Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org"

Transkript

1 Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme Faktorisierung Stefan Büttcher 1

2 Definition. (RSA-Problem) Gegeben: Ò ÔÕ, ein RSA-Modul mit unbekannten Primfaktoren Ô und Õ, ein dazugehöriger Public Key. Gesucht: der zu passende Private Key : ½ ÑÓ Òµµ. Definition. (Faktorisierungsproblem) Gegeben: eine (zusammengesetzte) Zahl Ò mit unbekannten Primfaktoren Gesucht: Primzahlpotenzen Ô und eine endliche Indexmenge Á: Ô µ Ò Á 2

3 Satz. Das RSA-Problem lässt sich in polynomialer Zeit auf das Faktorisierungsproblem reduzieren: RSA-Problem È Faktorierungsproblem. Begründung: Es sei ein Algorithmus, der die Primfaktorzerlegung in Ô ½ Ô µ, Ç Ò Æ, berechnet. ½ È Òµ Wegen ½ ÑÓ Òµµ lässt sich sich der Private Key mit dem erweiterten Euklidischen Algorithmus Ç Ò in µ berechnen. ¾ µ Wenn das Faktorisierungsproblem effizient lösbar ist, dann ist RSA unsicher! 3

4 Ein erster Versuch: Trial Division Idee: Für alle natürlichen Zahlen Ô Ô Ò teste, ob Ô Ò. Ô Ò: Ô Ò: Teiler gefunden: STOP. Kein Teiler: CONTINUE. Aufwand: Ç Ò ¾ Ô ¾ Ò µ. Division: Ç Ò ¾ µ. Anzahl Schleifendurchläufe (worst case): Ô Ò Ô ¾ Ò. Verbesserung: Teste nur Primzahlen Ô. È Ô Ô Ò Ô Ø ÈÖ ÑÞ Ð. È Gesamtaufwand: Ç Ò Ô ¾ Ò µ. Ò Ô. ÐÒ ÔÒµ 4

5 Number trialdivision(number n) Number s := Ò; boolean isprime[] := new boolean[s]; Ô for (i := 2; i <= s; i++) isprime[i] := true; for (i = 2; i <= ); i++) if (isprime[i]) Ô j := i * i; while (j <= s) isprime[j] := false; j := j + i; for (i = 2; i <= s; i++) if ((isprime[i]) && (n % i == 0)) return i; return -1; 5

6 Methode von Fermat Idee: Finde Zahlen Ü Ý Ò Ü ¾ Ý ¾ Ü Ýµ Ü Ýµ. x := Ò ; y := 0; Ô ¾ do while (x - y > n) y := y + 1; if (x - y < n) x := x + 1; while (x - y n); Entgegengesetzte Laufrichtung: Ô Ò, ( Ô Ò ½),..., ½. Gut geeignet zum Finden von Faktoren in der Nähe von Ô Ò. 6

7 Ý Ý Pollards Rho-Algorithmus Ò Sei zusammengesetzt Ô und ein nicht-trivaler Teiler von Ò. Sei ferner ܵ Ü ¾ ½. Betrachte die Folge Ü ¼ ½ Ü Ü ½ µ ÑÓ Ò ½ Sei nun Ý Ü mod Ô. Wegen Ü Ü ½ µ ÑÓ Òµ folgt dann Ý Ý ½ µ ÑÓ Ôµ Da es nur Ô verschiedene Kongruenzklassen modulo Ô gibt, ergibt sich irgendwann eine Kollision: Ý Ý und somit ein Zyklus: Æ 7

8 Der Namensgeber: y i+1 y i+2 y=y i j y j-1 y 1 y 0 Aus Ý Ý folgt nun: Ü Ü ÑÓ Ôµ µ Ô Ü Ü µ Falls Ü Ü, ist mit Ì Ò Ü Ü µ ein echter Teiler von Ò gefunden. Problem: Wie findet man die Indizes und? Speichern aller Werte bei Weitem zu teuer! 8

9 Ü Ü Ü ½¾ Ü Ü ½ Ü Ü ½ Ü Ü ½ Und deren Produkte, z.b. Ñ Ü Ü µ Ü ¾ Ausweg: Verfahren von Brent oder Floyd s Cycle Trick Floyd s Cycle Trick Konstruiere eine Ü Folge Ý µ Ü µ Ý µµµ: Ü ½ Ü ¾ µ Ü ¾ Ü µ Ü Ü µ Ü Ü µ Ist ein Paar Ü Ýµ mit Ì Ò Ü Ýµ gefunden: STOP. Verfahren von Brent Betrachte die Differenzen Ü ½ Ü Ü Ü ¾ Ü µ. Ist ein Produkt Ñ Ü Ì Ò Ñµ mit gefunden: STOP. Ì Ò Ñµ Ò (Bei evtl. Backtracking.) 9

10 B-potenzglatt, falls für alle Primpotenzen Ô Pollards (p-1) - Algorithmus Definition. Sei eine natürliche Zahl. Eine ganze Zahl heiße B-glatt, falls für alle Primfaktoren Ô gilt: Ô, gilt: Ô. Pollards Idee Sei Ò eine zusammengesetzte Zahl und ein Ô Primfaktor. Sei beliebig, so dass Ô ½µ. Wegen Ô ½ ½ ÑÓ Ôµ Ð Ò Ö ÖÑ Ø Ö Ë ØÞµ ist auch ½ ÑÓ Ôµ Ð Ò Ö ÖÑ Ø Ö Ë ØÞµ µ Ô ½µ 10

11 Wenn Ò ½µ, dann ist wie beim Rho-Verfahren Ì Ò ½µ ein echter Teiler von Ò. Problem: Wie findet man ein geeignetes? Ô ½µ Sei -potenzglatt. Dann ist Vielfaches Ô von ½. for (j := 2; j <= B; j++) { a := aˆj mod n; if (j % 5 == 0) { g := gcd(a - 1, n); if (g > 1) return g; } } Platzbedarf: Ç Ç Ò µ. Zeitbedarf: µ. Ò ÐÒ µ 11

12 Fermats Idee: Finde Ü, Ý, so dass Ü ¾ Ý ¾ Ò Variation: (von Kraitchik oder Legendre) Ü ¾ Ý ¾ ÑÓ Òµ µ Ò Ü ¾ Ý ¾ µ µ Ò Ü Ýµ Ü Ýµ Wenn nun Ò Ü Ýµ, dann ist mit Ì Ò Ü Ýµ ein nicht-trivialer Faktor gefunden. Problem: Wie findet man Paare Ü Ýµ Ü ¾ Ý ¾ ÑÓ Òµ? 12

13 Methode von Dixon Sei µ ÑÓ Ò und eine Menge von Primzahlen (,,Faktorbasis ). Suche Paare µµ, so µ dass µ und über der Faktorbasis zerlegbar ist: Bilde Produkte Ô Ø ÔÖ Ñ µ Ô µ µ Ô µ Ë ¼ ½ Ë ¼ ¼ µ ½ µ µ so dass alle Primfaktorpotenzen von Ë ¼ geraden Exponenten haben. Es gilt ¾ µ ÑÓ Òµ Á µ Ë ¾ Ë ¼ ÑÓ Òµ Die gesuchte Form ist erreicht: Ô ¼ Ë Ü Ë Ý 13

14 Beispiel. Sei Ò ½ ein RSA-Modul und ½ die Faktorbasis. Es seien bereits folgende Kongruenzen gefunden: ¾ ¾ ½ ÑÓ Òµ ¾ ¾ ÑÓ Òµ ¾ ¾ ½ ÑÓ Òµ Dann folgt: ¾ ¾ ¾ µ ¾ ½µ ¾ ÑÓ Òµ ½½ ¾ ½ ¾ ÑÓ Òµ µ Ì ½½ ½ ½ µ ½½ ist ein Teiler von Ò. Ist die Größe der Faktorbasis, dann müssen höchstens ½ Kongruenzen gefunden werden, damit die quadratische Form hergestellt werden kann. 14

15 Herstellen der quadratischen Form durch Gauß sche Elimination. Beispiel. Ò ½ Sei ¾ ½½ ½ und ½. Folgende Kongruenzen sind bereits gefunden: ¾¼ ¾ ¾ ½ ¾¾ ¾ ¾ ½½ ¾ ¾ ½ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ¾ ½ ÙÒ ¾ ¾ ½½ Es resultiert die Matrix:

16 Die Matrix wird modulo 2 reduziert und dann mit Gauß transformiert:

17 Es ergibt sich, dass Ì ½½ ½ ½ µ ½½ ÙÒ Ì ¾ ½ µ ½½ Frage: Wie viele Kongruenzen müssen faktorisiert werden? Annahmen: Die Zeilen µ-matrix sind linear unabhängig. Ist ein perfektes Quadrat gefunden, gilt in 50% aller Fälle: Ü Ý ÑÓ Òµ µ Ü Ý Òµ Ò Dann ist die Wahrscheinlichkeit, einen nicht-trivialen Teiler zu finden È ½ ¾ 17

18 Optimale Wahl der Faktorbasis Welche Primzahlen sollten aufgenommen werden? Gesucht ist nach Primzahlen Ô, so dass Ô Ö Ö Òµ µ Ò Ö ¾ ÑÓ Òµ also Ò quadratischer Rest modulo Ô ist. µ das Legendre-Symbol Ò Ôµ muss +1 sein. Reduktion der Faktorbasis um ungefähr die Hälfte! 18

19 Das Quadratische Sieb Wenn Ò quadratischer Rest modulo Ô ist, also Ò ¾ ÑÓ Ôµ Ó Ö Ò µ ¾ ÑÓ Ôµ gilt, dann ist wegen Ôµ ¾ ¾ ¾ Ô ¾ Ô ¾ auch Ò Ö ¾ ÑÓ Ôµ Ö ÑÓ Ôµ Das heißt: Wenn es muss für jedes Ô nur einmal der Wert von berechnet werden. Danach steht genau fest, welche Öµ durch ein bestimmtes Ô teilbar sind. Es fallen keine erfolglosen Probedivisionen mehr an! 19

20 Ò ¾µ ½ ½ ¾ Ò ÑÓ ¾µ Ò µ ½ ½ ¾ ¾ ¾ Ò ÑÓ µ Ò µ ½ ½ ¾ ¾ Ò ÑÓ µ Ò ½ µ ½ ½ ¾ ½¾ ¾ Ò ÑÓ ½ µ ½ ¾ ½ ½ ¾ ½¼¾ ½ ¾ ½ ¾ ½¼ ¾¼ ¾ ½ ¾½ ¾ ¼ ¾¾ ¾ ¾ ¾ ½ ¾ ¾ ½ Beispiel. Sei Ò ½. Aufbau einer Faktorbasis mit : Ò µ ½ Ò ½½µ ½ Aufbau des Siebintervalls: Ohne Probedivision ist sofort erkennbar: ½ µ, ½ µ, ¾½µ und ¾ µ sind durch ¾ teilbar, ½ µ, ½ µ, ¾½µ und ¾ µ sind durch teilbar. 20

21 Ô Dividieren ohne Division Angenommen, eine Zahl Ñ könne komplett üeber der Basis zerlegt werden: Ô Ô ½ Ô ¾ Ô µ Ñ ½ µ ÐÓ Ñµ ÐÓ Ô µ ½ Beim Sieben sind keine Divisionen mehr nötig! Zusammenfassung: Quadratisches Sieb Aufbau einer Faktorbasis mit Primzahlen Ô Ò Ôµ ½, Lösen der Kongruenzen Ø ¾ Ò ÑÓ Ôµ, Finden von genügend vielen zerlegbaren Kongruenzen, Konstruktion der quadratischen Form. 21

22 Continued Fractions (CFRAC) Selbes Prinzip wie beim Quadratischen Sieb, aber Geschwindigkeit nicht durch Siebverfahren, sondern durch spezielle Reihenentwicklung, so dass ¾ Ò. Ô Öµ Asymptotische Laufzeiten Continued Fractions: Ç ¾ ÔÐÒ Òµ ÐÒ ÐÒ Òµµ µ, Quadratic Sieve: Ç ½ Ó ½µµ ÔÐÒ Òµ ÐÒ ÐÒ Òµµ µ, Elliptic Curve Method: Ç ½ Ó ½µµ Ô¾ ÐÒ Ôµ ÐÒ ÐÒ Ôµµ µ, Number Field Sieve: Ç ½ ¾ Ó ½µµ ÐÒ Òµµ½ ÐÒ ÐÒ Òµµµ ¾ µ. 22

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Faktorisierung. Sebastian Roekens

Faktorisierung. Sebastian Roekens Westfälische Wilhelms-Universität Münster Ausarbeitung Faktorisierung im Rahmen des Seminars Multimedia Sebastian Roekens Themensteller: Prof. Dr. Herbert Kuchen Betreuer: Dipl.-Wirt.Inform. Michael Poldner

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Kryptographie und Codierungstheorie

Kryptographie und Codierungstheorie Proseminar zur Linearen Algebra Kryptographie und Codierungstheorie Thema: Faktorisierungsalgorithmen (nach der Fermat'schen Faktorisierungsmethode) Kettenbruchalgorithmus (Continued Fraction Method) Quadratisches

Mehr

Seminar der WE AlZAGK. Glatte Zahlen

Seminar der WE AlZAGK. Glatte Zahlen Seminar der WE AlZAGK WiSe 200/ Glatte Zahlen von Sonja Riedel Mail: sriedel@math.uni-bremen.de Motivation Glatte Zahlen sind, grob gesagt, Zahlen, die nur kleine Primfaktoren besitzen. Sie werden in vielen

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Zerlegung in Quadratzahlen

Zerlegung in Quadratzahlen Zerlegung in Quadratzahlen Die Zerlegung von natürlichen Zahlen in die Summe von Quadratzahlen ist eine alte, abgeschlossene Theorie, die schon von FERMAT im 17. Jahrhundert und später von EULER, LAGRANGE

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Faktorisieren mit dem Quadratischen Sieb

Faktorisieren mit dem Quadratischen Sieb Faktorisieren mit dem Quadratischen Sieb Ein Beitrag zur Didaktik der Algebra und Kryptologie Ralph-Hardo Schulz und Helmut Witten Eines der zur Zeit schnellsten Verfahren zur Faktorisierung ganzer Zahlen

Mehr

Pollards Rho-Methode zur Faktorisierung

Pollards Rho-Methode zur Faktorisierung C A R L V O N O S S I E T Z K Y Pollards Rho-Methode zur Faktorisierung Abschlusspräsentation Bachelorarbeit Janosch Döcker Carl von Ossietzky Universität Oldenburg Department für Informatik Abteilung

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

Quadratisches Sieb. Aufgabenstellung

Quadratisches Sieb. Aufgabenstellung Quadratisches Sieb Aufgabenstellung Sei N > 1 eine zerlegbare positive ganze Zahl. Wir wollen ein Verfahren entwickeln, mit dem N in Primfaktoren zerlegt werden kann. Ist N von der Form N = p e mit einer

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.3 Angriffe auf das RSA Verfahren 1. Faktorisierungsangriffe 2. Andere Angriffe 3. Richtlinien für die Schlüsselauswahl Sicherheit des RSA Verfahrens Sicherheit des

Mehr

. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. /

. Zahlentheorie, Arithmetik und Algebra I. Tobias Polzer. Tobias Polzer Zahlentheorie, Arithmetik und Algebra I.. / Zahlentheorie, Arithmetik und Algebra I Tobias Polzer Tobias Polzer Zahlentheorie, Arithmetik und Algebra I / Modulare Arithmetik Motivation Rechenregeln schnelle Potenzierung Gemeinsame Teiler euklidischer

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Über das Hüten von Geheimnissen

Über das Hüten von Geheimnissen Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

3 Das RSA-Kryptosystem

3 Das RSA-Kryptosystem Stand: 15.12.2014 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Das RSA-Kryptosystem RSA: Erfunden von Ronald L. Rivest, Adi Shamir und Leonard Adleman, 1977. (Ein ähnliches Verfahren

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Prima Zahlen? Primzahlen

Prima Zahlen? Primzahlen Prima Zahlen? Primzahlen 10. Dezember 2009 Willi More willi.more@uni-klu.ac.at I n s t i t u t f ü r M a t h e m a t i k Überblick 1/ Primzahlen 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,

Mehr

Faktorisieren mit dem Quadratischen Sieb

Faktorisieren mit dem Quadratischen Sieb Faktorisieren mit dem Quadratischen Sieb Ein Beitrag zur Didaktik der Algebra und Kryptologie von Ralph-Hardo Schulz und Helmut Witten A Tale of Three Sieves Sieve the twos and sieve the threes The sieve

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Zahlentheorie, Arithmetik und Algebra 1

Zahlentheorie, Arithmetik und Algebra 1 Zahlentheorie, Arithmetik und Algebra 1 Monika Huber 24.6.2015 Monika Huber Zahlentheorie, Arithmetik und Algebra 1 24.6.2015 1 / 52 Übersicht Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen

Mehr

Quadratisches Sieb. Aufgabenstellung

Quadratisches Sieb. Aufgabenstellung Quadratisches Sieb Aufgabenstellung Sei N > 1 eine zerlegbare positive ganze Zahl. Wir wollen ein Verfahren entwickeln, mit dem N in Primfaktoren zerlegt werden kann. Ist N von der Form N = p e mit einer

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Probabilistische Primzahlensuche. Marco Berger

Probabilistische Primzahlensuche. Marco Berger Probabilistische Primzahlensuche Marco Berger April 2015 Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 4 1.1 Definition Primzahl................................ 4 1.2 Primzahltest...................................

Mehr

10. Public-Key Kryptographie

10. Public-Key Kryptographie Stefan Lucks 10. PK-Krypto 274 orlesung Kryptographie (SS06) 10. Public-Key Kryptographie Analyse der Sicherheit von PK Kryptosystemen: Angreifer kennt öffentlichen Schlüssel Chosen Plaintext Angriffe

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.3 Angriffe auf das RSA Verfahren 1. Faktorisierungsangriffe 2. Andere Angriffe 3. Richtlinien für die Schlüsselauswahl Sicherheit des RSA Verfahrens Sicherheit des

Mehr

Zusatztutorium, 25.01.2013

Zusatztutorium, 25.01.2013 Zusatztutorium, 25.01.2013 David Müßig muessig[at]mi.fu-berlin.de http://page.mi.fu-berlin.de/def/tutorium/ WiSe 12/13 1 Der Homomorphiesatz Der Homomorphiesatz scheint für viele eine Art rotes Tuch zu

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 4.2 Primzahltests 1. Deterministische Primzahltests 2. Der Primzahltest von Solovay-Strassen 3. Der Milner-Rabin Test Wozu Primzahltests? RSA Schlüssel benötigen sehr

Mehr

Praktische Informatik I Der Imperative Kern Mathematiknachhilfe

Praktische Informatik I Der Imperative Kern Mathematiknachhilfe Praktische Informatik I Der Imperative Kern Mathematiknachhilfe Prof. Dr. Stefan Edelkamp Institut für Künstliche Intelligenz Technologie-Zentrum für Informatik und Informationstechnik (TZI) Am Fallturm

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Randomisierte Primzahltests Paul Gamper

Randomisierte Primzahltests Paul Gamper Randomisierte Primzahltests Paul Gamper Seminar im Wintersemester 2006/07 Probability and Randomization in Computer Science 07.02.2007, Aachen 1 Abstract Nach einer Einführung, in der ich kurz auf die

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Primzahlen und Pseudoprimzahlen

Primzahlen und Pseudoprimzahlen 1 Primzahlen und Pseudoprimzahlen Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastik (WIAS), Berlin 20. Tag der Mathematik 9. Mai 2015, Beuth Hochschule für Technik Berlin Primzahlen

Mehr

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung)

Lösungsblatt zur Vorlesung. Kryptanalyse WS 2009/2010. Blatt 6 / 23. Dezember 2009 / Abgabe bis spätestens 20. Januar 2010, 10 Uhr (vor der Übung) Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May Mathias Herrmann, Alexander Meurer Lösungsblatt zur Vorlesung Kryptanalyse WS 2009/2010 Blatt 6 / 23. Dezember

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008

RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008 RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Zahlentheorie, Arithmetik und Algebra I. Felix Teufel Hallo Welt! -Seminar - LS 2

Zahlentheorie, Arithmetik und Algebra I. Felix Teufel Hallo Welt! -Seminar - LS 2 Zahlentheorie, Arithmetik und Algebra I Felix Teufel 26.07.2017 Hallo Welt! -Seminar - LS 2 Überblick Modulare Arithmetik Größter gemeinsamer Teiler Primzahlen Eulersche Φ-Funktion RSA Quellen 26.07.2017

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Primzahlen und Programmieren

Primzahlen und Programmieren Primzahlen Wir wollen heute gemeinsam einen (sehr grundlegenden) Zusammenhang zwischen Programmieren und Mathematik herstellen. Die Zeiten in denen Mathematiker nur mit Zettel und Stift (oder Tafel und

Mehr

Der euklidische Algorithmus für ganze Zahlen

Der euklidische Algorithmus für ganze Zahlen Der euklidische Algorithmus für ganze Zahlen Ein unverzichtbares Verfahren in der Kryptographie ist der euklidische Algorithmus. In diesem Kapitel stellen wir die erste Version für ganze Zahlen vor. Sei

Mehr

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel:

RSA-Verschlüsselung. Verfahren zur Erzeugung der beiden Schlüssel: RSA-Verschlüsselung Das RSA-Verfahren ist ein asymmetrisches Verschlüsselungsverfahren, das nach seinen Erfindern Ronald Linn Rivest, Adi Shamir und Leonard Adlemann benannt ist. RSA verwendet ein Schlüsselpaar

Mehr

Das P versus N P - Problem

Das P versus N P - Problem Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick

Mehr

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009

Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009 19. Mai 2009 Einleitung Problemstellung Beispiel: RSA Teiler von Zahlen und Periode von Funktionen Klassischer Teil Quantenmechanischer Teil Quantenfouriertransformation Algorithmus zur Suche nach Perioden

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c)

5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) 5.2 Das All-Pairs-Shortest-Paths-Problem (APSP-Problem) Kürzeste Wege zwischen allen Knoten. Eingabe: Gerichteter Graph G =(V, E, c) mit V = {1,...,n} und E {(v, w) 1 apple v, w apple n, v 6= w}. c : E!

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Ein einfacher Primzahltest

Ein einfacher Primzahltest Faktorisierung großer Zahlen Die Sicherheit moderner Datenverschlüsselung beruht darauf, daß es ungeheuer schwierig ist, eine mehr als 100stellige Zahl in ihre Primfaktoren zu zerlegen. Die Technik der

Mehr

Faktorisierung mit Elliptischen Kurven

Faktorisierung mit Elliptischen Kurven Universität Bremen FB 3 - Institut für Mathematik Wintersemester 2010 / 2011 Seminar der WE AlZAGK: Faktorisierung und diskreter Logarithmus Betreuer: Prof. Jens Gamst Schriftliche Ausarbeitung zum Thema:

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Einführung in Computer Microsystems

Einführung in Computer Microsystems Einführung in Computer Microsystems Kapitel 9 Entwurf eines eingebetteten Systems für Anwendungen in der IT-Sicherheit Prof. Dr.-Ing. Sorin A. Huss Fachbereich Informatik Integrierte Schaltungen und Systeme

Mehr

Effiziente Algorithmen mit Python. D. Komm, T. Kohn

Effiziente Algorithmen mit Python. D. Komm, T. Kohn Effiziente Algorithmen mit Python D. Komm, T. Kohn Copyright c 2017, ABZ, ETH Zürich http://www.abz.inf.ethz.ch/ Version vom 7. September 2017. Effiziente Algorithmen mit Python 3 1 Effizienz Effizient

Mehr

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger

Der Primzahltest von Agrawal, Kayal und Saxena. Dr. Gerold Jäger Der Primzahltest von Agrawal, Kayal und Saxena Dr. Gerold Jäger Habilitationsvortrag Christian-Albrechts-Universität zu Kiel Institut für Informatik 19. Januar 2011 Dr. Gerold Jäger Habilitationsvortrag

Mehr

Diskreter Logarithmus und Primkörper

Diskreter Logarithmus und Primkörper Diskreter Logarithmus und Primkörper Neben dem RSA-Verfahren ist die ElGamal-Verschlüsselung 8 ein weiteres klassische Public-Key-Verfahren, welches von Taher ElGamal auf der Konferenz CRYPTO 84 vorgestellt

Mehr

Alignment-Verfahren zum Vergleich biologischer Sequenzen

Alignment-Verfahren zum Vergleich biologischer Sequenzen zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler

Mehr

PRIMZAHLEN PATRICK WEGENER

PRIMZAHLEN PATRICK WEGENER PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier

Mehr

Hallo Welt für Fortgeschrittene

Hallo Welt für Fortgeschrittene Hallo Welt für Fortgeschrittene Zahlentheorie, Arithmetik und Algebra 1 Florian Habur Informatik 2 Programmiersysteme Martensstraße 3 91058 Erlangen Übersicht Modulare Arithmetik Rechenregeln Fast Exponentiation

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Ulrich Rabenstein 18.06.2013 Ulrich Rabenstein Zahlentheorie, Arithmetik und Algebra I 18.06.2013 1 / 34 1 Modulare Arithmetik 2 Teiler 3 Primzahlen Ulrich Rabenstein

Mehr

p Z >1 ist Primzahl, wenn gilt Euklid:

p Z >1 ist Primzahl, wenn gilt Euklid: Grundlegende Tatsachen über den Ring Z Z; +, ist ein nullteilerfreier Ring Divisionseigenschaft a Z, b Z > q, r Z : a = b q + r, r < b Arithmetik Grundlegende Tatsachen über den Ring Z Euklidischer Algorithmus

Mehr

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus,

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus, Modulare Quadratwurzeln beim Fiat-Shamir-Verfahren zur Authentikation (zu Grundkurs Codierung, 3. Auflage 2006, Vieweg Verlag, ISBN 3-528-25399-1, Unterkapitel 5.10, Seiten 303 ff) update vom 20.03.1996

Mehr

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus,

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus, Modulare Quadratwurzeln beim Fiat-Shamir-Verfahren zur Authentikation (zu Grundkurs Codierung, 3. Auflage 2006, Vieweg Verlag, ISBN 3-528-25399-1, Unterkapitel 5.10, Seiten 303 ff) update vom 20.03.1996

Mehr

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt:

Zur Vereinfachung betrachten wir nun nur noch Funktionen f, die einen Funktionswert f nµberechnen. Sie werden alle in einer Tabelle dargestellt: Informatik 13: Gierhardt Theoretische Informatik III Berechenbarkeit Nicht-berechenbare Funktionen Nach der Church-Turing-These kann alles, was berechenbar ist, mit einer Turing-Maschine oder einer While-Maschine

Mehr

Das RSA Kryptosystem

Das RSA Kryptosystem Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Tag der Mathematik Graz 6. Februar 2014 Einleitung Eine (positive) Primzahl ist

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop

Mathematisches Kaleidoskop 2014 Materialien Teil 2. Dr. Hermann Dürkop Mathematisches Kaleidoskop 2014 Materialien Teil 2 Dr. Hermann Dürkop 1 1.6 Quadratische Reste und das Legendre-Symbol Im folgenden seien die Moduln p immer Primzahlen. Wir haben bisher gesehen, ob und

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44 Aufgabe 33 a) Der Pseudobefehl move $rd,$rs wird als addu $rd,$0,$rs übersetzt. Dabei macht sich SPIM zunutze, dass das Register $0 immer Null ist. Somit wird das Register $rd ersetzt durch $rd=0+$rs=$rs,

Mehr

Primzahlen im Schulunterricht wozu?

Primzahlen im Schulunterricht wozu? Primzahlen im Schulunterricht wozu? Franz Pauer Institut für Fachdidaktik und Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2013 5. April 2013 Einleitung Eine (positive)

Mehr

Referat Algorithmische Anwendungen WS 06/07

Referat Algorithmische Anwendungen WS 06/07 Referat Algorithmische Anwendungen WS 06/07 Primzahlfaktorisierung Team C_gelb_ALA0607 Inga Feick, 11034165, inga.feick@web.de Marc Kalmes, 11025526, ai233@gm.fh-koeln.de 23.01.2007 Problemstellung Dieses

Mehr