Elektrostatik. Kapitel Problemstellung

Größe: px
Ab Seite anzeigen:

Download "Elektrostatik. Kapitel Problemstellung"

Transkript

1 Kapitel 2 Elektostatik 2. Poblemstellung In de Elektostatik inteessieen wi uns fü ein elektische Felde, d.h. B ~ = und ~j =.WiinteessieenundfüdenstatischenFall,d.h.dievebleibenden Vaiablen und E ~ hängen nu vom Ot ~ ab. Elektostatische Appaate spielen eine goße Rolle in physikalischen Aufbauten, abe auch in de Technik z.b. von Bildschimöhen. Elektostatische Felde bescheiben in gute Näheung den Atombau und Wechselwikungen auf molekulae Skala - was die Welt, im Innesten zusammenhält. In nicht-pathologischen Eichungen ist fü die Elektostatik A ~ =. Die Gleichung fü das vebleibende Skalapotenzial (.4) eduziet sich damit zu Poissongleichung (~) = (~). De ladungsfeie Fall =hat mit Laplacegleichung einen speziellen Namen. Andes als im eindimensionalen Fall hat auch die Laplacegleichung vielfältige Lösungen. E ist wichtig, da aufgund de Lineaität de Maxwellgleichungen zu jede Lösung de Poissongleichung eine Lösung de Laplacegleichung addiet weden kann. Waum wüden wi das tun? Nun, die Poissongleichung ist nu dann eindeutig lösba, wenn wi zusätzlich eine Randbedingung auf eine geschlossenen Fläche angeben. Wi weden späte spezielle Randbedingungen kennenlenen. Sie kennen dieses Phänomen aus de klassischen Mechanik - die Lösung ein und deselben Newtonschen Bewegungsgleichung kann seh veschieden sein, ja nach Anfangsbedingung. Das heißt eine elektostatische Aufgabe ist nu duch Angabe de vogegebenen Ladungsveteilung und eine Randbedingung komplett. Wi haben auch eine vebleibende Eichfeiheit: Da die physikalische Obsevable, das E-Feld, ~ eine Ableitung des Potenzials ist, können wi eine additive Konstante fei wählen. 5

2 2.2 Rotationssymetische Aufgaben Wi beginnen mit dem Spezialfall, dass die Ladungsveteilung (~) um den Uspung (den wi geeignet gewählt haben) vollständing otationssymmetisch ist und wi außedem eine otationssymetische Randbedingung setzen. Zu mathematischen Bescheibung wählen wi Kugelkoodinaten (,, ). In de theoetischen Physik übesetzen sich diese in katesische Koodinaten (x, y, z) wie x y z A sin cos sin sin cos A >, apple apple, apple apple 2. De Otsvekto ~ hat damit automatisch die Kugelkoodinaten (,, ). Wi können am Ot ~ ein Koodinatendeibein definieen aus sin cos cos cos ê sin sin A ê cos sin A ê sin cos A. cos sin Analog zu den Koodinatenvektoen in katesischen Koodinaten zeigt ê in die Richtung in de sich nu veändet und und konstant sind etc. Wi nennen die Richtung von die adiale Richtung, die von ê azimuthal und die von ê pola. DieRichtungdeEinheitsvektoenistselbstotsabhängigund wi ehalten daum gekümmte Koodinatenlinien - Längen- und Beitenkeise. Wi können ein Vektofeld daum scheiben wie E ~ (,, )=E (,, )ê + E (,, )ê + E (,, )ê. In de kugelsymmetischen Situation gehen wi diekt übe die Maxwellgleichung (.4). Dazu benötigen wi eine Dastellung de Divegenz in Kugelkoodinaten. Anwendung de Kettenegel und de Substitutionsegeln gibt ~ ~E 2 E (sin E (2.) Wi können dies auf ein eindimensionales Poblem eduzieen. ~ E kann nu von abhängen (da wede die Randbedingung noch die Ladungsveteilung diese Symmetie bechen). Wi sehen leicht, dass dies ezwingt, dass das Feld in ein adiale Richtung zeigt, ~ E () =E()ê. Die Kombination aus 2 E = 2 (). Wi können diese Gleichung leicht integieen zu E () = 2 d 2 ( ). (2.2) Dieses Egebnis kann auf eine physikalisch tanspaentee At und Weise hegeleitet weden, die auch die Intepetation bestimmt. Wi staten von de Divegenz in de Maxwellgleichung (.2) und wenden auf sie den Satz von Gauß 6

3 (.) an, wobei wi als Integationsvolumen eine Kugel vom Radius um den Uspung wählen d 2 E = d 3 ( ). (2.3) = Das Integal auf de echten Seite hat eine einfache Intepetation, es handelt sich um die von de Kugel eingeschlossene Ladung Q(). Aufgundde Kugelsymmetie können wi sie veeinfachten mittels 2 Q() = d 3 ( )= d 2 d cos d ( ). < Die Substitution in Kugelkoodinaten, die wi hie duchgefüht haben, lässt sich leicht aus deen Definition heleiten. Jetzt bingen wi die Rotationssymetie ins Spiel und beechnen Q() =4 < d 2 ( ). (2.4) Andeeseits können wi uns jetzt an die linke Seite von Gl. (2.3) machen. Da E ()nicht von den Winkeln abhängt, können wi es aus dem Integal heausziehen, das Integal eduziet sich zu Obefläche und wi finden E () = Q() 4 2. (2.5) Dies ist das Coulombgesetz, und es ist offensichtlich äquivalent zu Gl. (2.2) via Gl. (2.4). Als Beispiel betachten wi die homogen geladene Kugel vom Radius R mit Gesamtladung Q. Die Ladungsdichte ist damit () = 3Q (R ) 4 R3 wobei bdie Heavisidesche Stufenfunktion ist 8 >< x> (x) = /2 x = >: x< Hie ist de Wet bei x =meist nicht elevant, solange e endlich ist. Wi beechnen zunächst fü <R Q() =4 Damit haben aus Gleichung (2.5) d 2 ( )= 3Q 3 R 3 3 = Q 3 R 3. E () = Q 4 ( R 3 2 <R >R 7

4 Hieaus können wi auch das elektische Potenzial ausechnen, anhand des Gadienten in Polakoodinaten E () (). Typischeweise wählen wi (!)=und können integieen Fü >Rhaben wi () = () = und innehalb de Kugel <R Q 4 d E ( ). d 2 = Q 4 (2.6) () = Q 4 R 3 R d + (R) = Q 8 R 3 R2 2 + Q 4 R. Besondes inteessant ist de Fall eine Punktladung, d.h. die (endliche) Ladung Q ist konzentiet im Radius R =. Die Ladungsveteilung kann mit dem Diacdelta geschieben weden als (~) =Q 3 (~). Hie gilt das Coulombpotential (2.6) übeall. 2.3 Zylindesymmetische Ladungsveteilung Analog zu Vogehensweise im kugelsymmetischen Fall, können wi den Gaußschen Satz auch auf steng zylindesymmetische Ladungsveteilungen anwenden. Die Zylindekoodinaten (,,z) hängen mit den katesischen Koodinaten via x = cos und y = sin zusammen. Zylindesymmetie bedeutet hie, dass = () ist also insbesondee nicht von z abhängt. Dies bedeutet, dass die Ladungsveteilung in z-richtung unendlich ausgedehnt sein muss. Wi definieen hie q () als die Ladung po Länge, die in einem Zylinde de Länge eingeschlossen ist. Dann ist mit Agumenten analog zu denen oben das elektische Feld nu mit eine Komponente in adiale Richtung ausgestattet ~E = q() cos 2 ê ê sin A und das Potenzial mit dem fü diese Symmetie typischen logaithmischen Potenzial fü den Fall eine Linienladung Details als Übungsaufgabe. () = q 2 log. (2.7) oftmals wid statt vewendet, was hie abe mit de Ladungsdichte vewechselt weden könnte 8

5 2.4 Allgemeine Lösung mittels Geensche Funktion 2.4. Lineae Pobleme und Geensche Funktionen Wi beginnen zunächst mit de Betachtung lineae Gleichungssyteme fü einen (i.a. n-dimensionalen) Vekto x. Fü eine gegebene Inhomgenität können diese geschieben weden als A x = y. Dieses können wi mit veschiedenen Methoden lösen, z.b. mittels Gauß-Elimination. Wenn die Aufgabe besondes wichtig ist und wi viele Inhomogenitäten studieen wollen, dann invetieen wi zuest die Matix, d.h. wi finden A so, dass A A = I. Wenn wi dies haben, dann können wi die Lösung zum uspünglichen lineaen Gleichungssystem eduzieen auf x = A y. Letzees können wi leicht beweisen indem wi nachechnen A x = A A y = y. Die Eigenschaft, die wi hie eingesetzt haben, ist im Wesentlichen die Lineaität de Gleichung. Da die Maxwellgleichungen auch linea sind, möchten wi diese Technik hie nutzen. Alledings sind dies keine lineaen algebaischen Gleichungen, sonden Diffeenzialgleichungen. Die Vektoen sind Funktionen und statt natüliche Zahlen als Index müssen wi eelle Zahlen q (bzw. Tupel eelle Zahlen) als Index akzeptieen. Die Matix A wid esetzt duch den (beliebigen) Diffeenzialopeato D q sowie eine Randbedingung. Wi stellen jetzt die Gleichungen aus dem algebaischen Poblem - nicht in Matix-, sonden in Koeffizientenscheibweise - mit den Diffenzialvesionen gegenübe. Wi möchten gene lösen X A ji x i = y j D q f(q) =g(q). (2.8) i Die Invese des lineaen Opeatos nennen wi hie G (q, q ).DieBestimmungsgleichung ist X A ji A ik = jk D q G(q, q )= (q q ) + Randbedingungen. (2.9) i Hie haben wi fü den Fall von Matizen das Koneckedelta und fü die Diffeenzialgleichung das Diacdelta eingefüht. Wenn wi G gefunden haben, können wi die uspüngliche Diffeenzialgleichung fü jede Inhomogenität g(q) lösen indem wi ausechnen f(q) = dq G (q, q ) g (q ). An diese Stelle sehen wi, dass es wichtig ist, G als Matix (also als Funktion von zwei Indizes) zu behandeln - was hie steht ist die Anwendung eine Matix auf einen Vekto. Dies ist auch wichtig wenn wi nachechnen, dass f tatsächlich Gl. (2.8) löst D q f(q) = D q dq G (q, q ) g (q )= dq [D q G (q, q )] g (q ) = dq (q q ) g (q )=g(q). 9

6 Das Lösen eine lineen Diffeenzialgleichung kann also auf die Bestimmung eine Geenschen Funktion zuückgefüht weden - und auf die Beechnung des Integals übe die Inhomogenität. Dies definiet einen klaen Weg, den wi jetzt fü die Elektostatik bescheiten wollen Geensche Funktion fü die Poissongleichung mit einfachen Randbedingungen Die echt subtile Diskussion von Randbedingungen in Geensfunktionspoblemen wollen wi zunächst vemeiden, indem wi die Poissongleichung mit eine einfachen Randbedingung im Unendlichen betachten = lim! (~) =. (2.) Die Bestimmungsgleichung fü die Geensche Funktion (2.9) ist in diesem Fall G (~,~ )= 3 (~ ~ ) (2.) Da de Diffeenzialopeato selbst den Ot ~ nicht explizit enthält und auch die Randbedingung tanslationsunabhängig ist (veschobenes Unendlich ist imme noch Unendlich) hängt die Geensfunktion nu von de Diffeenz de Koodinaten ~x = ~ ~ ab und wi können umscheiben G (~x) = 3 (~x). (2.2) Da die Funktion im unendlichen veschwindet, können die Gleichung Fouietansfomieen zu k 2 G ~k = ) G ~k = k 2. Diesen beückend einfachen Ausduck wollen wi jetzt zuücktansfomieen gemäß d 3 k G (~x) = k ~x (2 ) 3 ei~ k 2. Zu Behandlung dieses Integals fühen wi jetzt Kugelkoodinaten im ~ k- Raum ein und bestimmen dass de Winkel zwischen ~ k und ~x ist. Damit haben wi k 2 G (~x) = dk (2 ) 3 k 2 d cos e ikx cos d ikx cos = 4 2 dk d cos e = 4 2 dk cos cos = eikx ikx cos = = sin kx 2 2 dk kx. 2

7 Das letzte Integal, das wi ausechnen müssen, ist das übe die sinc-funktion, die Sie wahscheinlich aus de Beugung kennen. Es ist 2x (nachschauen!) und wi finden insgesamt G (~,~ )= 4 ~ ~ (2.3) Dies ist natülich eine bekannte Funktion - bis auf den Vofakto q/ den wi beim Übegang von (2.) zu (2.2) unteschlagen haben - das Potenzial von eine Punktladung am Punkt ~ gemessen am Punkt ~. Kla, die Bestimmungsgleichung (2.) ist ja auch die entsechende Poissongleichung. Damit ist die Lösung des allgemeinen elektostatischen Poblems mit de einfachen Randbedingung, Gl. (2.) (~) = d 3 (~ ) 4 ~ ~. (2.4) Wi scheiben also das Potenzial als mit de Ladungsdichte gewichtete Übelageung von Punktladungen. Mit dem Finden diese wichtigen Dastellung ist abe unsee Abeit nicht eledigt, denn die Beechnung des Integals efodet im Allgemeinen weitee Näheungsmethoden Einfache Anwendung de Geensfunktionslösung Wi betachten einen Fall, in dem das Integal (2.4) geschlossen ausgeechnet weden kann: Eine Linienladung bei x = y =und z <L.DieLadungsdichte ist (~) = (x) (y) (L z ). = Q/2L ist die Linienladungsdichte. Wi bezeichnen R = p x 2 + y 2 und ehalten aus Gl. (2.4)(2.4) (~) = 4 L L dz q R 2 +(z z ) 2 = 4 (L/2 z)/r (L/2+z)/R ds p +s 2. Hie haben wi s =(z z)/r substituiet. Bei de Beechnung kompliziete Integale duch Nachschlagen empfiehlt es sich imme, zuest das Integal so einfach wie möglich dimensionslos zu machen. Hie sehen wi z.b. sofot, dass de Abstand des Aufpunkts vom Ende de Linienladung veglichen mit dem Abstand von de Linienladung ein wesentliche Paamete ist. Wi schlagen nach und finden, dass (~) = sinh L/2 z +sinh L 2 + z!. 4 R Wi können das im Fall L!mit unsee Lösung mittels Gausschem Satz vegleichen. Wi nutzen die Identität sinh x = log x + p +x 2 und finden L (~) = log +const. 2 R in Übeeinstimmung mit Gl. (2.7). 2

8 2.5 Multipolentwicklung Abgesehen von Spezialfällen ist das Integal in Gl. (2.4) schwieig zu beechnen. Wi fühen daum die Multipolentwicklung als Näheungsmethode ein, die auch eine klae physikalische Intepetation zulässt Multipolentwicklung in katesischen Koodinaten Wi fühen die Entwicklung zunächst in katesischen Koodinaten duch, die einen besseen Anschluss zu Expeimentalphysik elauben abe schwe in hohe Odnungen zu bingen sind. Die Cux an Gl. (2.4) ist die äumliche Abhängigkeit des Nennes p ~ ~ = ~ ~. Insbesondee das Skalapodukt am Ende vedient besondee Aufmeksamkeit. Wi gehen jetzt davon aus, dass wi uns weit weg von de Ladungsveteilung befinden, d.h. außehalb eine Kugel um den Uspung mit Radius R ist keine Ladung, =und wi beechnen das Feld in einem Aufpunkt ~ mit R. Dies elaubt es, / als kleinen Paamete zu behandeln. Wi nutzen außedem die binomische Reihenentwicklung ( + x) /2 = X k= /2 k x k = x 2 + 3x2 8 + O x3. (2.5) Wi entwickeln also! ~ ~ ~ ~ = = ~ ~ / (~ ~ ) O 4. (2.6) Hie ist zu beachten, dass wi am Ende einmal einen Tem aus de esten Odnung von (2.5) mit de zweiten Odnung kombinieen, weil die beide die gleiche Odnung in / haben. Auch gilt es zu beachten, dass jedes ~ im Zähle natülich mit O () zu Gesamtodnung des beteffenden Tems zählt. Wi diskutieen jetzt diese dei Odnungen in /. De este Tem in de Klamme nähet ~ ~ ' /. In diese Näheung ist dann Gl. (2.4) näheungsweise (~) ' (~) = Q 4 Q = d 3 (~). Diese Odnung fällt also wie / ab und ist allein duch die Gesamtladung Q gegeben. Das Potenzial ist isotop. Man nennt dies auch den Monopolbeitag. In de nächsten Odnung ehalten wi eine Koektu in de nächsten Odnung von de Fom d (~) = ~ d ~e d= ~ 4 2 d 3 ~ (~). 22

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Lösung der Aufgabe 4.2.2

Lösung der Aufgabe 4.2.2 Elektomagnetische Felde und Wellen: Lösung de Aufgabe 422 1 Lösung de Aufgabe 422 Übeabeitet von: JüM 172005 Aufgabe wie in de Klausu Eine Kugel vom adius ist gleichfömig in x-ichtung polaisiet mit P =

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor.

Der elektrische Dipol Sind zwei unterschiedliche Ladungen in einem Abstand d angeordnet, dann liegt ein elektrischer Dipol vor. De elektische Dipol Sind zwei unteschiedliche Ladungen in einem Abstand d angeodnet, dann liegt ein elektische Dipol vo. +q d q Man definiet das Dipolmoment: p q d Das Diplomoment ist ein Vekto, de entlang

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Dr. Jan Friedrich Nr L 2

Dr. Jan Friedrich Nr L 2 Übungen zu Expeimentalphysik 4 - Lösungsvoschläge Pof. S. Paul Sommesemeste 5 D. Jan Fiedich N. 4 9.5.5 Email Jan.Fiedich@ph.tum.de Telefon 89/89-1586 Physik Depatment E18, Raum 3564 http://www.e18.physik.tu-muenchen.de/teaching/phys4/

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Newtons Problem des minimalen Widerstands

Newtons Problem des minimalen Widerstands Newtons Poblem des minimalen Widestands Newton-Poblem (685: Wie muss ein sich in eine Flüssigkeit mit konstante Geschwindigkeit bewegende Köe aussehen, damit e, bei vogegebenem maximalen Queschnitt einen

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Magnetostatik. Feldberechnungen

Magnetostatik. Feldberechnungen Magnetostatik 1. Pemanentmagnete. Magnetfeld stationäe Stöme i. Elektomagnetismus Phänomenologie ii. Magnetische Fluss Ampeesches Gesetz iii. Feldbeechnungen mit Ampeschen Gesetz i.das Vektopotenzial.

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

12. Berechnung reeller Integrale mit dem Residuensatz

12. Berechnung reeller Integrale mit dem Residuensatz 72 Andeas Gathmann 2. Beechnung eelle Integale mit dem esiduensatz Wi haben geade gesehen, dass man mit Hilfe des esiduensatzes nahezu beliebige geschlossene komplexe Kuvenintegale beechnen kann. In diesem

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

Inhalt der Vorlesung Teil 2

Inhalt der Vorlesung Teil 2 Physik A/B SS 7 PHYSIK B Inhalt de Volesung Teil 3. Elektizitätslehe, Elektodynamik Einleitung Elektostatik Elektische Stom Magnetostatik Zeitlich veändeliche Felde - Elektodynamik Wechselstomnetzweke

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

1 Lineare Bewegung der Körper

1 Lineare Bewegung der Körper Lineae Bewegung de Köpe.3 Regentopfen und Fallschimspinge (v 0 (t) = g v(t)) In beiden Fällen handelt es sich um Objekte, die aus goßen Höhen fallen und von dem duchfallennen Medium (Luft) gebemst weden.

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

Vektoranalysis Teil 1

Vektoranalysis Teil 1 Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten:

Tutoriumsaufgaben. 1. Aufgabe. Die Eulerschen Formeln für Geschwindigkeiten und Beschleunigungen auf einem Starrkörper lauten: Technische Univesität elin Fakultät V Institut fü Mechanik Fachgebiet fü Kontinuumsmechanik und Mateialtheoie Seketaiat MS 2, Einsteinufe 5, 10587 elin 9. Übungsblatt-Lösungen Staköpekinematik I SS 2016

Mehr

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP Vewandte Begiffe Elektisches Feld, Feldstäke, elektische Fluss, elektische Ladung, Gauß-Regel, Obeflächenladungsdichte, Induktion, magnetische Feldkonstante, Kapazität, Gadient, Bildladung, elektostatisches

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Polar-, Zylinder-, Kugelkoordinaten, Integration

Polar-, Zylinder-, Kugelkoordinaten, Integration Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))

Mehr

T5 Ausstrahlungsprobleme

T5 Ausstrahlungsprobleme T5 Ausstahlungspobleme T5. Potentiale und Wellengleichung Die Quelle elektomagnetische Stahlung, d.h. von Wellen, die sich im ganzen Raum ausbeiten, sind zeitlich veändeliche Ladungs- und Stomdichten.

Mehr

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6

I 1. x r 2. PDDr. S.Mertens M. Hummel SS 2009 06.05.2009. Theoretische Physik II Elektrodynamik Blatt 6 PDD. S.Metens M. Hummel Theoetische Physik II Elektodynamik Blatt 6 SS 29 6.5.29 I M 1. Halbunendliche Leiteschleife. Gegeben sei die abgebildete Leiteschleife aus zwei einseitig unendlichen (4Pkt.) Dähten

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Einführung in die Vektoranalysis

Einführung in die Vektoranalysis Einfühung in die Vektoanalysis Eckad Specht Geschieben fü Matoids Matheplanet Vesion. www.matheplanet.com Novembe 23 Studenten stömen seit einigen Wochen wiede in die Hösäle und venehmen dieses fuchteinflößende

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Wasserstoff mit SO(4)-Symmetrie

Wasserstoff mit SO(4)-Symmetrie Wassestoff mit SO(4)-Symmetie von Eduad Belsch Univesität Hambug 0. Dezembe 0 Inhaltsvezeichnis Einleitung Runge-Lenz-Vekto. klassisch......................................... quantenmechanisch..................................

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Transformation der Cauchy-Riemann-DGLen

Transformation der Cauchy-Riemann-DGLen Tansfomation de Cauchy-Riemann-DGLen von Benjamin Schwaz 4 Mai 27 Tansfomationsfomel Fü gewöhnlich weden die Cauchy-Riemannschen Diffeentialgleichungen fü eine Abbildung f : U R 2 mit U R 2 bezüglich de

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Experimentelle Physik II

Experimentelle Physik II Expeimentelle Physik II Sommesemeste 08 Vladimi Dyakonov (Lehstuhl Expeimentelle Physik VI VL#4/5 07/08-07-008 Tel. 0931/888 3111 dyakonov@physik.uni-wuezbug.de Expeimentelle Physik II 8. Bandstuktu und

Mehr

Raytracing: Einfache Schnitttests

Raytracing: Einfache Schnitttests Raytacing: Einfache Schnitttests Ceative Commons Namensnennung 3.0 Deutschland http://ceativecommons.og/licenses/by/3.0/de/ P. Hofmann, 22. August 2010 http://www.uninfomativ.de Einleitung Tests, ob ein

Mehr

Geometrie Skript für die Vorlesung: , G, Geometrie, 86-3, Ausgabe 2002

Geometrie Skript für die Vorlesung: , G, Geometrie, 86-3, Ausgabe 2002 Reseach Collection Educational Mateial Geometie Skipt fü die Volesung: 91-157, G, Geometie, 86-3, Ausgabe 2002 Autho(s): Walse, Hans Publication Date: 2002 Pemanent Link: https://doi.og/10.3929/ethz-a-004377954

Mehr

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi

Shift-Invarianz, periodische Funktionen, diskreter Logarithmus, hi Shift-Invaianz, peiodische Funktionen, diskete Logaithmus, hidden-subgoup-poblem Infomation und Codieung 2 SS 200 22. Juni 200 Shift-Invaianz de Fouie-Tansfomation f (y) = 2π f (x) e iyx dx Ist (T z f

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage

Elektrostatik. Kräfte zwischen Ladungen: quantitative Bestimmung. Messmethode: Coulombsche Drehwaage Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld i) Feldbegiff, Definitionen ii) Dastellung von Felden iii) Feldbeechnungen

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen,

Kondensatoren & Dielektrika. Kapazität, Kondensatortypen, Kondensatoen & Dielektika Kapazität, Kondensatotypen, Schaltungen, Dielektika 9.6. Sanda Stein Kondensatoen Bauelement, das elektische Ladung speichen kann besteht aus zwei leitenden Köpen, die voneinande

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Magnetfeld: Pemanentmagnete und Elektomagnete F = qv B B Gekeuzte Felde De Hall-Effekt Geladene Teilchen auf eine Keisbahn = mv

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen

Grundlagen der Elektrotechnik - Einführung Bachelor Maschinenbau Bachelor Wirtschaftsingenieurwesen Maschinenbau Bachelor Chemieingenieurwesen Gundlagen de Elektotechnik - Einfühung Bachelo Maschinenbau Bachelo Witschaftsingenieuwesen Maschinenbau Bachelo Chemieingenieuwesen Jun.-Pof. D.-Ing. Katin Temmen Fachgebiet Technikdidaktik Institut fü

Mehr

Geometrie der Cartan schen Ableitung

Geometrie der Cartan schen Ableitung Geoetie de Catan schen Ableitung - - Notation Sei + Sei + Wi bezeichnen it ( L den Vektoau alle fach ultilineaen Abbildungen f : -al 2 Wi bezeichnen it S die Guppe alle Peutationen σ : {,, } {,, } Des

Mehr

Titrationskurven in der Chemie

Titrationskurven in der Chemie RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.

Mehr

11.11 Das elektrische Potential

11.11 Das elektrische Potential . Das elektische Potential Wie wi im voigen Abschnitt gesehen haben kann eine Pobeladung q in jedem Punkt P eines elektischen Feldes eine feldezeugenden Ladung Q eindeutig eine entielle negie zugeodnet

Mehr

5.3 Die hypergeometrische Verteilung

5.3 Die hypergeometrische Verteilung 5.3 Die hypegeometische Veteilung Das Unenmodell fü die hypegeometische Veteilung ist die Ziehung ohne Zuücklegen. Die Une enthalte n Kugeln, davon s schwaze und w n s weiße. De Anteil p : s n de schwazen

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Flächenberechnungen 2b

Flächenberechnungen 2b Flächenbeechnungen b Teil b: Flächenbeechnungen mit Integal (Fotsetzung) Datei N. 8 Juni Fiedich Buckel Intenatsgymnasium Schloß Togelow Inhalt Datei 8. Rechtecksmethoden. Ein estes goßes Beispiel. Heleitung

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Musterlösungen. Theoretische Physik I: Klassische Mechanik

Musterlösungen. Theoretische Physik I: Klassische Mechanik Blatt 8.0.0 Mustelösungen Theoetische Physik I: Klassische Mechanik Pof. D. G. Albe MSc Nenad Balanesković Das Zwei-Köpe-Poblem. Zeigen Sie, dass fü die PotentialfunktionU x x ) gilt mit = x x. x U x x

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Anhang 1: Gradient, Divergenz, Rotation

Anhang 1: Gradient, Divergenz, Rotation Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen

Mehr

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven

4.1 Lagrange-Gleichungen, Integrale der Bewegung, Bahnkurven Das Zwei-Köe-Poblem 9 Woche_Skitoc, /5 agange-gleichngen, Integale e Bewegng, Bahnkven Betachtet ween wei Pnktmassen m n m an en Oten (t n (t, ie übe ein abstansabhängiges Potenial U( miteinane wechselwiken

Mehr

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik

1. Übungsblatt zur Theoretischen Physik I im SS16: Mechanik & Spezielle Relativitätstheorie. Newtonsche Mechanik 1. Übungsblatt zu Theoetischen Physik I im SS16: Mechanik & Spezielle elativitätstheoie Newtonsche Mechanik Aufgabe 1 Abhängigkeit physikalische Gesetze von de Zeitdefinition Eine wesentliche Gundlage

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 Tosten Scheibe 7 Eine Mati ist eine Kombination aus eine bestimmten nzahl von, die in Zeilen und Spalten unteteilt sind, die das eine Mati bestimmen, wobei jede die jede Komponente duch die zugehöige

Mehr

Rechnen mit Vektoren im RUN- Menü

Rechnen mit Vektoren im RUN- Menü Kael 09.. CASIO Teach & talk Jügen Appel Einen deidimenionalen Vekto kann man al Matix mit dei Zeilen und eine Spalte auffaen. Daduch kann man mit Vektoen echnen. D.h. konket, man kann Vektoen addieen

Mehr

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss

Elektrostatik II Felder, elektrische Arbeit und Potential, elektrischer Fluss Physik A VL9 (.. Elektostatik II Fele, elektische Abeit un Potential, elektische Fluss Das elektische Fel elektisches Fel eine Punktlaung Dastellung uch Fellinien elektische Abeit un elektisches Potential

Mehr

9 Rotation und Divergenz

9 Rotation und Divergenz Mathematik fü Physike III, WS 22/23 Dienstag 22. $Id: ot.tex,v.5 23//22 5:5:22 hk Exp $ 9 Rotation und Divegenz 9. Die Geensche Fomel In diesem Kapitel wollen wi die veschiedenen zwei- und deidimensionalen

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1.

( ) Parameters α. Links: α < 1. Mitte: α = 1 (Exponentialverteilung). Rechts: α > 1. KAPITEL 8 Wichtige statistische Veteilungen In diesem Kapitel weden wi die wichtigsten statistischen Veteilungsfamilien einfühen Zu diesen zählen neben de Nomalveteilung die folgenden Veteilungsfamilien:

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt

Übungen zur Ingenieur-Mathematik III WS 2013/14 Blatt Übungen zu Ingenieu-Mathematik III WS 3/4 Blatt 7..4 Aufgabe 38: Betachten Sie eine Ellipse (in de Ebene) mit den Halbachsen a und b und bestimmen Sie die Kümmung in den Scheitelpunkten. Lösung:Eine Paametisieung

Mehr

6.2 Erzeugung von elektromagnetischen Wellen

6.2 Erzeugung von elektromagnetischen Wellen 6.2. ERZEUGUNG VON ELEKTROMAGNETISCHEN WELLEN 29 6.2 Ezeugung von elektomagnetischen Wellen In diesem Abschnitt soll die Entstehung und die Emission von elektomagnetischen Wellen beschieben weden. Die

Mehr