Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen

Größe: px
Ab Seite anzeigen:

Download "Vorlesung 2b. Diskrete Zufallsvariable. und ihre Verteilungen"

Transkript

1 Vorlesung 2b Diskrete Zufallsvariable und ihre Verteilungen 1

2 1. Die Grundbegriffe 2

3 Bisher hatten wir uns (vor allem) mit Zufallsvariablen beschäftigt, deren Wertebereich S endlich war. Die (schon in Vorlesung 1b formulierten) zwei Grundregeln für Wahrscheinlichkeiten lauteten Normiertheit auf Eins: P(X S) = 1. Additivität: P(X A) = P(X = a), a A A S 3

4 Diese beiden Regeln behalten ihren guten Sinn, wenn der Wertebereich nicht endlich, sondern abzählbar unendlich ist. Beispiel: S = N P(X = 1) = 1 2, P(X = 2) = 1 4, P(X = 3) = 1 8,... P(X = n) = 1/2 n, n N. 4

5 Auch wenn der Wertebereich von X eine überabzählbare Menge ist (wie z.b. R oder das Einheitsintervall [0,1] oder das Einheitsquadrat [0, 1] [0, 1]), behalten beide Regeln ihren Sinn, wenn man fordert, dass der Wertebereich eine endliche oder abzählbar unendliche Menge S enthält mit P(X S) = 1. 5

6 Beispiel: Wertebereich R X S R S R endlich oder abzählbar unendlich mit P(X S) = 1 6

7 Definition: Eine Zufallsvariable X heißt diskret, falls ihr Wertebereich eine diskrete (d.h. endliche oder abzählbar unendliche) Menge S enthält mit P(X S) = 1. 7

8 Für diskrete Zufallsvariable X und P(X S) = 1 mit einer endlichen oder abzählbar unendlichen Menge S gilt: P(X A) = a A P(X = a), A S (Additivität) 8

9 Die Zahlen ρ(a) := P(X = a), a S, sind die Verteilungsgewichte. Die Abbildung A ρ(a) := P(X A), A S, heißt die Verteilung von X. 9

10 2. Zufällige Paare und ihre Komponenten 10

11 X 1,X 2 seien diskrete ZV e mit P(X i S i ) = 1, i = 1,2 (und diskreten Mengen S 1, S 2 ). Dann ist auch X = (X 1,X 2 ) diskret, mit P(X S 1 S 2 ) = 1. Wir nennen X dann auch ein zufälliges Paar mit den Komponenten X 1 und X 2. 11

12 Die Verteilungsgewichte von X = (X 1,X 2 ) schreiben wir als ρ(a 1,a 2 ) = P ( (X 1,X 2 ) = (a 1,a 2 ) ) = P(X 1 = a 1,X 2 = a 2 ), Sei ρ 1 die Verteilung von X 1. Man erhält deren Gewichte als ρ 1 (a 1 ) = ρ(a 1,a 2 ). a 2 S 2 Denn: ρ 1 (a 1 ) = P(X 1 = a 1 ) = P((X 1,X 2 ) {a 1 } S 2 ) = a 2 S 2 ρ(a 1,a 2 ). 12

13 (X 1,X 2 ) X 1 S 1 S 2 (a 1,a 2 ) a 1 S 1 h h((a 1,a 2 )) := a 1 ist die Projektion des Paares (a 1,a 2 ) auf seine erste Komponente 13

14 3. Weiterverarbeitung von Zufallsvariablen und Transport von Verteilungen 14

15 Der Übergang von X = (X 1,X 2 ) zu einer Komponente X 1 ist ein Beispiel einer Vergröberung (Weiterverarbeitung) einer Zufallsvariablen: X 1 = h(x) mit h((a 1,a 2 )) := a 1. Allgemeiner: 15

16 Sind S und S zwei Mengen, X eine Zufallsvariable mit Zielbereich S, h eine Abbildung von S nach S, und nimmt man X als zufällige Eingabe von h, dann bekommt man eine Zufallsvariable Y mit Zielbereich S : X Y = h(x) S S h 16

17 Für jedes b S gilt: {h(x) = b} = {X h 1 (b)} Für die Verteilungsgewichte von Y = h(x) ergibt sich: P(Y = b) = P(X h 1 (b)) = a h 1 (b) P(X = a). X S h 1 (b) Y = h(x) b S h 17

18 Bezeichnet ρ die Verteilung von X und ρ die von Y, ρ (b) = dann ist a h 1 (b) ρ(a). Man sagt: Die Verteilung ρ wird durch die Abbildung h in die Verteilung ρ transportiert. S h 1 (b) b S h 18

19 Diese Situation haben wir schon mehrmals angetroffen: in Vorlesung 1b: X := rein zufällige 1,..., r-folge der Länge n T = h(x):= Zeitpunkt der ersten Kollision (mit T := falls keine Kollision eintritt) in Vorlesung 2a: X := rein zufällige Permutation von 1,..., n h(x) := Länge des Zyklus von X, der die Eins enthält. 19

20 Heutiges Programm: Weitere Beispiele für Vergröberungen von zufälligen Folgen wichtige Beispiele diskreter Zufallsvariabler und diskreter Verteilungen. 20

21 4. Die Anzahl der Erfolge beim fairen Münzwurf 21

22 S := {0,1} n die Menge der 01-Folgen der Länge n X sei uniform verteilt auf S, jeder Ausgang hat somit das Gewicht 1 2 n = (Man sagt auch: X ist ein n-facher fairer Münzwurf.) Y := die Anzahl der Einsen in X. Wie ist Y verteilt? 22

23 Jede einzelne 01-Folge a der Länge n mit genau k Einsen hat Gewicht 1 2 n Wieviele derartige a gibt es? ( ) n k P(Y = k) = ( n ) 1 k 2n, k = 0,...,n. 23

24 5. Die Anzahl der Sechsen beim fairen Würfeln 24

25 Beispiel n-faches Würfeln: Wie ist die Anzahl der Sechsen verteilt? 25

26 X = (X 1,...,X n ) uniform verteilt auf S := {1,...,6} n. Z := (Z 1,...,Z n ), Z i := 1 {6} (X i ) mit Z ist also eine zufällige 01-Folge, mit Z i = 1 falls der i-te Wurf eine Sechs ergibt und Z i = 0 sonst. Wie ist Z verteilt? 26

27 P(Z 1 = 1,...,Z k = 1, Z k+1 = 0,...,Z n = 0) = P(X 1 = 6,...,X k = 6, X k+1 6,...,X n 6) = 1k 5 n k 6 n = p k q n k, mit p := 1 6 und q := 5 6. Auch für jede andere Platzierung von genau k Sechsen in den n Würfen ergibt sich diese W keit. 27

28 Verteilung der Anzahl der Sechsen beim n-fachen Würfeln: X = (X 1,...,X n ) uniform verteilt auf S := {1,...,6} n. Z := (Z 1,...,Z n ), Z i := 1 {6} (X i ) mit Wie ist Y := Z 1 + +Z n verteilt? P(Y = k) = ( ) n k p k q n k (warum?) 28

29 6. Vom p-münzwurf zur Binomialverteilung 29

30 Definition (p-münzwurf): Sei p [0,1], q := 1 p. Eine Zufallsvariable Z mit Zielbereich S = {0,1} n = {a = (a 1,...,a n ) : a i {0,1}} heißt n-facher p-münzwurf, wenn für alle a S mit k Einsen und n k Nullen gilt: P(Z = a) = p k q n k. 30

31 Ein Paradebeispiel für die Weiterverarbeitung einer Zufallsvariablen ist die Anzahl der Erfolge beim n-fachen p-münzwurf: 31

32 Sei Z = (Z 1,...,Z n ) ein n-facher p-münzwurf und X = Z 1 + +Z n die Anzahl der Erfolge (die Anzahl der Einsen in der zufälligen 0-1 Folge Z) Z Verteilung von X =? X = h(z) S S = {0,...,n} h(a 1,...,a n ) = a 1 + +a n 32

33 Z S Jedes a S mit h(a) = k (d.h. mit k Einsen und n k Nullen) hat Gewicht p k (1 p) n k. Es gibt ( ) n k. solche a. P(X = k) = X = h(z) h 1 (k) k ( ) n k p k (1 p) n k S = {0,...,n} h(a 1,...,a n ) = a 1 + +a n 33

34 Definition: Eine Zufallsvariable X mit Zielbereich {0, 1,..., n} heißt binomialverteilt mit Parametern n und p, kurz Bin(n, p)-verteilt, wenn P(X = k) = ( ) n k p k q n k, k = 0,1,...,n, mit q = 1 p. 34

35 k Gewichte der Bin(10, 1/2) Verteilung Gewichte

36 k Gewichte der Bin(40, 1/3) Verteilung Gewichte

37 7. Vom Ziehen mit Zurücklegen zum p-münzwurf (Einschub) 37

38 n-maliges Ziehen mit Zurücklegen aus einer ideal durchmischten Urne. Ein Anteil p der Kugeln ist rot, der restliche Anteil q = 1 p ist blau. Zufällige 0-1 Folge Z = (Z 1,...,Z n ): Z i = 1 wenn beim i-ten Zug eine rote Kugel kommt, und Z i = 0 wenn beim i-ten Zug eine blaue Kugel kommt. 38

39 Sei a eine vorgegebene 0-1 Folge der Länge n mit k Einsen, z. B.: a := (1,...,1, 0,...,0 ) } {{ } k-mal }{{} (n k)-mal P(Z = a) =? Sei g die Gesamtanzahl der Kugeln in der Urne. P(Z = a) = (pg)k (qg) n k g n = p k q n k Das ist so für jede 0-1 Folge a mit k Einsen und n k Nullen. 39

40 Zur Wiederholung: Definition (p-münzwurf): Sei p [0,1], q := 1 p. Eine Zufallsvariable Z mit Zielbereich S = {0,1} n = {a = (a 1,...,a n ) : a i {0,1}} heißt n-facher p-münzwurf, wenn für alle a S mit k Einsen und n k Nullen gilt: P(Z = a) = p k q n k. 40

41 8. Vom p-münzwurf zum (p 1,...,p r )-Würfeln Oder: Was 2 recht ist, soll r billig sein! 41

42 Definition ( n-faches (p 1,...,p r )-Würfeln ): Seien r N und p 1,...,p r 0 mit p p r = 1. Wir definieren Gewichte auf S := {a = (a 1,...,a n ) : a i {1,...,r}} durch ρ(a 1,...,a n ) := p a1 p a2 p an. Eine Zufallsvariable Z mit diesem Zielbereich S und diesen Verteilungsgewichten ρ nennen wir n-faches (p 1,...,p r )-Würfeln. 42

43 Für jedes a S mit k 1 Komponenten gleich 1, k 2 Komponenten gleich 2,... k r Komponenten gleich r ist dann P(Z = a) = p k 1 1 pk 2 2 pk r r 43

44 9. Vom (p 1,...,p r )-Würfeln zur Multinomialverteilung 44

45 Beispiel: Besetzung der Ergebnisse beim Würfeln : Z = (Z 1,...,Z n ) sei ein n-faches (p 1,...,p r )-Würfeln X j := #{i : Z i = j} (die Anzahl der Würfe mit Ergebnis j). X := (X 1,...,X r ) hat dann den Zielbereich S n,r = {(k 1,...,k r ) : k k r = n}. Verteilung von X =? 45

46 Z S h 1 (k) X = h(z) k S n,r h(a 1,...,a n ) = (k 1,...,k r ) =: k mit k j := #{i : a i = j}), j = 1,...,r Jedes a S mit h(a) = (k 1,...,k r ) hat Gewicht p k pk r r Wieviele solche a gibt es? Dazu überlegen wir: 46

47 Auf wieviele Arten kann man n Objekte so auf r Fächer verteilen, dass das j-te Fach genau k j Objekte enthält? Dabei ist k 1 + +k r = n. ( ) n k 1 Die Antwort ist: ( ) n k ( 1 n k 1 k r 1 k 2 k r ) = ( n! k 1!k 2! k r! =: n k 1,...,k r ) Multinomialkoeffizient, lies: n über k 1,...,k r 47

48 Z X = h(z) S h 1 (k) k S n,r h(a 1,...,a n ) = (k 1,...,k r ) = k Jedes a S mit h(a) = (k 1,...,k r ) hat Gewicht p k pk r r Wieviele solche a gibt es? 48

49 (Z 1,...,Z n ) S h 1 (k) (X 1,...,X r ) k S n,r h(a 1,...,a n ) = (k 1,...,k r ) Jedes a S mit h(a) = (k 1,...,k r ) hat Gewicht p k pk r r Es gibt ( n k 1,...,k r ) solche a. P(X 1 = k 1,...,X r = k r ) = ( n k 1,...,k r ) p k pk r r 49

50 Definition: Eine Zufallsvariable X mit Zielbereich S n,r heißt multinomialverteilt mit Parametern n; p 1,...,p r, wenn P(X = (k 1,...,k r )) = ( n k 1,...,k r ) p k pk r r, (k 1,...,k r ) S n,r. 50

51 Z X = h(z) S S n,r h(a 1,...,a n ) = (k 1,...,k r ) =: k mit k j := #{i : a i = j}, j = 1,...,r 51

52 k k k 3 Gewichte der Multinomialverteilung, notiert in für n = 10, r = 3, p 1 = 0.3, p 2 = 0.5, p 3 =

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen

Vorlesung 3a. Der Erwartungswert. von diskreten reellwertigen Zufallsvariablen Vorlesung 3a Der Erwartungswert von diskreten reellwertigen Zufallsvariablen X sei eine Zufallsvariable, deren Zielbereich R (die Menge der reellen Zahlen) (oder eine Teilmenge davon) ist. Es existiere

Mehr

Vorlesung 3b. Der Erwartungswert

Vorlesung 3b. Der Erwartungswert Vorlesung 3b Der Erwartungswert von diskreten reellwertigen Zufallsvariablen Teil 2 0. Wiederholung X sei eine diskrete reellwertige Zufallsvariable X S R E[X] := a S a P(X = a). heißt Erwartungswert von

Mehr

Vorlesung 6b. Zufallsvariable mit Dichten. Teil 1 Uniforme Verteilung & Co.

Vorlesung 6b. Zufallsvariable mit Dichten. Teil 1 Uniforme Verteilung & Co. Vorlesung 6b Zufallsvariable mit Dichten Teil 1 Uniforme Verteilung & Co. 1 1. Uniforme Verteilung auf dem Einheitsintervall 2 Eine Zufallsvariable X mit Zielbereich S = [0, 1] heißt uniform verteilt auf

Mehr

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten

Vorlesung 8b. Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten Vorlesung 8b Bedingte Erwartung, bedingte Varianz, bedingte Verteilung, bedingte Wahrscheinlichkeiten 1 Wie gehabt, denken wir uns ein zufälliges Paar X = (X 1,X 2 ) auf zweistufige Weise zustande gekommen:

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Modelle diskreter Zufallsvariablen

Modelle diskreter Zufallsvariablen Statistik 2 für SoziologInnen Modelle diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Zufallsvariable Eine Variable (Merkmal) X, deren numerische Werte als Ergebnisse eines Zufallsvorgangs aufgefasst

Mehr

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1

Vorlesung 8b. Zweistufige Zufallsexperimente. Teil 1 Vorlesung 8b Zweistufige Zufallsexperimente Teil 1 1 Stellen wir uns ein zufälliges Paar X = (X 1, X 2 ) vor, das auf zweistufige Weise zustande kommt: es gibt eine Regel, die besagt, wie X 2 verteilt

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ Die Varianz von X ist definiert als Var[X] := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung

Programm. Wiederholung. Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung. Binomialverteilung. Hypergeometrische Verteilung Programm Wiederholung Gleichverteilung Diskrete Gleichverteilung Stetige Gleichverteilung Binomialverteilung Hypergeometrische Verteilung Wiederholung verschiedene Mittelwerte für verschiedene Skalenniveaus

Mehr

Vorlesung 4b. Die Varianz

Vorlesung 4b. Die Varianz Vorlesung 4b Die Varianz 1 X sei reellwertige Zufallsvariable mit endlichem Erwartungswert µ. Die Varianz von X ist definiert als Var X := E[(X µ) 2 ], die erwartete quadratische Abweichung der Zufallsvariablen

Mehr

K3 (Diskrete) Zufallsvariablen 3.1 Basis

K3 (Diskrete) Zufallsvariablen 3.1 Basis K3 (Diskrete) Zufallsvariablen 3.1 Basis Ω = {ω}, X(ω) ist eine Größe die durch ω bestimmt ist. Bei der zufälligen Auswahl von ω bekommen wir den Wert, X(ω). Definition: Ist (Ω, F, P) ein Wahrscheinlichkeitsraum

Mehr

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung

Vorlesung 7b. Unabhängigkeit bei Dichten. und die mehrdimensionale Standardnormalverteilung Vorlesung 7b Unabhängigkeit bei Dichten und die mehrdimensionale Standardnormalverteilung 0. Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4 4

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können.

Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. 2 Zufallsvariable 2.1 Einführung Anliegen: Beschreibung von Versuchsergebnissen mit Zahlen, um mit Zahlen bzw. bekannten Funktionen rechnen zu können. Eine Zufallsvariable X ordnet jedem elementaren Versuchsausgang

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec

Binomialverteilung. Statistik für SoziologInnen 1 Diskrete Verteilungsmodelle. Marcus Hudec Binomialverteilung Jakob Bernoulli (1654-1705) Ars Conjectandi Klassisches Verteilungsmodell für die Berechnung der Wahrscheinlichkeit für die Häufigkeit des Eintretens von Ereignissen in bestimmten noch

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

4 Diskrete Zufallsvariablen

4 Diskrete Zufallsvariablen 25 4 Diskrete Zufallsvariablen 4.1 Einleitung Die Ergebnisse von Zufallsvorgängen sind nicht notwendigerweise Zahlen. Oft ist es aber hilfreich diese durch Zahlen zu repräsentieren. Beispiel 4.1 (4-maliger

Mehr

Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente

Kursthemen 11. Sitzung. Spezielle diskrete Verteilungen: Auswahlexperimente. Spezielle diskrete Verteilungen: Auswahlexperimente Kursthemen 11. Sitzung Folie I - 11-1 Spezielle diskrete Verteilungen: Auswahlexperimente Spezielle diskrete Verteilungen: Auswahlexperimente A) Kombinatorik (Folien bis 5) A) Kombinatorik (Folien bis

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

Stochastik. Peter Pfaffelhuber

Stochastik. Peter Pfaffelhuber Stochastik Peter Pfaffelhuber 1 Grundlegende Bemerkungen Vorlesung orientiert sich an G. Kersting und A. Wakolbinger. Elementare Stochastik. Birkhäuser, 2008 Übungen Volker Pohl Praktikum Ernst August

Mehr

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik

STATISTIK Teil 2 Wahrscheinlichkeitsrechnung und schließende Statistik Kapitel 11 Diskrete Zufallsvariablen 11.1. Wahrscheinlichkeits- und diskret Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsfunktion von X Nimmt abzählbare Anzahl von Ausprägungen an (z.b. Zählvariablen)

Mehr

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung

2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung 2.2 Binomialverteilung, Hypergeometrische Verteilung, Poissonverteilung Die einfachste Verteilung ist die Gleichverteilung, bei der P(X = x i ) = 1/N gilt, wenn N die Anzahl möglicher Realisierungen von

Mehr

Diskrete Strukturen WiSe 2012/13 in Trier

Diskrete Strukturen WiSe 2012/13 in Trier Diskrete Strukturen WiSe 2012/13 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 11. Januar 2013 1 Diskrete Strukturen Gesamtübersicht Organisatorisches und Einführung Mengenlehre Relationen

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Unabhängigkeit von Ereignissen A, B unabhängig:

Mehr

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen

Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel IV - Spezielle Verteilungen: Diskrete Verteilungen Markus Höchstötter Lehrstuhl

Mehr

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] =

i Pr(X = i). Bsp: Sei X die Summe zweier Würfe eines Würfels. Dann gilt E[X] = Erwartungswert Definition Erwartungswert Der Erwartungswert einer diskreten ZV ist definiert als E[X] = i i Pr(X = i). E[X] ist endlich, falls i i Pr(X = i) konvergiert, sonst unendlich. Bsp: Sei X die

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Kombinatorik kompakt. Stochastik WS 2016/17 1

Kombinatorik kompakt. Stochastik WS 2016/17 1 Kombinatorik kompakt Stochastik WS 2016/17 1 Übersicht Auswahl/Kombinationen von N aus m Elementen Statistische unterscheidbare ununterscheidbare Physik Objekte (gleiche) Objekte ( ohne m N m+n 1 ) N mit

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 07. Januar 2015 Klausuranmeldung Prüflinge müssen sich bis spätestens 14 Tage vor

Mehr

2 Zufallsvariablen und deren Verteilungen

2 Zufallsvariablen und deren Verteilungen 2 Zufallsvariablen und deren Verteilungen 2.1 Zufallsvariablen Zufallsvariablen sind Funktionen von Ω in die reellen Zahlen R. Beispiel 2.1.1 (Zweimaliger Münzwurf). Ω = ZZ, KK, KZ, ZK}. Sei X(ω) die Anzahl

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Stochastik für die Informatik

Stochastik für die Informatik Stochastik für die Informatik Wintersemester 2012/13 Anton Wakolbinger 1 StofI-Webseite: http://ismi.math.unifrankfurt.de/wakolbinger/teaching/stofi1213/ 2 StofI-Webseite: http://ismi.math.unifrankfurt.de/wakolbinger/teaching/stofi1213/

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Mai 2011 Waldherr / Christodoulides Einführung in Quantitative Methoden- 8.VO 1/40 Poisson-Verteilung Diese Verteilung

Mehr

Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3

Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 Wahrscheinlichkeitsrechnung Übung Aufgabe 2.b und 3 B I N O M I A L V E R T E I L U N G, B I N O M I A L T A B E L L E, U N A B H Ä N G I G E E R E I G N I S S E Zentrale Methodenlehre, Europa Universität

Mehr

Stochastik für die Informatik

Stochastik für die Informatik Stochastik für die Informatik Wintersemester 2016/17 Anton Wakolbinger 1 StofI-Webseite: http://ismi.math.unifrankfurt.de/wakolbinger/teaching/stofi1617/ Oder: http://www.uni-frankfurt.de/53215133 Oder:

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

1.3 Zufallsgrößen und Verteilungsfunktionen

1.3 Zufallsgrößen und Verteilungsfunktionen .3 Zufallsgrößen und Verteilungsfunktionen.3. Einführung Vielfach sind die Ergebnisse von Zufallsversuchen Zahlenwerte. Häufig möchte man aber auch in den Fällen, wo dies nicht so ist, Zahlenwerte zur

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Stochastik für die Informatik

Stochastik für die Informatik Stochastik für die Informatik Wintersemester 2017/18 Anton Wakolbinger 1 StofI-Webseite: http://ismi.math.unifrankfurt.de/wakolbinger/teaching/stofi1718/ Oder: http://www.uni-frankfurt.de/53215133 Oder:

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

3. Anwendungen aus der Kombinatorik

3. Anwendungen aus der Kombinatorik 3. Anwendungen aus der Kombinatorik 3.1. Ziehen mit Zurücklegen 1) Würfeln Wie gross ist die Wahrscheinlichkeit für genau 2 Sechser in 7 Würfen? 2) Glücksrad Ein Glücksrad zeigt "1" mit Wahrscheinlichkeit

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

Statistik für Informatiker, SS Verteilungen mit Dichte

Statistik für Informatiker, SS Verteilungen mit Dichte 1/39 Statistik für Informatiker, SS 2017 1.1.6 Verteilungen mit Dichte Matthias Birkner http://www.staff.uni-mainz.de/birkner/statinfo17/ 17.5.2017 Zufallsvariablen mit Dichten sind ein kontinuierliches

Mehr

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz

Stochastik: Erwartungswert Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 10 Alexander Schwarz Stochastik Erwartungswert einer Zufallsvariablen Gymnasium ab Klasse 0 Alexander Schwarz www.mathe-aufgaben.com November 20 Aufgabe : Ein Glücksrad besteht aus Feldern, die folgendermaßen beschriftet sind:.feld:

Mehr

Ausgewählte spezielle Verteilungen

Ausgewählte spezielle Verteilungen Ausgewählte spezielle Verteilungen In Anwendungen werden oft Zufallsvariablen betrachtet, deren Verteilung einem Standardmodell entspricht. Zu den wichtigsten dieser Modelle gehören: diskrete Verteilungen:

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-206 Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de lordsofthebortz.de lordsofthebortz.de/g+

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Ü b u n g s b l a t t 7

Ü b u n g s b l a t t 7 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 21. 5. 2007 Ü b u n g s b l a t t 7 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike persike@uni-mainz.de

Mehr

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments

Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XI - Die n-fache unabhängige Wiederholung eines Experiments Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig

Mehr

3.4 Anwendung bedingter Wahrscheinlichkeiten

3.4 Anwendung bedingter Wahrscheinlichkeiten 3.4 Anwendung bedingter Wahrscheinlichkeiten Bsp. 23 Betrachtet werden mehrere Kanonen. Für i N bezeichne A i das Ereignis, daß Kanone i einen Schuß abgibt. A sei das Ereignis, daß ein Treffer erzielt

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 12. November 2015 Satz 3.16 (Binomischer Lehrsatz) Seien a, b R. Dann gilt für alle

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2

4.4 Punktschätzung. E(X 1 )+ +E(X n ) Var(ˆµ) = 1 n 2 ( Var(X1 )+ +Var(X n ) ) = 1 n 2nσ2 = σ2 4 4.4 Punktschätzung Wir betrachten eine endliche oder unendliche Grundgesamtheit, zum Beispiel alle Studierenden der Vorlesung Mathe II für Naturwissenschaften. Im endlichen Fall soll die Anzahl N ihrer

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit

Übung Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung mit Übung 2 24..23 Ü b u n g 2 Aufgabe Die Poissonverteilung P(λ) hat die Wahrscheinlichkeitsfunktion p(x) = λx e λ (x ) x! Zeigen Sie, dass dies als Grenzwert der Wahrscheinlichkeitsfunktion der Binomialverteilung

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Pantelis Christodoulides & Karin Waldherr SS 2013 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik I 1/61 Zufallsexperiment

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen:

A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 Diskrete Verteilungen 1 Kapitel 5: Diskrete Verteilungen A: Beispiele Beispiel 1: Zwei Zufallsvariablen X und Y besitzen die beiden folgenden Wahrscheinlichkeitsfunktionen: 5 0.6 x 0.4 5 x (i) P x (x)

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr

Übungen Abgabetermin: Freitag, , 10 Uhr Universität Münster Institut für Mathematische Statistik Stochastik für Lehramtskandidaten SoSe 015, Blatt 1 Löwe/Heusel Übungen Abgabetermin: Freitag, 10.7.015, 10 Uhr Hinweis: Dies ist nur eine Beispiellösung.

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Ü b u n g s b l a t t 10

Ü b u n g s b l a t t 10 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel. 6. 2007 Ü b u n g s b l a t t 0 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Sabrina Kallus, Eva Lotte Reinartz, André Salé

Sabrina Kallus, Eva Lotte Reinartz, André Salé Sabrina Kallus, Eva Lotte Reinartz, André Salé } Wiederholung (Zufallsvariable) } Erwartungswert Was ist das? } Erwartungswert: diskrete endliche Räume } Erwartungswert: Räume mit Dichten } Eigenschaften

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 206 Prof. Dr. Stefan Etschberger HSA Unabhängigkeit von Ereignissen A, B unabhängig: Eintreten von A liefert keine Information über P(B). Formal: P(A

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

1 Das Phänomen Zufall

1 Das Phänomen Zufall 1 Das Phänomen Zufall Im täglichen Leben werden wir oft mit Vorgängen konfrontiert, bei denen der Zufall eine Rolle spielt. Bereits als Kind lernt man die Tücken des Zufalls kennen, wenn man beim Spiel

Mehr

Statistik 1 Beispiele zum Üben

Statistik 1 Beispiele zum Üben Statistik 1 Beispiele zum Üben 1. Ein Kühlschrank beinhaltet 10 Eier, 4 davon sind faul. Wir nehmen 3 Eier aus dem Kühlschrank heraus. (a Bezeichne die Zufallsvariable X die Anzahl der frischen herausgenommenen

Mehr

Zweitklausur. b p b. q a. c 1. p a

Zweitklausur. b p b. q a. c 1. p a Elementare Stochastik SoSe 27 Zweitklausur Lösungen. Berechnen Sie für die angegebenen Übergangswahrscheinlichkeiten (mit p a,p b >, q a := p a, q b := p b ) die erwartete Anzahl von Schritten bis zum

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

WHB11 - Mathematik. AFS II: Umgang mit Zufall und Wahrscheinlichkeiten. Thema: Summierte Binomialverteilung

WHB11 - Mathematik. AFS II: Umgang mit Zufall und Wahrscheinlichkeiten. Thema: Summierte Binomialverteilung Binomialverteilung Bisher haben wir berechnet, wie groß die Wahrscheinlichkeit dafür ist, dass bei einer Bernoulli-Kette n der Länge genau k Treffer auftreten. Die Formel dafür war: B (n;p;k) = P (X=k)

Mehr

Berechnung von W für die Elementarereignisse einer Zufallsgröße

Berechnung von W für die Elementarereignisse einer Zufallsgröße R. Albers, M. Yanik Skript zur Vorlesung Stochastik (lementarmathematik) 5. Zufallsvariablen Bei Zufallsvariablen geht es darum, ein xperiment durchzuführen und dem entstandenen rgebnis eine Zahl zuzuordnen.

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Diskrete Zufallsvariable*

Diskrete Zufallsvariable* Diskrete Zufallsvariable* Aufgabennummer: 1_37 Aufgabentyp: Aufgabenformat: Multiple Choice (1 aus 6) Grundkompetenz: WS 3.1 Typ 1 T Typ Die unten stehende Abbildung zeigt die Wahrscheinlichkeitsverteilung

Mehr

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker

Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker Aufgabe Aufgabe 2 Übungsblatt 7 zur Vorlesung Wahrscheinlichkeitsrechnung und mathematische Statistik für Informatiker.2.202 Aufgabe Aufgabe 2 Bei einem Zufallsexperiment werden zwei Würfel geworfen und

Mehr

Kapitel 5. Kapitel 5 Wahrscheinlichkeit

Kapitel 5. Kapitel 5 Wahrscheinlichkeit Wahrscheinlichkeit Inhalt 5.1 5.1 Grundbegriffe Ω, Ω, X, X,...... 5.2 5.2 Wahrscheinlichkeitsräume (Ω, (Ω, P) P) 5.3 5.3 Das Das Laplace-Modell P(A) P(A) = A / Ω 5.4 5.4 Erwartungswert E(X) E(X) Literatur:

Mehr

P (X = 2) = 1/36, P (X = 3) = 2/36,...

P (X = 2) = 1/36, P (X = 3) = 2/36,... 2.3 Zufallsvariablen 2.3 Zufallsvariablen Meist sind die Ereignisse eines Zufallseperiments bereits reelle Zahlen. Ist dies nicht der Fall, kann man Ereignissen eine reelle Zahl zuordnen. Zum Beispiel

Mehr

Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt.

Eine Zufallsvariable wird als diskret bezeichnet, wenn sie nur endlich viele oder abzählbar unendlich viele Werte annimmt. Statistik I Sommersemester 009 Aufgabenlösung Übung 4: Diskrete Zufallsvariablen Aufgabe 5.. (Blatt ) ine Zufallsvariable bildet den reignisraum eines Zufallsvorgangs ab. Dieser bestimmt den Definitionsbereich

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr