) wegen p q = r s gilt ps = qr (b) wegen p q = r s gilt p s = q r Nachrechnen: (pq + p q)(ss ) = pq ss + p qss (Ausmultiplizieren) = qq rs + p qss (Eigenschaft (a)) = qq rs + qq r s (Eigenschaft (b)) = (rs + r s)(qq ) (Zusammenfassen) Folglich gilt (pq + p q, qq ) (rs + r s, ss ).

15 FM2 (WS 2014/15, Geck) 31 Äquivalenzklassen: Verhältnisse Definition 2.26 Seien R und S Äquivalenzrelationen auf derselben Menge M, dann heißt R Verfeinerung von S, wenn für alle m, n M aus (m, n) R auch (m, n) S folgt. Bemerkung: Obige Bedingung ist äquivalent zu: für alle m M gilt [m] R [n] S. Wenn R feiner ist als S, wird S auch gröber als R genannt. Beispiel 2.27 ({0,..., 11}/ 6 ist Verfeinerung von {0,..., 11}/ 3 )

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

7 Äquivalenzrelationen

7 Äquivalenzrelationen 71 7 Äquivalenzrelationen 7.1 Äquivalenzrelationen und Klassen Definition Eine Relation R auf einer Menge oder einem allgemeineren Objektbereich heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch

Mehr

Funktionen, Mächtigkeit, Unendlichkeit

Funktionen, Mächtigkeit, Unendlichkeit Funktionen, Mächtigkeit, Unendlichkeit Nikolai Nowaczyk http://math.nikno.de, Lars Wallenborn http://www.wallenborn.net/ Frühjahrsakademie 12.04. - 14.04.2013 Inhaltsverzeichnis

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Formale Methoden 1. Gerhard Jäger 14. November Uni Bielefeld, WS 2007/2008 1/17

Formale Methoden 1. Gerhard Jäger 14. November Uni Bielefeld, WS 2007/2008 1/17 1/17 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 14. November 2007 2/17 Komposition von Relationen und Funktionen seien R A B und S B C Relationen neue

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Abbildungen, injektiv, surjektiv, bijektiv

Abbildungen, injektiv, surjektiv, bijektiv Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

Musterlösung MafI 1 - Blatt 5

Musterlösung MafI 1 - Blatt 5 Musterlösung MafI 1 - Blatt 5 Titus Laska Aufgabe 1 (Relationen). Die drei Relationen R, S, T N N sind jeweils auf Reflexivität, Symmetrie und Antisymmetrie zu untersuchen. Lösung. Erinnerung. Sei R A

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Relationalstrukturen Definition Sei A eine nichtleere Menge, R ist eine k-stellige

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Grundlagen der linearen Algebra und analytischen Geometrie

Grundlagen der linearen Algebra und analytischen Geometrie Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 20 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen

Mehr

Relationen (Teschl/Teschl 5.1)

Relationen (Teschl/Teschl 5.1) Relationen (Teschl/Teschl 5.1) Eine (binäre) Relation zwischen den Mengen M und N ist eine Teilmenge R der Produktmenge M N. Beispiele M Menge aller Studierenden, N Menge aller Vorlesungen, R : {(x, y)

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

aller Vornamen (oder nur die Vornamen, die in der Datenbank auftreten). Dann ist jede Zeile wie etwa

aller Vornamen (oder nur die Vornamen, die in der Datenbank auftreten). Dann ist jede Zeile wie etwa Kapitel 2 Relationen Im vorigen Kapitel haben wir n-stellige, kartesische Produkte M 1 M 2 M n kennen gelernt. Jetzt betrachten wir Teilmengen von kartesischen Produkten. Definition 2.1. Eine Teilmenge

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B.

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Mathematik I für Informatiker Relationen auf einer Menge p. 1 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist der,

Mehr

4.4 Funktionen. Funktionen sind spezielle binäre Relationen bzw. spezielle Abbildungen und damit spezielle Mengen.

4.4 Funktionen. Funktionen sind spezielle binäre Relationen bzw. spezielle Abbildungen und damit spezielle Mengen. 4.4 Funktionen Funktionen sind spezielle binäre Relationen bzw. spezielle Abbildungen und damit spezielle Mengen. Funktionen werden gewöhnlich mit f, g,... oder F, G,... notiert. Johannes Dölling: Logik

Mehr

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3.

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3. 3. Relationen 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen 3. Relationen GM 3-1 Wozu Relationen? Mathematik Theoretische Informatik Kryptographie

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik &

Mehr

modulo s auf Z, s. Def

modulo s auf Z, s. Def 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

1.2 Modulare Arithmetik

1.2 Modulare Arithmetik Algebra I 8. April 2008 c Rudolf Scharlau, 2002 2008 11 1.2 Modulare Arithmetik Wir erinnern an die Notation für Teilbarkeit: m c für m, c Z heißt, dass ein q Z existiert mit qm = c. Definition 1.2.1 Sei

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11

Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11 Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/77 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Einschub: Erkennung durch Monoide

Einschub: Erkennung durch Monoide Einschub: Erkennung durch Monoide Achtung: Diese Einheit finden Sie NICHT im Buch von Schöning. Sei L eine formale Sprache und M ein Monoid. Wir sagen M erkennt L, wenneineteilmengea M und ein Homomorphismus

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Relationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 10: Einführung Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt:

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 3 Die Lösungshinweise dienen

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

Grundbegriffe der Informatik Tutorium 14

Grundbegriffe der Informatik Tutorium 14 Grundbegriffe der Informatik Tutorium 14 Tutorium Nr. 16 Philipp Oppermann 11. Februar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Elemente der Mathematik - Sommer 2017

Elemente der Mathematik - Sommer 2017 Elemente der Mathematik - Sommer 2017 Prof. Dr. Peter Koepke, Thomas Poguntke Lösung 1 Aufgabe 54 (4+2 Punkte). In der Vorlesung wurde die Multiplikation auf den ganzen Zahlen definiert durch (a, b) (a,

Mehr

Matthias Stemmler SS 2005 Quotientenräume

Matthias Stemmler SS 2005 Quotientenräume Matthias Stemmler SS 2005 stemmler@mathematik.uni-marburg.de Zusammenfassung zum Thema Quotientenräume Äquivalenzrelationen Wir betrachten irgendeine Menge X von Objekten mit verschiedenen Eigenschaften,

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen

1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen 1 Definition von Relation, Äquivalenzrelation und Äquivalenzklassen Einleitung 1 Wie der Name schon sagt sind Äquivalenzrelationen besondere Relationen. Deswegen erkläre ich hier ganz allgemein, was Relationen

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/76 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 3: Kodierung 1 Motivation 2 Exkurs Grundlagen formaler Sprachen 3 Grundlagen 4 Beispielkodierungen FM2 (WS 2014/15,

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

1.5 Restklassen, Äquivalenzrelationen und Isomorphie

1.5 Restklassen, Äquivalenzrelationen und Isomorphie Lineare Algebra I WS 2015/16 c Rudolf Scharlau 39 1.5 Restklassen, Äquivalenzrelationen und Isomorphie In diesem Abschnitt wird zunächst der mathematische Begriff einer Relation kurz und informell eingeführt.

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 Ähnlich wie Funktionen besitzen Relationen charakteristische Eigenschaften. Diese Eigenschaften definieren wie

Mehr

Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik

Ergänzende Übungen Lineare Algebra I. Wintersemester 2010/11. Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik Ergänzende Übungen Lineare Algebra I Wintersemester 2010/11 Prof. Dr. Kristina Reiss Heinz Nixdorf-Stiftungslehrstuhl für Didaktik der Mathematik 1 Äquivalenz Was bedeutet Äquivalenz? Wie wird der Begriff

Mehr

Die rationalen Zahlen. Caterina Montalto Monella

Die rationalen Zahlen. Caterina Montalto Monella Die rationalen Zahlen Caterina Montalto Monella 07.12.2016 1 1 Die Konstruktion der rationalen Zahlen In dieser Ausarbeitung konstruieren wir die rationalen Zahlen aus den ganzen und den natürlichen Zahlen.

Mehr

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3}

R = {(1, 1), (2, 2), (3, 3)} K 1 = {1} K 2 = {2} K 3 = {3} Äquivalenzrelationen Aufgabe 1. Lesen Sie im Skript nach was eine Äquivalenzrelation und eine Äquivalenzklasse ist. Gegeben ist die Menge A = {1, 2, 3. Finden Sie 3 Äquivalenzrelationen auf A und geben

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

6. Boolesche Algebren

6. Boolesche Algebren 6. Boolesche Algebren 6.1 Definitionen Eine Boolesche Algebra ist eine Algebra S,,,, 0, 1,, sind binäre, ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt: 1 und sind assoziativ und kommutativ.

Mehr

1.4 Die rellen Zahlen

1.4 Die rellen Zahlen 1.4 Die rellen Zahlen Die reellen Zahlen R Beobachtung Es gibt physikalische Größen (dh. Abstände, Flächeninhalte... ), die nicht in Q liegen. Beispiele 2 (Diagonale im Quadrat mit Seitenlänge 1) π (Flächeninhalt

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier

Automaten und Formale Sprachen SoSe 2007 in Trier. Henning Fernau Universität Trier Automaten und Formale Sprachen SoSe 2007 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche Automaten und

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Eigenschaften von Funktionen. Definition der Umkehrfunktion. WS 2013 Torsten Schreiber

Eigenschaften von Funktionen. Definition der Umkehrfunktion. WS 2013 Torsten Schreiber Eigenschaten von Funktionen Deinition der Umkehrunktion WS 013 Torsten Schreiber Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Eine basiert au einem Produkt und stellt die vorhandenen Komponenten

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Lineare Algebra. Sebastian Thomas. Manuskript (provisorisch) Sommersemester Carl von Ossietzky Universität Oldenburg Institut für Mathematik

Lineare Algebra. Sebastian Thomas. Manuskript (provisorisch) Sommersemester Carl von Ossietzky Universität Oldenburg Institut für Mathematik Lineare Algebra Sebastian Thomas Manuskript (provisorisch) Sommersemester 2013 Carl von Ossietzky Universität Oldenburg Institut für Mathematik ii Version: 28. Januar 2014. Dieses Vorlesungsmanuskript

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

4.2 Quotientenvektorräume

4.2 Quotientenvektorräume 306 LinAlg II Version 1 6. Juni 2006 c Rudolf Scharlau 4.2 Quotientenvektorräume Zum Verständnis der folgenden Konstruktion ist es hilfreich, sich noch einmal den Abschnitt 1.4 über Restklassen vom Beginn

Mehr

Fundamente der Computational Intelligence Teil 4

Fundamente der Computational Intelligence Teil 4 Fundamente der Computational Intelligence Teil 4 Günter Rudolph Fachbereich Informatik, Lehrstuhl XI Fachgebiet Computational Intelligence WS 2006/07 Fuzzy Relationen Relationen mit scharfen Mengen X 1,

Mehr

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Diskrete Strukturen. Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 4

Mehr

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie

Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Neues Thema: abstrakte Algebra: Gruppen- und Körpertheorie Def. Eine Gruppe besteht aus einer nicht leeren Menge G und einer Abbildung : G G G (wir werden a b oder ab statt (a,b) schreiben; die Abbildung

Mehr

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die

Mehr

Automaten und Formale Sprachen SoSe 2013 in Trier

Automaten und Formale Sprachen SoSe 2013 in Trier Automaten und Formale Sprachen SoSe 2013 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 2. Juni 2013 1 Automaten und Formale Sprachen Gesamtübersicht Organisatorisches Einführung Endliche

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt

Mehr

Theoretische Informatik Mitschrift

Theoretische Informatik Mitschrift 5 Eigenschaften regulärer Sprachen 51: Die Nerode-Relation Theoretische Informatik Mitschrift Definition 51: Sei L * L * * mit L :={u, v * * w *:uw L v w L }heißt Nerode-Relation von L Sei ={0,1}, L= *{00}

Mehr

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten WS 2017 1. Schreiben Sie die folgenden Ausdrücke ohne Verwendung von Summen- bzw. Produktzeichen: 7 2 3 5 k 2k+1, a k, 2

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr