Logik für Informatiker

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Logik für Informatiker 2. Aussagenlogik Teil Viorica Sofronie-Stokkermans Universität Koblenz-Landau sofronie@uni-koblenz.de 1

2 Bis jetzt Syntax der Aussagenlogik: Definition der Menge aller Formeln Strukturelle Induktion (Induktion über Formelaufbau) Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Wahrheitstafelmethode 2

3 Erster Kalkül: Wahrheitstafelmethode Jede Formel F enthält endlich viele Aussagenvariablen. A(F) ist nur von den Werten dieser Aussagenvariablen abhängig. F enthält n Aussagenvariablen: 2 n Wertebelegungen notwendig um zu überprüfen, ob F erfüllbar/unerfüllbar/allgemeingültig ist oder nicht. Wahrheitstafel F allgemeingültig (Tautologie): A(F) = 1 für alle Wertbelegungen F erfüllbar: A(F) = 1 für zumindest eine Wertebelegung F unerfüllbar: A(F) = 0 für alle Wertebelegungen 3

4 Bis jetzt Syntax der Aussagenlogik: Definition der Menge aller Formeln Strukturelle Induktion (Induktion über Formelaufbau) Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) 4

5 Wichtige Äquivalenzen (Zusammengefasst) (F F) F (F F) F (Idempotenz) (F G) (G F) (F G) (G F) (Kommutativität) (F (G H)) ((F G) H) (F (G H)) ((F G) H) (Assoziativität) (F (F G)) F (F (F G)) F (Absorption) (F (G H)) ((F G) (F H)) (F (G H)) ((F G) (F H)) (Distributivität) ( F) F (Doppelte Negation) (F G) ( F G) (F G) ( F G) (De Morgan s Regeln) (F G) ( G F) (Kontraposition) (F G) ( F G) (Elimination Implikation) F G (F G) (G F) (Elimination Äquivalenz) 5

6 Ein zweiter Kalkül: Logische Umformung Definition: Äquivalenzumformung (Wiederholte) Ersetzung einer (Unter-)Formel durch äquivalente Formel Anwendung des Substitutionstheorems Theorem Äquivalenzumformung bildet mit den aufgelisteten wichtigen Äquivalenzen einen vollständigen Kalkül: Wenn F und G logisch äquivalent sind, kann F in G umgeformt werden. 6

7 Ein zweiter Kalkül: Logische Umformung Definition: Äquivalenzumformung (Wiederholte) Ersetzung einer (Unter-)Formel durch äquivalente Formel Anwendung des Substitutionstheorems Theorem Äquivalenzumformung bildet mit den aufgelisteten wichtigen Äquivalenzen einen vollständigen Kalkül: Wenn F und G logisch äquivalent sind, kann F in G umgeformt werden. Anwendung: Test für Erfüllbarkeit/Unerfüllbarkeit/Allgemeingültigkeit 7

8 Beispiel (P Q) ((Q R) (P R)) 8

9 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) 9

10 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) (Elimination Implikation) 10

11 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) ( P Q) ( ( Q R) ( P R)) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) (Elimination Implikation) (De Morgan s Regel, ) 11

12 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (De Morgan s Regel, ) ( P Q) (( Q R) ( P R)) (Doppelte Negation, De Morgan, ) 12

13 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (De Morgan s Regel, ) ( P Q) (( Q R) ( P R)) (Doppelte Negation, De Morgan, ) ( P Q) (( Q R) (P R)) (Doppelte Negation) 13

14 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (De Morgan s Regel, ) ( P Q) (( Q R) ( P R)) (Doppelte Negation, De Morgan, ) ( P Q) (( Q R) (P R)) (Doppelte Negation) ( P Q) (( Q P R) (R P R)) (Distributivität) 14

15 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (De Morgan s Regel, ) ( P Q) (( Q R) ( P R)) (Doppelte Negation, De Morgan, ) ( P Q) (( Q R) (P R)) (Doppelte Negation) ( P Q) (( Q P R) (R P R)) (Distributivität) ( P Q) (( Q P R) (R R P)) (Kommutativität) 15

16 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (De Morgan s Regel, ) ( P Q) (( Q R) ( P R)) (Doppelte Negation, De Morgan, ) ( P Q) (( Q R) (P R)) (Doppelte Negation) ( P Q) (( Q P R) (R P R)) (Distributivität) ( P Q) (( Q P R) (R R P)) (Kommutativität) ( P Q) (( Q P R) ) (Äquivalenzen mit ) ( P Q) ( Q P R) (Äquivalenzen mit ) 16

17 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (De Morgan s Regel, ) ( P Q) (( Q R) ( P R)) (Doppelte Negation, De Morgan, ) ( P Q) (( Q R) (P R)) (Doppelte Negation) ( P Q) (( Q P R) (R P R)) (Distributivität) ( P Q) (( Q P R) (R R P)) (Kommutativität) ( P Q) (( Q P R) ) (Äquivalenzen mit ) ( P Q) ( Q P R) (Äquivalenzen mit ) ( P Q P R) (Q Q P R) (Distributivität) ( P P Q R) (Q Q P R) (Kommutativität) 17

18 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (De Morgan s Regel, ) ( P Q) (( Q R) ( P R)) (Doppelte Negation, De Morgan, ) ( P Q) (( Q R) (P R)) (Doppelte Negation) ( P Q) (( Q P R) (R P R)) (Distributivität) ( P Q) (( Q P R) (R R P)) (Kommutativität) ( P Q) (( Q P R) ) (Äquivalenzen mit ) ( P Q) ( Q P R) (Äquivalenzen mit ) ( P Q P R) (Q Q P R) (Distributivität) ( P P Q R) (Q Q P R) (Kommutativität) (( P P) Q R) ((Q Q) P R) (Assoziativität) 18

19 Beispiel (P Q) ((Q R) (P R)) ( P Q) (( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (Elimination Implikation) ( P Q) ( ( Q R) ( P R)) (De Morgan s Regel, ) ( P Q) (( Q R) ( P R)) (Doppelte Negation, De Morgan, ) ( P Q) (( Q R) (P R)) (Doppelte Negation) ( P Q) (( Q P R) (R P R)) (Distributivität) ( P Q) (( Q P R) (R R P)) (Kommutativität) ( P Q) (( Q P R) ) (Äquivalenzen mit ) ( P Q) ( Q P R) (Äquivalenzen mit ) ( P Q P R) (Q Q P R) (Distributivität) ( P P Q R) (Q Q P R) (Kommutativität) (( P P) Q R) ((Q Q) P R) (Assoziativität) (Äquivalenzen mit ) 19

20 Allgemeingültigkeit/Folgerung F,G Formeln Theorem. F = G gdw. = F G. 20

21 Allgemeingültigkeit/Folgerung F,G Formeln; N Formelmenge. Theorem. F = G gdw. = F G. Theorem. N {F } = G gdw. N = F G. 21

22 Allgemeingültigkeit/Folgerung F,G Formeln; N Formelmenge. Theorem. F = G gdw. = F G. Theorem. N {F } = G gdw. N = F G. Theorem. F G gdw. = F G. 22

23 Unerfüllbarkeit/Allgemeingültigkeit/Folgerung F,G Formeln Theorem. F ist allgemeingültig gdw. F ist unerfüllbar. 23

24 Unerfüllbarkeit/Allgemeingültigkeit/Folgerung F,G Formeln Theorem. F ist allgemeingültig gdw. F ist unerfüllbar. Theorem. F = G gdw. F G ist unerfüllbar. 24

25 Unerfüllbarkeit/Allgemeingültigkeit/Folgerung F,G Formeln; N Formelmenge. Theorem. F ist allgemeingültig gdw. F ist unerfüllbar. Theorem. F = G gdw. F G ist unerfüllbar. Theorem. N = G gdw. N G ist unerfüllbar. 25

26 Unerfüllbarkeit/Allgemeingültigkeit/Folgerung F,G Formeln; N Formelmenge. Theorem. F ist allgemeingültig gdw. F ist unerfüllbar. Theorem. F = G gdw. F G ist unerfüllbar. Theorem. N = G gdw. N G ist unerfüllbar. Nota bene: falls N unerfüllbar, so N = G für jede Formel G 26

27 Unerfüllbarkeit/Allgemeingültigkeit/Folgerung F,G Formeln; N Formelmenge. Theorem. F ist allgemeingültig gdw. F ist unerfüllbar. Theorem. F = G gdw. F G ist unerfüllbar. Theorem. N = G gdw. N G ist unerfüllbar. Nota bene: falls N unerfüllbar, so N = G für jede Formel G... auch für. Notation: N = für N unerfüllbar. 27

28 Unser Ziel Kalkül(e) zur systematischen Überprüfung von Erfüllbarkeit (für Formeln und/oder Formelmengen) 28

29 Unser Ziel Kalkül(e) zur systematischen Überprüfung von Erfüllbarkeit (für Formeln und/oder Formelmengen) Dazu brauchen wir Normalformen 29

30 Normalformen Definition: Atom: aussagenlogische Variable Literal: Atom, oder negation eines Atoms 30

31 Normalformen Definition: Atom: aussagenlogische Variable Literal: Atom, oder negation eines Atoms Definition: Klausel: Eine Disjunktion von Literalen mehrstellige Disjunktionen (P Q R), (P P Q) einstellige Disjunktionen P die nullstellige Disjunktion (leere Klausel) 31

32 Normalformen Definition: Konjunktive Normalform (KNF): Eine Konjunktion von Disjunktionen von Literalen, d.h., eine Konjunktion von Klauseln 32

33 Normalformen Definition: Konjunktive Normalform (KNF): Eine Konjunktion von Disjunktionen von Literalen, d.h., eine Konjunktion von Klauseln mehrstellig, einstellig oder nullstellig 33

34 Normalformen Definition: Konjunktive Normalform (KNF): Eine Konjunktion von Disjunktionen von Literalen, d.h., eine Konjunktion von Klauseln mehrstellig, einstellig oder nullstellig Beispiele: (P Q) (Q R S) P Q P (Q R) P Q P P 34

35 Normalformen Definition: Disjunktive Normalform (DNF): Eine Disjunktion von Konjunktionen von Literalen. mehrstellig, einstellig oder nullstellig Beispiele: (P Q) (Q R S) P Q P (Q R) P Q P P 35

36 Normalformel Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF 36

37 Normalformel Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF Diese äquivalenten Formeln in DNF bzw. KNF sind nicht eindeutig 37

38 Normalformel Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF Diese äquivalenten Formeln in DNF bzw. KNF sind nicht eindeutig Solche Formeln können aus einer Wahrheitstafel abgelesen werden 38

39 Beispiel F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F

40 Beispiel F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F

41 Beispiel F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F DNF: ( P Q R) ( P Q R) (P Q R) (P Q R) 41

42 Beispiel F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F F DNF für F: ( P Q R) ( P Q R) (P Q R) (P Q R) 42

43 Beispiel F : (P Q) (( P Q) R) P Q R (P Q) P ( P Q) (( P Q) R) F F DNF für F: ( P Q R) ( P Q R) (P Q R) (P Q R) KNF für F: (P Q R) (P Q R) ( P Q R) ( P Q R) 43

44 Normalformel DNF für F: _ A:{P 1,...,Pn } {0,1} A(F)=1 (P A(P 1) 1 P A(P n) n ) wobei: P 0 = P P 1 = P 44

45 Normalformel DNF für F: _ A:{P 1,...,Pn } {0,1} A(F)=1 (P A(P 1) 1 P A(P n) n ) wobei: P 0 = P P 1 = P Theorem Für alle Interpretationen A : {P 1,...,P n } {0,1}: _ A (F) = 1 gdw. A ( (P A(P 1) 1 P A(P n) n )) = 1. A:{P 1,...,Pn} {0,1} A(F)=1 45

46 Normalformel DNF für F: _ A:{P 1,...,Pn } {0,1} A(F)=1 (P A(P 1) 1 P A(P n) n ) wobei: P 0 = P P 1 = P KNF für F: F, wobei F die DNF von F ist. 46

47 Normalformel Eigenschaften: Zu jeder aussagenlogischen Formel gibt es: - eine äquivalente Formel in KNF - eine äquivalente Formel in DNF Diese äquivalenten Formeln in DNF bzw. KNF sind nicht eindeutig Solche Formeln können aus einer Wahrheitstafel abgelesen werden Solche Formeln können durch Umformungen hergestellt werden 47

48 Umformung in KNF Vier Schritte: 48

49 Umformung in KNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 49

50 Umformung in KNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 2. Elimination von Verwende A B ( A B) 50

51 Umformung in KNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 2. Elimination von Verwende A B ( A B) 3. Nach innen schieben von Verwende de Morgans Regeln und A A 51

52 Umformung in KNF Vier Schritte: 1. Elimination von Verwende A B (A B) (B A) 2. Elimination von Verwende A B ( A B) 3. Nach innen schieben von Verwende de Morgans Regeln und A A 4. Nach innen schieben von Verwende Distributivität von über 52

53 Umformung in KNF: Beispiel Gegeben: P (Q R) 53

54 Umformung in KNF: Beispiel Gegeben: P (Q R) 1. Elimination von (P (Q R)) ((Q R) P) 54

55 Umformung in KNF: Beispiel Gegeben: P (Q R) 1. Elimination von (P (Q R)) ((Q R) P) 2. Elimination von ( P Q R) ( (Q R) P) 55

56 Umformung in KNF: Beispiel Gegeben: P (Q R) 1. Elimination von (P (Q R)) ((Q R) P) 2. Elimination von ( P Q R) ( (Q R) P) 3. Nach innen schieben von ( P Q R) (( Q R)) P) 56

57 Umformung in KNF: Beispiel Gegeben: P (Q R) 1. Elimination von (P (Q R)) ((Q R) P) 2. Elimination von ( P Q R) ( (Q R) P) 3. Nach innen schieben von ( P Q R) (( Q R)) P) 4. Nach innen schieben von ( P Q R) ( Q P) ( R P)) 57

58 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) 58

59 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) Zu A n äquivalente KNF ^ (P 1,f (1) P n,f (n) ) f :{1,...,n} {1,2} 59

60 Beispiel zur exponentiellen Länge der KNF Gegeben: A n = (P 11 P 12 ) (P n1 P n2 ) Zu A n äquivalente KNF ^ (P 1,f (1) P n,f (n) ) f :{1,...,n} {1,2} Größe der KNF: Klausel in KNF von A n : 2 n 60

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Literatur zur Vorlesung Skriptum von U. Furbach Ulrich Furbach Logic for Computer Scientists http://userpages.uni-koblenz.de/

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 3 12.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Semantik Semantik geben bedeutet für logische Systeme,

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen Algorithmen für OBDD s 1. Reduziere 2. Boole sche Operationen 1 1. Reduziere siehe auch M.Huth und M.Ryan: Logic in Computer Science - Modelling and Reasoning about Systems, Cambridge Univ.Press, 2000

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016.

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert, WS 2015/2016. Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Aussagenlogik: Syntax und Semantik KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Rückblick: Logelei Wir kehren zurück auf das Inselreich mit Menschen von Typ W (Wahrheitssager) und Typ L (Lügner). THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Σ={A 0,A 1,A 2,...} Ist α eine Formel, so auch ( α). Sind α und β Formeln, so sind es auch (α β) und (α β).

Σ={A 0,A 1,A 2,...} Ist α eine Formel, so auch ( α). Sind α und β Formeln, so sind es auch (α β) und (α β). Aussagenlogik Syntax der Aussagenlogik Definition 1 (Sprache der Aussagenlogik) Syntax der Aussagenlogik Formeltransformation Entscheidungsverfahren Σ={A 0,A 1,A 2,...} abzählbar unendliche Menge von Atomen.

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 4 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Modus Ponens A B B A MP Axiome für

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 31. Mai 2017 Rückblick: Logelei Wir kehren zurück auf

Mehr

2.3 Deduktiver Aufbau der Aussagenlogik

2.3 Deduktiver Aufbau der Aussagenlogik 2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Begriff Logik wird im Alltag vielseitig verwendet

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Begriff Logik wird im Alltag vielseitig verwendet Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Logik (Teschl/Teschl 1.1 und 1.3)

Logik (Teschl/Teschl 1.1 und 1.3) Logik (Teschl/Teschl 1.1 und 1.3) Eine Aussage ist ein Satz, von dem man eindeutig entscheiden kann, ob er wahr (true, = 1) oder falsch (false, = 0) ist. Beispiele a: 1 + 1 = 2 b: Darmstadt liegt in Bayern.

Mehr

Einführung in die Logik. Sommersemester Juli 2011 Institut für Theoretische Informatik

Einführung in die Logik. Sommersemester Juli 2011 Institut für Theoretische Informatik Einführung in die Logik Jiří Adámek Sommersemester 2011 5. Juli 2011 Institut für Theoretische Informatik Inhaltsverzeichnis 1 Einleitung: Logische Systeme 4 I Aussagenlogik 6 2 Aussagenlogik 7 2.i Syntax

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.

Mehr

Logik Vorlesung 2: Semantik der Aussagenlogik

Logik Vorlesung 2: Semantik der Aussagenlogik Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012

Mathematische Logik. Grundlagen, Aussagenlogik, Semantische Äquivalenz. Felix Hensel. February 21, 2012 Mathematische Logik Grundlagen, Aussagenlogik, Semantische Äquivalenz Felix Hensel February 21, 2012 Dies ist im Wesentlichen eine Zusammenfassung der Abschnitte 1.1-1.3 aus Wolfgang Rautenberg s Buch

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 2. Grundlagen Version von: 2. November 2007(16:19) Inhalt 2.1 Beispiele 2.2 Syntax 2.3 Semantik 2.4 Modellierung mit

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen für Wirtschaftsinformatiker Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2016/17 Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester

Mehr

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik Einführung in die Logik Jiří Adámek Sommersemester 2010 14. Juli 2010 Institut für Theoretische Informatik Inhaltsverzeichnis 1 Einleitung: Logische Systeme 4 I Aussagenlogik 6 2 Aussagenlogik 7 2.i Syntax

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Vorlesung Logik, SS 2003

Vorlesung Logik, SS 2003 Vorlesung Logik, SS 2003 Gerhard Brewka Gebraucht die Zeit, sie geht so schnell von hinnen, Doch Ordnung lehrt Euch Zeit gewinnen. Mein teurer Freund, ich rat' Euch drum Zuerst Collegium logicum. Da wird

Mehr

Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010

Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010 Logik Teil 1: Aussagenlogik Vorlesung im Wintersemester 21 Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Jeder Aussage ist ein

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Aussagenlogik Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Logik für Informatiker, M. Lange, IFI/LMU: Aussagenlogik Syntax und Semantik 26 Einführendes Beispiel

Mehr

Vorlesung Logiksysteme

Vorlesung Logiksysteme Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

5. Logik in der KI. Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache.

5. Logik in der KI. Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache. 5. Logik in der KI Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache. Neue Aussagen können in die Wissensbasis eingefügt werden:

Mehr

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. 7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Einführung in die Semantik, 5. Sitzung Aussagenlogik

Einführung in die Semantik, 5. Sitzung Aussagenlogik Einführung in die, 5. Sitzung Aussagenlogik Göttingen 9. November 2006 Aussagenlogik Warum die formalen Sprachen der Logik? formale Sprachen haben wie jede Sprache ein Vokabular, eine und eine. Die Relation

Mehr