Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20"

Transkript

1 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20

2 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler: Max und Min deterministische Spiele Runden basiert Spiele und zero-sum Spiele Z.B.: Schach, Mühle, Dame, Tic-Tac-Toe KI SS2011: Suche in Spielbäumen 2/20

3 Spielbaum Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Ein Spielbaum ist gegeben durch: Startzustand Knoten repräsentieren Spielzustände Kanten repräsentieren Züge Spieler ziehen abwechselnd pro Ebene Spielbaum ist durch Nachfolgerfunktion (N F ) gegeben KI SS2011: Suche in Spielbäumen 3/20

4 Spielbaum: Bewertungsfunktion Ein Spielbaum wird bis Tiefe b expandiert, die Blätter werden dort direkt bewertet: Entweder: Die Blätter sind Endzustände (Spiele mit wenig Endzuständen wie Tic-Tac-Toe): Max gewinnt: (1) oder Min gewinnt: ( 1) oder das Spiel geht unentschieden aus: (0) Oder: Blätter in Tiefe b sind keine Endzustände (Spiele mit vielen Endzuständen wie Schach): Heuristische Bewertung der Spielzustände Tic-Tac-Toe: 9! = Endzustände Schach: Endzustände KI SS2011: Suche in Spielbäumen 4/20

5 Bewertung von Tic-Tac-Toe Die einfachste Bewertung der Endzustände ist: 1 Gewinn: XXX in Reihe, Spalte oder Diagonale 0 Remis: X und O in jeder Zeile, Spalte oder Diagonale -1 Verlust: OOO in Reihe, Spalte oder Diagonale Heuristische Bewertung beliebiger Knoten: (#einfach x-besetzte Zeilen/Spalten/Diag) * 1 + (# doppelt x-besetzte Zeilen/Spalten/Diag) * 5 + (20, falls Gewinnsituation) - (#einfach o-besetzte Zeilen/Spalten/Diag) * 1 - (# doppelt o-besetzte Zeilen/Spalten/Diag) * 5 - (20, falls Verlustsituation) XX- -O- O-X X-X -O- O-X X-- XO- O-X X-- -OX O-X X-- -O- OXX KI SS2011: Suche in Spielbäumen 5/20

6 Strategie: Optimale Zugfolge Ziel: Algorithmisch den besten Zug (bzw. die beste Zugfolge für) einen Spieler bestimmen Problem: Der Gegenspieler versucht auch zu gewinnen Beide Spieler spielen optimal KI SS2011: Suche in Spielbäumen 6/20

7 Optimale Strategie berechnen Sei p {Min,Max} der Spieler der in Zustand s zieht und p ist der Gegenspieler von p. Für alle Knoten s im Spielbaum berechne M inimax(s, p): Minimax(s, p) = Minimax-Entscheidung: wenn s Blatt:Bewertung von s wenn p = Min : min{minimax(s, p) s ist Nachfolger von s} wenn p = Max : max{minimax(s, p) s ist Nachfolger von s} Für Max: Zug zum Nachfolger mit maximalem Wert Für Min: Zug zum Nachfolger mit minimalem Wert KI SS2011: Suche in Spielbäumen 7/20

8 Minimax Algorithmus: Beispiel Minimax(s, p) = Beispiel wenn s Blatt:Bewertung von s wenn p = Min : min{minimax(s, p) s ist Nachfolger von s} wenn p = Max : max{minimax(s, p) s ist Nachfolger von s} Max A Min B C D KI SS2011: Suche in Spielbäumen 8/20

9 Minimax Algorithmus Minimax Minimax(s, p) = S := NF (s) if S = then return Bewertung von s else if p = Max then return max{minimax(s, p) s S} else return min{minimax(s, p) s S} KI SS2011: Suche in Spielbäumen 9/20

10 Minimax Algorithmus: Beispiele KI SS2011: Suche in Spielbäumen 10/20

11 Minimax Algorithmus: Eigenschaften Für Spielbaum der Tiefe m mit Verzweigungsgrad b Fazit: Durchsucht den Spielbaum vollständig per Tiefensuche Ressourcenbedarf: Zeit: O(b m ) (exponentiell in der Tiefe) Platz: O(bm) (linear in der Tiefe, falls b konstant) Für echte Spiele (wie Schach) ist Minimax nicht geeignet. Abhilfe mit Tiefenschranke d und heuristischer Bewertung der Zustände in dieser Tiefe. Variante von Minimax für Mehrpersonen-Spiele KI SS2011: Suche in Spielbäumen 11/20

12 Suche in Spielbäumen Alpha-Beta Suche KI SS2011: Suche in Spielbäumen 12/20

13 Alpha-Beta Suche: Motivation Beispiel Minimax: Besucht exponentiell viele Konten in Tiefe des Spielbaums Aber nicht alle Knoten müssen besucht werden Max A Min B C D Minimax(s, Max) = max{min{3, 12, 8}, min{2, x, y}, min{14, 5, 2}} = max{3, z, min{14, 5, 2}} mit z = min{2, x, y} 2 = max{3, z, 2} = 3 KI SS2011: Suche in Spielbäumen 13/20

14 Alpha-Beta Suche: Idee Prinzip der Alpha-Beta Suche: Wie Minimax mit Modifikation Sei n Knoten im Spielbaum in Tiefe d und Zugmöglichkeit für p Wenn p einen besseren Knoten m in Tiefe d < d wählen kann, dann wird n von p nicht besucht Somit kann der ganze Teilbaum mit Wurzel n abgeschnitten werden Um den Abschnitt an Knoten n entschieden zu können, müssen einige Nachfolger von n betrachtet werden. KI SS2011: Suche in Spielbäumen 14/20

15 Alpha-Beta Suche: Parameter Zwei Parameter kontrollieren die Entscheidung über Abschnitt: α: Der beste (maximale) bisher gefundene Wert an jedem Auswahlpunkt entlang des Pfades für Max β: Der beste (minimale) bisher gefundene Wert an jedem Auswahlpunkt entlang des Pfades für Min Alpha-Beta Suche aktualisiert die α, β Werte. KI SS2011: Suche in Spielbäumen 15/20

16 Alpha-Beta Suche Start start(s, p) = if p = Max then max-s(s,, ) else min-s(s,, ) Maximieren max-s(s, α, β) = S := NF (s) if S = then return B(s) α l := for each s in S do α l := max{α l, min-s(s, α, β)} if α l β then return α l else α := max{α l, α} return α l Minimieren min-s(s, α, β) = S := NF (s) if S = then return B(s) β l := for each s in S do β l := min{β l, max-s(s, α, β)} if β l α then return β l else β := min{β l, β} return β l KI SS2011: Suche in Spielbäumen 16/20

17 Alpha-Beta Suche: Eigenschaften Effektivität ist Abhängig von der Reihenfolge in der Knoten besucht werden Beispiel Max A Min B C D X X Max A Min B C D X X X X KI SS2011: Suche in Spielbäumen 17/20

18 Alpha-Beta Suche: Eigenschaften Für Spielbaum der Tiefe m mit Verzweigungsgrad b Fazit: Spielbaum muss nicht vollständig durchsucht werden Komplexität (Zeit): optimale Reihenfolge in der Knoten besucht werden: O(b m/2 ) zufällige Reihenfolge: O(b 3m/4 ) Laufzeit exponentiell in der Tiefe in des Spielbaums Im best-case kann Alpha-Beta Suche doppelt so tief im Spielbaum suchen wie Minimax KI SS2011: Suche in Spielbäumen 18/20

19 Reihenfolge der Knotenerzeugung: Schach Gute Reihenfolge der Knotenerzeugung für Schach: 1 Schlagen 2 Bedrohen 3 Vorwärts ziehen 4 Rückwärts ziehen Erzielt Laufzeit von O(2b m/2 ) KI SS2011: Suche in Spielbäumen 19/20

Einführung in die Methoden der Künstlichen Intelligenz. Suche bei Spielen

Einführung in die Methoden der Künstlichen Intelligenz. Suche bei Spielen Einführung in die Methoden der Künstlichen Intelligenz Suche bei Spielen Dr. David Sabel WS 2012/13 Stand der Folien: 5. November 2012 Zwei-Spieler-Spiele Ziel dieses Abschnitts Intelligenter Agent für

Mehr

Zwei-Spieler-Spiele. Einführung in die Methoden der Künstlichen Intelligenz. Suche bei Spielen. Schach. Schach (2)

Zwei-Spieler-Spiele. Einführung in die Methoden der Künstlichen Intelligenz. Suche bei Spielen. Schach. Schach (2) Einführung in die Methoden der Künstlichen Intelligenz Suche bei Spielen Prof. Dr. Manfred Schmidt-Schauß Ziel dieses Abschnitts Intelligenter Agent für Zweipersonenspiele Beispiele: Schach, Dame, Mühle,...

Mehr

Praktikum Algorithmen-Entwurf (Teil 7)

Praktikum Algorithmen-Entwurf (Teil 7) Praktikum Algorithmen-Entwurf (Teil 7) 28.11.2005 1 1 Vier gewinnt Die Spielregeln von Vier Gewinnt sind sehr einfach: Das Spielfeld besteht aus 7 Spalten und 6 Reihen. Jeder Spieler erhält zu Beginn des

Mehr

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik)

Vortrag. Suchverfahren der Künstlichen Intelligenz. Sven Schmidt (Technische Informatik) Vortrag Suchverfahren der Künstlichen Intelligenz Sven Schmidt (Technische Informatik) Suchverfahren der Künstlichen Intelligenz Grundlagen Zustandsraumrepräsentation Generische Suche Bewertung von Suchstrategien

Mehr

Einführung in Heuristische Suche

Einführung in Heuristische Suche Einführung in Heuristische Suche Beispiele 2 Überblick Intelligente Suche Rundenbasierte Spiele 3 Grundlagen Es muss ein Rätsel / Puzzle / Problem gelöst werden Wie kann ein Computer diese Aufgabe lösen?

Mehr

Der Alpha-Beta-Algorithmus

Der Alpha-Beta-Algorithmus Der Alpha-Beta-Algorithmus Maria Hartmann 19. Mai 2017 1 Einführung Wir wollen für bestimmte Spiele algorithmisch die optimale Spielstrategie finden, also die Strategie, die für den betrachteten Spieler

Mehr

2. Spielbäume und Intelligente Spiele

2. Spielbäume und Intelligente Spiele 2. Spielbäume und Intelligente Spiele Arten von Spielen 2. Spielbäume und Intelligente Spiele Kombinatorische Spiele als Suchproblem Wie berechnet man eine gute Entscheidung? Effizienzverbesserung durch

Mehr

Guten Morgen und Willkommen zur Saalübung!

Guten Morgen und Willkommen zur Saalübung! Guten Morgen und Willkommen zur Saalübung! 1 Wie gewinnt man ein Spiel? Was ist ein Spiel? 2 Verschiedene Spiele Schach, Tic-Tac-Toe, Go Memory Backgammon Poker Nim, Käsekästchen... 3 Einschränkungen Zwei

Mehr

KI und Sprachanalyse (KISA)

KI und Sprachanalyse (KISA) Folie 1 KI und Sprachanalyse (KISA) Studiengänge DMM, MI (B. Sc.) Sommer Semester 15 Prof. Adrian Müller, PMP, PSM1, CSM HS Kaiserslautern e: adrian.mueller@ hs-kl.de Folie 2 ADVERSIALE SUCHE Spiele: Multi-Agenten

Mehr

NP-vollständige Probleme

NP-vollständige Probleme Effiziente Algorithmen Lösen NP-vollständiger Probleme 256 NP-vollständige Probleme Keine polynomiellen Algorithmen, falls P NP. Viele wichtige Probleme sind NP-vollständig. Irgendwie müssen sie gelöst

Mehr

6. Spiele Arten von Spielen. 6. Spiele. Effizienzverbesserung durch Beschneidung des Suchraums

6. Spiele Arten von Spielen. 6. Spiele. Effizienzverbesserung durch Beschneidung des Suchraums 6. Spiele Arten von Spielen 6. Spiele Kombinatorische Spiele als Suchproblem Wie berechnet man eine gute Entscheidung? Effizienzverbesserung durch Beschneidung des Suchraums Spiele mit Zufallselement Maschinelles

Mehr

Spiele (antagonistische Suche) Übersicht. Typen von Spielen. Spielbaum. Spiele mit vollständiger Information

Spiele (antagonistische Suche) Übersicht. Typen von Spielen. Spielbaum. Spiele mit vollständiger Information Übersicht I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden 5. Constraint-Probleme 6. Spiele III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres

Mehr

Der Bestimmtheitssatz

Der Bestimmtheitssatz 2. Spielbäume und Intelligente Spiele Der Minimax-Algorithmus Der Bestimmtheitssatz Satz 2.1. Gegeben sei ein Spiel, das die folgenden Eigenschaften hat: 1. Das Spiel wird von zwei Personen gespielt. 2.

Mehr

Zug Bart Borg Bart Borg Bart Borg Bart. Bart 2 1 1 1 Borg 1 1 2 verloren. Stand 8 7 6 5 4 2 1. Zug Bart Borg Bart Borg Bart Borg

Zug Bart Borg Bart Borg Bart Borg Bart. Bart 2 1 1 1 Borg 1 1 2 verloren. Stand 8 7 6 5 4 2 1. Zug Bart Borg Bart Borg Bart Borg . Das. Einführung Deep Blue Kasparow, Philadelphia 996 Deep Blue, der Supercomputer schlägt Garry Kasparow. So oder ähnlich lauteten die Schlagzeilen 996. Die 6 Partien waren insgesamt ausgeglichen, zum

Mehr

Spieltheorie. Sebastian Wankerl. 16. Juli 2010

Spieltheorie. Sebastian Wankerl. 16. Juli 2010 Spieltheorie Sebastian Wankerl 16. Juli 2010 Inhalt 1 Einleitung 2 Grundlagen Extensive Form choice functions Strategien Nash-Gleichgewicht Beispiel: Gefangenendillema 3 Algorithmen Minimax Theorem Minimax

Mehr

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem

Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Der Dreyfus-Wagner Algorithmus für das Steiner Baum Problem Andreas Moser Dietmar Ebner Christian Schauer Markus Bauer 9. Dezember 2003 1 Einführung Der in der Vorlesung gezeigte Algorithmus für das Steiner

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

der Künstlichen Intelligenz

der Künstlichen Intelligenz Einführung in die Methoden der Künstlichen --- Vorlesung vom 30.4.2009 --- Sommersemester 2009 Ingo J. Timm, René Schumann Professur für Wirtschaftsinformatik und Simulation (IS) Spiele spielen Prof. Timm

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 39. Brettspiele: Alpha-Beta-Suche und Ausblick Malte Helmert Universität Basel 23. Mai 2014 Brettspiele: Überblick Kapitelüberblick: 38. Einführung und Minimax-Suche

Mehr

Intelligente Systeme

Intelligente Systeme Intelligente Systeme Spiele Prof. Dr. R. Kruse C. Braune {rudolf.kruse,christian,braune}@ovgu.de Institut für Intelligente Kooperierende Systeme Fakultät für Informatik Otto-von-Guericke Universität Magdeburg

Mehr

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie

Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Vier Gewinnt Nicolas Schmidt Matthias Dietsche Bernhard Weiß Benjamin Ruile Datum: 17.2.2009 Tutor: Prof. Schottenloher Spieltheorie Präsentation Agenda I. Einführung 1. Motivation 2. Das Spiel Vier Gewinnt

Mehr

Wissensbasierte Suche

Wissensbasierte Suche Wissensbasierte Suche Jürgen Dorn Inhalt uninformierte Suche wissensbasierte Suche A* und IDA* Algorithmus Suche in Und/Oder-Graphen Jürgen Dorn 2003 Wissensbasierte Suche 1 Suche Suche in (expliziten

Mehr

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen

Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Künstliche Intelligenz - Optimierungsprobleme - Suche in Spielbäumen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Optimierungsprobleme

Mehr

Spieltheorien und Theoreme

Spieltheorien und Theoreme Spieltheorien und Theoreme Seminar: Randomisierte Algorithmen Prof. Dr. R. Klein Alexander Hombach Eine bilinguale Ausarbeitung von Alexander Hombach, Daniel Herrmann und Ibraguim Kouliev (Teil 1) Rheinische

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Spiele als Suchproblem

Spiele als Suchproblem Spiele als Suchproblem betrachten Spiele für zwei Personen, diese sind abwechselnd am Zug Spiel endet in einem aus einer Menge möglicher Terminalzustände deterministische, im Prinzip zugängliche Umgebung

Mehr

Uninformierte Suche in Java Informierte Suchverfahren

Uninformierte Suche in Java Informierte Suchverfahren Uninformierte Suche in Java Informierte Suchverfahren Stephan Schwiebert WS 2008/2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln 8-Damen-Problem Gegeben: Schachbrett

Mehr

Grundlagen der Künstlichen Intelligenz Einführung Minimax-Suche Bewertungsfunktionen Zusammenfassung. Brettspiele: Überblick

Grundlagen der Künstlichen Intelligenz Einführung Minimax-Suche Bewertungsfunktionen Zusammenfassung. Brettspiele: Überblick Grundlagen der Künstlichen Intelligenz 22. Mai 2015 41. Brettspiele: Einführung und Minimax-Suche Grundlagen der Künstlichen Intelligenz 41. Brettspiele: Einführung und Minimax-Suche Malte Helmert Universität

Mehr

2. Spiele. Arten von Spielen. Kombinatorik. Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden.

2. Spiele. Arten von Spielen. Kombinatorik. Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden. . Spiele Arten von Spielen. Spiele. Spiele Arten von Spielen Kombinatorik Spieler haben festgelegte Handlungsmöglichkeiten, die durch die Spielregeln definiert werden. Kombinatorische Spiele als Suchproblem

Mehr

Übersicht. 5. Spiele. I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden

Übersicht. 5. Spiele. I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden Übersicht I Künstliche Intelligenz II Problemlösen 3. Problemlösen durch Suche 4. Informierte Suchmethoden 5. Spiele III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen VI

Mehr

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri

Informatik II. PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri Informatik II PVK Part1 Severin Wischmann wiseveri@student.ethz.ch n.ethz.ch/~wiseveri KAUM JAVA Kaum Java Viel Zeit wird für Java-spezifisches Wissen benützt Wenig wichtig für Prüfung Letztjähriger Assistent

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS3 Slide 1 Wissensbasierte Systeme Sebastian Iwanowski FH Wedel Kap. 3: Algorithmische Grundlagen der KI WBS3 Slide 2 Suchstrategien Warum sind Suchstrategien so wichtig in Wissensbasierten Systemen?

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener Seminar: Randomisierte Algorithmen Auswerten von Sielbäumen Nele Küsener In diesem Vortrag wird die Laufzeit von Las-Vegas-Algorithmen analysiert. Das Ergebnis ist eine obere und eine untere Schranke für

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Randomisierte Algorithmen 5. Zwei spieltheoretische Aspekte Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2015/2016 1 / 36 Überblick

Mehr

Algorithmen und Datenstrukturen Heapsort

Algorithmen und Datenstrukturen Heapsort Algorithmen und Datenstrukturen 2 5 Heapsort In diesem Kapitel wird Heapsort, ein weiterer Sortieralgorithmus, vorgestellt. Dieser besitzt wie MERGE-SORT eine Laufzeit von O(n log n), sortiert jedoch das

Mehr

Thinking Machine. Idee. Die Thinking Machine Visualisierung versucht, die Denkprozesse eines Schachcomputers sichtbar zu machen

Thinking Machine. Idee. Die Thinking Machine Visualisierung versucht, die Denkprozesse eines Schachcomputers sichtbar zu machen Thinking Machine (http://www.turbulence.org/spotlight/thinking/) Idee Die Thinking Machine Visualisierung versucht, die Denkprozesse eines Schachcomputers sichtbar zu machen Sie wurde von Martin Wattenberg

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Kombinatorische Spiele mit Zufallselementen

Kombinatorische Spiele mit Zufallselementen Kombinatorische Spiele mit Zufallselementen Die Realität ist nicht so streng determiniert wie rein kombinatorische Spiele. In vielen Situationen spielt der Zufall (Risko) eine nicht zu vernachlässigende

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 2 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Rechnerische Komplexität

Rechnerische Komplexität Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesungen 5 und 6 Programm

Mehr

Aufgabe 2 - Spiele mit Zyklen Gegeben sei folgendes einfache Spiel:

Aufgabe 2 - Spiele mit Zyklen Gegeben sei folgendes einfache Spiel: Theoretischer Teil Aufgabe 1 - Spielbaume Gegeben sei folgender Spielbaum: - Spiele und Lokale Suche Die Spielzustande sind mit Kreisen dargestellt und zu ihrer Unterscheidung mit Buchstaben markiert.

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Alignment-Verfahren zum Vergleich biologischer Sequenzen

Alignment-Verfahren zum Vergleich biologischer Sequenzen zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Uninformierte Suche in Java Informierte Suchverfahren

Uninformierte Suche in Java Informierte Suchverfahren Uninformierte Suche in Java Informierte Suchverfahren Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Suchprobleme bestehen aus Zuständen

Mehr

Spieltheorie. Fabian Schmidt Fabian Schmidt Spieltheorie / 46

Spieltheorie. Fabian Schmidt Fabian Schmidt Spieltheorie / 46 Spieltheorie Fabian Schmidt 09.07.2014 Fabian Schmidt Spieltheorie 09.07.2014 1 / 46 Übersicht Einführung Gefangenendilemma Tit-for-tat Minimax und Alpha-Beta-Pruning Nim-Spiel und Misère-Variante Josephus-Problem

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Proseminar: Geschichte des Computers Schachprogrammierung Die Digitale Revolution

Proseminar: Geschichte des Computers Schachprogrammierung Die Digitale Revolution Die Digitale Revolution Internet 3D-Drucker Quants Singularität 27.02.14 Johannes Polster Das Spiel der Könige Sehr altes Spiel: Entstehung vor 1500 Jahren Weltberühmt Strategisches Spiel Kein Glück, Intelligenz,

Mehr

39.1 Alpha-Beta-Suche

39.1 Alpha-Beta-Suche Grundlagen der Künstlichen Intelligenz. Mai 0 9. Brettspiele: Alpha-Beta-Suche und Ausblick Grundlagen der Künstlichen Intelligenz 9. Brettspiele: Alpha-Beta-Suche und Ausblick 9.1 Alpha-Beta-Suche Malte

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y

Rotation. y T 3. Abbildung 3.10: Rotation nach rechts (analog links) Doppelrotation y Die AVL-Eigenschaft soll bei Einfügungen und Streichungen erhalten bleiben. Dafür gibt es zwei mögliche Operationen: -1-2 Rotation Abbildung 3.1: Rotation nach rechts (analog links) -2 +1 z ±1 T 4 Doppelrotation

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode.

Laufzeit. Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Effiziente Algorithmen Flußprobleme 81 Laufzeit Finden eines Matchings maximaler Kardinalität dauert nur O( E min{ V 1, V 2 }) mit der Ford Fulkerson Methode. Der Fluß ist höchstens f = min{ V 1, V 2 }.

Mehr

Zweizusammenhang und starker Zusammenhang

Zweizusammenhang und starker Zusammenhang .. Zeizusammenhang und starker Zusammenhang Carsten Gutenger Vorlesung Algorithmen und Datenstrukturen WS /. Januar Zeizusammenhang Betrachte ein Netzerk (Graph) Z.B. Computernetzerk, Flug- oder Schienennetzerk

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Spieltheorie. Miriam Polzer 16.7.2013. Miriam Polzer Spieltheorie 16.7.2013 1 / 40

Spieltheorie. Miriam Polzer 16.7.2013. Miriam Polzer Spieltheorie 16.7.2013 1 / 40 Spieltheorie Miriam Polzer 16.7.2013 Miriam Polzer Spieltheorie 16.7.2013 1 / 40 1 Grundlagen 2 Minimax und Alpha-Beta-Pruning 3 Nim-Spiele 4 Josephus-Problem Miriam Polzer Spieltheorie 16.7.2013 2 / 40

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Suchverfahren / Uninformierte Suche

Einführung in die Methoden der Künstlichen Intelligenz. Suchverfahren / Uninformierte Suche Einführung in die Methoden der Künstlichen Intelligenz Suchverfahren / Uninformierte Suche PD Dr. David Sabel SoSe 0 Stand der Folien:. pril 0 Einführung Blind Search n-damen Missionare & Kannibalen Modellierung

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS5 Slide 1 Wissensbasierte Systeme Vorlesung 5 vom 17.11.2004 Sebastian Iwanowski FH Wedel WBS5 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Spieltheorie Gemischte Strategien

Spieltheorie Gemischte Strategien Spieltheorie Gemischte Strategien Emanuel Kitzelmann Kognitive Systeme Universität Bamberg Übung KogSys I, WS 06/07 E. Kitzelmann (Universität Bamberg) Gemischte Strategien Übung KogSys I, WS 06/07 1 /

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 4 Reguläre Ausdrücke Webseite zur Vorlesung http://ls11-www.cs.tu-dortmund.de/people/rahmann/teaching/ss2008/algorithmenaufsequenzen

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil 10 Suche in Graphen Version vom 13. Dezember 2016 1 / 2 Vorlesung 2016 / 2017 2 /

Mehr

Masterarbeit. Alpha-Beta-Pruning. Oliver Kock. Bochum, Februar 2009. Fakultät für Mathematik Ruhr-Universität Bochum

Masterarbeit. Alpha-Beta-Pruning. Oliver Kock. Bochum, Februar 2009. Fakultät für Mathematik Ruhr-Universität Bochum Masterarbeit Alpha-Beta-Pruning Oliver Kock Bochum, Februar 2009 Fakultät für Mathematik Ruhr-Universität Bochum Inhaltsverzeichnis Kapitel I. Einleitung 4 Kapitel II. Grundlagen der Spieletheorie 6 II.1.

Mehr

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16

Traversierung 1 / 16. P.F. Stadler & S. Will (Bioinf, Uni LE) ADS 2, V3 23. April / 16 P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / P.F. Stadler & S. Will (Bioinf, Uni LE) ADS, V. April 0 / Traversierung ADS: Algorithmen und Datenstrukturen Teil Prof. Peter F. Stadler & Sebastian

Mehr

Systems of Distinct Representatives

Systems of Distinct Representatives Systems of Distinct Representatives Seminar: Extremal Combinatorics Peter Fritz Lehr- und Forschungsgebiet Theoretische Informatik RWTH Aachen Systems of Distinct Representatives p. 1/41 Gliederung Einführung

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 9. Klassische Suche: Tiefensuche und iterative Tiefensuche Malte Helmert Universität asel 21. März 2014 Tiefensuche Iterative Tiefensuche linde Suche: Zusammenfassung

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

9.1 Tiefensuche. Grundlagen der Künstlichen Intelligenz. 9.1 Tiefensuche. 9.2 Iterative Tiefensuche. 9.3 Blinde Suche: Zusammenfassung

9.1 Tiefensuche. Grundlagen der Künstlichen Intelligenz. 9.1 Tiefensuche. 9.2 Iterative Tiefensuche. 9.3 Blinde Suche: Zusammenfassung Grundlagen der Künstlichen Intelligenz 21. März 2014 9. Klassische Suche: Tiefensuche und iterative Tiefensuche Grundlagen der Künstlichen Intelligenz 9. Klassische Suche: Tiefensuche und iterative Tiefensuche

Mehr