Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord"

Transkript

1 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für Betrebswrtschaftslehre, Bank- und Kredtwrtschaft, Unverstät Würzburg Kontakt: Der Baseler Ausschuss für Bankenaufscht hat n senem m Januar 2001 veröffentlchten zweten Konsultatonspaper zur Neuregelung der Egenkaptalverenbarung von 1988 auch enen auf nternen Ratngs baserenden Ansatz (IRB-Ansatz) vorgestellt 1. Das aufschtsrechtlche Mndestegenkaptal, mt dem de Kredte zu unterlegen snd, ergbt sch dabe als Funkton der von der Bank ntern geschätzten Ausfallwahrschenlchket. De Herletung der be der Berechnung der Rskogewchte zur Anwendung kommenden Formel wrd n dem Konsultatonspaper allerdngs ncht angegeben. De theoretschen Grundlagen des IRB-Ansatzes snd aber ncht nur für de mt den Aufschtsbehörden geführte Dskusson von Bedeutung, ob de Mndestegenkaptalanforderungen angemessen snd oder ob de Banken möglcherwese zu stark belastet werden. Darüber hnaus resultert erheblche praktsche Relevanz aus der Tatsache, dass der IRB-Ansatz offenschtlch als Vorstufe für de langfrstg entsprechend den derzet berets für Marktrsken geltenden Regelungen - auch für Kredtrsken zu erwartende aufschtsrechtlche Anerkennung von nternen Modellverfahren anzusehen st. Enschten n de dem IRB-Ansatz zugrunde legenden modelltheoretschen Überlegungen können sch daher be der Entwcklung von bankegenen Kredtrskomodellen als nützlch erwesen. We m Folgenden gezegt wrd, kann der Zusammenhang zwschen Ausfallwahrschenlchket und aufschtsrechtlcher Egenkaptalanforderung nachvollzogen werden, ndem auf bestmmte, telwese auch n dem Konsultatonspaper zterte neuere Forschungsarbeten zurückgegrffen wrd. Dazu st das approxmatve Verhalten enes Kredtrskomodells be zunehmender Granulartät zu betrachten.

2 2 Asset Value Modell Ausgangspunkt st de Vorstellung, dass en Default entrtt, wenn de (möglcherwese negatve) Rendte bestmmter Assets des Kredtnehmers ene krtsche Schwelle D unterschretet. Be standardnormalvertelten 2 Asset Value Rendten r ergbt sch aus der Normalvertelung N unmttelbar ene Bezehung zwschen Default-Schwelle D und Ausfallwahrschenlchket p, wobe her n enem homogenen Portfolo von ener für alle Kredtnehmer enhetlchen Ausfallwahrschenlchket ausgegangen wrd: p = P(r < D) = N(D) (1) In enem enfachen Modell können de Asset Value Rendten durch enen gemensamen systematschen Faktor X und das unsystematsche bzw. spezfsche Rsko der verschedenen Kredtnehmer abbldende Faktoren ε ( = 1... N) erklärt werden. De unsystematschen Rskofaktoren ε snd dabe sowohl unterenander als auch vom syste- matschen Faktor X jewels stochastsch unabhängg. r = ρ X + 1- ρ ε (2) De Koeffzenten snd so gewählt, dass sch be jewels standardnormalvertelten systematschen und unsystematschen Faktor auch ene standardnormalvertelte Asset Value Rendte ergbt. Außerdem st für zwe verschedene Kredtnehmer de Korrelaton der jewelgen Asset Value Rendten enhetlch durch ρ gegeben. Bedngte Ausfallwahrschenlchket Geht man n enem weteren Schrtt davon aus, dass sch das systematsche Rsko jewels zetlch vor dem unsystematschen Rsko realsert, dann lässt sch ene bedngte, von der Realsaton des systematschen Faktors abhängge Ausfallwahrschenlchket angeben 3. Der systematsche Faktor übernmmt damt de Funkton ener de Höhe der

3 3 Ausfallwahrschenlchket steuernden Hntergrundvarable. De Wahrschenlchket dafür, dass be gegebener Realsaton des systematschen Faktors X de unsystematsche Varable ε enen so nedrgen Wert annmmt, dass de resulterende Asset Value Rendte r unter der Default-Schwelle D legt, berechnet sch aus (1) und (2) we folgt: -1 N (p) ρ X p(x) = N( ) (3) 1- ρ Es wrd also ene Unterschedung getroffen zwschen deser bedngten, sch für ene bestmmte Realsaton des systematschen Faktors ergebenden Ausfallwahrschenlchket p( X ) und der unbedngten Ausfallwahrschenlchket p. De unbedngte Ausfallwahrschenlchket kann dabe als langfrstger, sch über mehrere Konjunkturzyklen hnweg ergebender Durchschnttswert nterpretert werden. Unendlche Granulartät Für gegebene Realsaton des systematschen Faktors snd de Ausfalleregnsse stochastsch unabhängg. Mt zunehmender Anzahl der Kredte wrd deshalb der Quotent aus ausgefallenen Kredten und Gesamtzahl der Kredte gegen de jewelge bedngte Ausfallwahrschenlchket konvergeren. Deser Zusammenhang wrd als Gesetz der großen Zahlen bezechnet, wonach be sehr velen Versuchen de emprsche Trefferrate (her von Ausfalleregnssen) mmer wenger von der theoretschen Trefferwahrschenlchket abwechen wrd. Ausfallrate und n Prozent des Kredtvolumens gemessene Ausfallverluste stmmen genau überen, falls alle Kredtnehmer dasselbe Kredtvolumen und enen enhetlchen loss gven default von jewels LGD = 100% aufwesen. Aus dem Gesetz der großen Zahlen folgt somt für en unendlch granulares Portfolo aus unendlch velen, jewels glechen Kredten de Identtät von n Prozent gemessenen Ausfallverlusten und bedngter Ausfallwahrschenlchket 4. Unsystematsche Rsken werden dabe durch Dversfkaton vollständg besetgt. Bestehen blebt ledglch der Enfluss des systematschen

4 4 Faktors, also das Rsko, dass sch je nach Konjunkturlage ene höhere oder nedrge bedngte Ausfallwahrschenlchket enstellt. Abdeckung des erwarteten und unerwarteten Verlustes Im Hnblck auf Kredtausfallverluste st de Unterschedung von erwarteten und unerwarteten Verlusten üblch. Während der als statstscher Mttelwert gegebene erwartete Verlust EL durch ene geegnet kalkulerte Znsmarge auszuglechen st, muss zur Abdeckung enes möglcherwese darüber hnaus entstehenden unerwarteten Verlustes UL en ausrechendes Egenkaptalpuffer beretgehalten werden. De Höhe deses Egenkaptalpuffers bemsst sch danach, dass de Wahrschenlchket für ene Insolvenz der Bank enen gerade noch akzepterten, her mt q bezechneten Wert ncht überschretet. In enem unendlch granularen Portfolo snd we gezegt Ausfallverluste und bedngte Ausfallwahrschenlchket dentsch. Es ergbt sch damt folgende Bedngung: P(p( X) > EL + UL) = q (4) Nach der Substtuton der durch Glechung (3) gegebenen Formel für de bedngte Ausfallwahrschenlchket und engen elementaren Umformungen erhält man: -1-1 N (p) ρ N (q) EL + UL = N( ) (5) 1 ρ Für den Grenzfall enes unendlch granularen Portfolos gelngt es also, ene explzte Formel für de Summe aus erwarteten und unerwarteten Verlust anzugeben. De Modellannahmen lassen sch we folgt rekaptuleren: Ausgegangen wrd von Kredtnehmern mt normalvertelten Asset Value Rendten, de sch um enen Mttelwert oberhalb der Default-Schwelle konzentreren. Je nach Ausprägung des systematschen Faktors bewegt sch de Default-Schwelle n Rchtung Mttelwert oder von desem weg. Da ene Bewegung n Rchtung Mttelwert zu enem überproportonalen Ansteg der Ausfalleregnsse führt, wrd m übrgen auch de für Kredtrsken typsche Schefe der Verlustvertelung mplzert.

5 5 Kalbrerung Der Baseler Ausschuss st für en Nchtbanken-Kredtportfolo von ener Asset- Korrelaton n Höhe von ρ = 0,2 und von enem Scherhetsnveau n Höhe von 99,5%, also von q = 0,5%, ausgegangen. Glechung (5) lautet dann we folgt: EL + UL = N(1,118 N -1 (p) + 1,288) (6) Des st de zentrale Formel m IRB-Ansatz, be dem de Ausfallwahrschenlchket p bankntern geschätzt wrd. Der Ausdruck st noch mt verschedenen Faktoren zu multplzeren, de so kalbrert snd, dass sch be enem pauschal vorgegebenen 5 loss gven default von LGD = 50% und ener Kredtrestlaufzet von 3 Jahren dann en Rskogewcht von 100% und somt en aufschtsrechtlches Kaptal von 8% ergbt, wenn de Ausfallwahrschenlchket auf 0,7% geschätzt wrd. Da außerdem en reales Kredtportfolo ne unendlch granular sen kann, wrd vom Baseler Ausschuss noch ene ndvduelle Granulartätsanpassung vorgeschlagen, de je nachdem, ob das Portfolo ene über- oder unterduchschnttlche Granulartät aufwest, postv oder negatv ausfallen kann. Fazt Für den Grenzfall enes unendlch granularen Kredtportfolos kann ene explzte Formel für de Summe aus erwarteten und unerwarteten Verlust angegeben werden, auf de der Baseler Ausschuss für de Berechnung der Rskogewchte bem IRB-Ansatz zurückgegrffen hat. Wegen der Anwendung bestmmter Multplkatonsfaktoren (Kalbrerung) wrd allerdngs ncht de absolute Höhe, sondern nur das relatve Verhältns der Rskogewchte modelltheoretsch bestmmt 6. Her besteht ene Analoge zum Modellverfahren m Berech der Marktrsken, be dem der Value at Rsk ebenfalls noch mt bestmmten von der Bankenaufscht vorgegebenen Zusatzfaktoren zu multplzeren st 7. Der IRB-Ansatz stellt sch damt als en wchtger Zwschenschrtt auf dem Weg zu ener langfrstg auch für Kredtrsken zu erwartenden aufschtsrechtlchen Anerkennung banknterner Modelle dar.

6 6 Anmerkungen 1 Das Konsultatonspaper kann unter heruntergeladen werden. 2 D.h. de Rendten snd so standardsert, dass der Erwartungswert Null und de Varanz 1 beträgt. Ene solche Standardserung schränkt de Allgemenhet der folgenden Überlegungen ncht en, da Korrelatonen nvarant gegenüber ener gegebenenfalls erforderlchen Lneartransformaton snd. 3 Vgl. dazu C.C. Fnger (1999): Condtonal approaches for CredtMetrcs portfolo dstrbutons, n: CredtMetrcs Montor, S Download: 4 Vgl. allgemener dazu M. B. Gordy (2001): A rsk-factor model for ratng-based captal rules, S.6f. Download: mgordy.trpod.com 5 Bem so genannten advanced approach werden dagegen auch für den loss gven default, das exposure at default und de Laufzet bankegene Werte verwendet. 6 So auch Deutsche Bundesbank (2001): Monatsbercht Aprl 2001, S.38 FN Vgl. H. Rau-Bredow (2001): Überwachung von Marktpresrsken durch Value at Rsk, n Wrtschaftswssenschaftlches Studum 6/2001, S

Kreditrisikomodelle und Diversifikation erschienen in: Zeitschrift für Bankrecht und Bankwirtschaft (ZBB), 14. Jahrgang, 2002, S.9-17.

Kreditrisikomodelle und Diversifikation erschienen in: Zeitschrift für Bankrecht und Bankwirtschaft (ZBB), 14. Jahrgang, 2002, S.9-17. 1 Kredtrskomodelle und Dversfkaton erschenen n: Zetschrft für Bankrecht und Bankwrtschaft (ZBB), 14. Jahrgang, 2002, S.9-17. Dr. oec. publ. Hans Rau-Bredow, Prvatdozent an der Unverstät Würzburg Kontakt:

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Basel III Kontrahentenrisiken

Basel III Kontrahentenrisiken Basel III Kontrahentenrsken Chrstoph Hofmann De Fnanzkrse hat gezegt, dass das aus ncht börsengehandelten (OTC) Dervaten hervorgehende Kontrahentenrsko von entschedender Bedeutung für de Stabltät des Bankensystems

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Grundgedanke der Regressionsanalyse

Grundgedanke der Regressionsanalyse Grundgedanke der Regressonsanalse Bsher wurden durch Koeffzenten de Stärke von Zusammenhängen beschreben Mt der Regressonsrechnung können für ntervallskalerte Varablen darüber hnaus Modelle geschätzt werden

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 5. Spezelle Testverfahren Zahlreche parametrsche und nchtparametrsche Testverfahren, de nach Testvertelung (Bnomal, t-test etc.), Analysezel (Anpassungs- und Unabhänggketstest) oder Konstrukton der Prüfgröße

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Diplomprüfung für Kaufleute 2001/I

Diplomprüfung für Kaufleute 2001/I Dplomprüfung für Kaufleute 00/I Prüfungsfach: Unternehmensfnanzerung und Betrebswrtschaftslehre der Banken Thema : a) Warum st es trotz Rskoaverson der Markttelnehmer möglch, be der Bewertung von Optonen

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Die IRB Formel. Zur Berechnung der Mindesteigenmittel für Kreditrisiko. Working Paper Series by the University of Applied Sciences of bfi Vienna

Die IRB Formel. Zur Berechnung der Mindesteigenmittel für Kreditrisiko. Working Paper Series by the University of Applied Sciences of bfi Vienna Number 1 / 004 Workng Paper Seres by the Unversty of Appled Scences of bf Venna De IRB Formel Zur Berechnung der Mndestegenmttel für Kredtrsko Laut Drttem Konsultatonspaper und laut Jänner-Formel des Baseler

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Article Auswirkungen von Basel II auf die Leasing-Branche

Article Auswirkungen von Basel II auf die Leasing-Branche econstor www.econstor.eu Der Open-Access-Publkatonsserver der ZBW Lebnz-Informatonszentrum Wrtschaft The Open Access Publcaton Server of the ZBW Lebnz Informaton Centre for Economcs Hartmann-Wendels, Thomas

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Hat die Wahl des Performancemaßes einen Einfluss auf die Beurteilung von Hedgefonds-Indizes?

Hat die Wahl des Performancemaßes einen Einfluss auf die Beurteilung von Hedgefonds-Indizes? Hat de Wahl des Performancemaßes enen Enfluss auf de Beurtelung von Hedgefonds-Indzes? Von Martn Elng, St. Gallen, und Frank Schuhmacher, Lepzg Ene zentrale Fragestellung n der wssenschaftlchen Ausenandersetzung

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x)

Die hierzu formulierte Nullhypothese H lautet: X wird durch die Verteilungsdichtefunktion h(x) ZZ Lösung zu Aufgabe : Ch²-Test Häufg wrd be der Bearbetung statstscher Daten ene bestmmte Vertelung vorausgesetzt. Um zu überprüfen ob de Daten tatsächlch der Vertelung entsprechen, wrd en durchgeführt.

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 4

Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 4 45 www.rsknews.de 11.2002 Kredtrsko Sere: Bestmmung von Ausfallwahrschenlchketen - Tel 4 Ausfallwahrschenlchketen m Konjunkturzyklus Credt Portfolo Vew En Betrag von Uwe Wehrspohn Wr haben n unserer Sere

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

5. Transmissionsmechanismen der Geldpolitik

5. Transmissionsmechanismen der Geldpolitik Geldtheore und Geldpoltk Grundzüge der Geldtheore und Geldpoltk Sommersemester 2013 5. Transmssonsmechansmen der Geldpoltk Prof. Dr. Jochen Mchaels Geldtheore und Geldpoltk SS 2013 5. Transmssonsmechansmen

Mehr

HAT DIE WAHL DES PERFORMANCEMAßES EINEN EINFLUSS

HAT DIE WAHL DES PERFORMANCEMAßES EINEN EINFLUSS HAT DIE WAHL DES PERFORMANCEMAßES EINEN EINFLUSS AUF DIE BEURTEILUNG VON HEDGEFONDS-INDIZES? MARTIN ELING FRANK SCHUHMACHER WORKING PAPERS ON RISK MANAGEMENT AND INSURANCE NO. 10 EDITED BY HATO SCHMEISER

Mehr

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y

(2) i = 0) in Abhängigkeit des Zeitunterschieds x ZeitBus ZeitAuto für seinen Arbeitsweg.) i = 1) oder Bus ( y 5. Probt-Modelle Ökonometre II - Peter Stalder "Bnar Choce"-Modelle - Der Probt-Ansatz Ene ncht drekt beobachtbare stochastsche Varable hängt von x ab: x u 2 u ~ N(0, ( Beobachtet wrd ene bnäre Varable

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Aufgabe 1: Portfolio Selection

Aufgabe 1: Portfolio Selection Aufgabe 1: Portfolo Selecton 2 1 2 En Investor mt ener Präferenzfunkton der Form (, ) a verfügt über en 2 Anfangsvermögen n Höhe von 100 Slbermünzen. Am Markt werden de folgenden dre Wertpapere gehandelt,

Mehr

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9

WS 2016/17 Prof. Dr. Horst Peters , Seite 1 von 9 WS 2016/17 Prof. Dr. Horst Peters 06.12.2016, Sete 1 von 9 Lehrveranstaltung Statstk m Modul Quanttatve Methoden des Studengangs Internatonal Management (Korrelaton, Regresson) 1. Überprüfen Se durch Bestmmung

Mehr

Grundzüge der Geldtheorie und Geldpolitik

Grundzüge der Geldtheorie und Geldpolitik Grundzüge der Geldtheore und Geldpoltk Sommersemester 2012 8. Monetäre Transaktonskanäle Prof. Dr. Jochen Mchaels SoSe 2012 Geldtheore & -poltk 8. De Übertragung monetärer Impulse auf de Gesamtwrtschaft

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Menhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzet nach Verenbarung und nach der Vorlesung. Mathematsche und statstsche Methoden II Dr. Malte Perske perske@un-manz.de

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell

ME II, Prof. Dr. T. Wollmershäuser. Kapitel 2 Das IS-LM-Modell ME II, Prof. Dr. T. Wollmershäuser Kaptel 2 Das IS-LM-Modell Verson: 26.04.2011 2.1 Der Gütermarkt De gesamte Güternachfrage Z (Verwendung des BIP) lässt sch we folgt darstellen: Z C+ I + G ME II, Prof.

Mehr

D I E R I S I K O A D J U S T I E RT E P E R F O R M A N C E O F F E N E R A K T I E N F O N D S

D I E R I S I K O A D J U S T I E RT E P E R F O R M A N C E O F F E N E R A K T I E N F O N D S D I E R I S I K O A D J U S T I E RT E P E R F O R M A N C E O F F E N E R A K T I E N F O N D S Ene theoretsche und emprsche Untersuchung ausgewählter Probleme n der Performancemessung sebastan krmm Dssertaton

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Hypothekenversicherung oder Bankhypothek?

Hypothekenversicherung oder Bankhypothek? Unverstät Augsburg Prof Dr Hans Ulrch Buhl Kernkompetenzzentrum Fnanz- & Informatonsmanagement Lehrstuhl für BWL, Wrtschaftsnformatk, Informatons- & Fnanzmanagement Dskussonspaper WI-44 Hypothekenverscherung

Mehr

Die risikoadäquate Kalkulation der Fremdkapitalkosten für nicht öffentlich gehandelte Unternehmen

Die risikoadäquate Kalkulation der Fremdkapitalkosten für nicht öffentlich gehandelte Unternehmen De rskoadäquate Kalkulaton der Fremdkaptalkosten für ncht öffentlch gehandelte Unternehmen Patrck Behr * Schwerpunkt Fnanzen, Unverstät Frankfurt André Güttler ** Schwerpunkt Fnanzen, Unverstät Frankfurt

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Risikomanagement. Vortrag in der Seminarreihe Statistische Mechanik der Finanzmärkte im WS 07/08. Simon Hertenberger

Risikomanagement. Vortrag in der Seminarreihe Statistische Mechanik der Finanzmärkte im WS 07/08. Simon Hertenberger Rskomanagement Vortrag n der Semnarrehe Statstsche Mechank der Fnanzmärkte m WS 07/08 Smon Hertenberger Inhaltsverzechns Grundlagen Was st Rsko? 3 Gründe des Rskomanagements 3 Rskomanagement als Prozess

Mehr

4. Indexzahlen. 5.1 Grundlagen 5.2 Preisindizes 5.3 Indexzahlenumrechnungen. Dr. Rebecca Schmitt, WS 2013/2014

4. Indexzahlen. 5.1 Grundlagen 5.2 Preisindizes 5.3 Indexzahlenumrechnungen. Dr. Rebecca Schmitt, WS 2013/2014 4. ndexzahlen 5.1 Grundlagen 5.2 Presndzes 5.3 ndexzahlenumrechnungen 1 4.1 Grundlagen Als Messzahlen werden de Quotenten bezechnet, de aus den Beobachtungswerten bzw. den Maßzahlen zweer Telmengen derselben

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

4. Rechnen mit Wahrscheinlichkeiten

4. Rechnen mit Wahrscheinlichkeiten 4. Rechnen mt Wahrschenlchketen 4.1 Axome der Wahrschenlchketsrechnung De Wahrschenlchketsrechnung st en Telgebet der Mathematk. Es st üblch, an den Anfang ener mathematschen Theore enge Axome zu setzen,

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Ein Vorschlag zur Modellierung von Summenexzedenten- Rückversicherungsverträgen in Internen Modellen

Ein Vorschlag zur Modellierung von Summenexzedenten- Rückversicherungsverträgen in Internen Modellen En Vorschlag zur Modellerung von Summenexzedenten- Rückverscherungsverträgen n Internen Modellen Dorothea Ders Preprnt Seres: 27-22 Fakultät für Mathematk und Wrtschaftswssenschaften UNIVERSITÄT ULM En

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Produkt-Moment-Korrelation (1) - Einführung I -

Produkt-Moment-Korrelation (1) - Einführung I - Produkt-Moment-Korrelaton - Enführung I - Kennffer ur Bechreung de lnearen Zuammenhang wchen we Varalen X und Y. Bechret de Rchtung und de Enge de Zuammenhang m Snne von je... deto... oder wenn... dann...

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

bciiii $elbbtbc~\~o!lntcti I-Ieim dagegen nictir. Bei freiiidgciiutztcn Inimobilien zeigt ein Vergleich nach Sreucrii, daß das Modell der

bciiii $elbbtbc~\~o!lntcti I-Ieim dagegen nictir. Bei freiiidgciiutztcn Inimobilien zeigt ein Vergleich nach Sreucrii, daß das Modell der uen gegenwärtg d, dle zudem unte 11 'Slgugh..r solltc de Nutzutgs'rt der Innublc 1- rd d.s %~sn\,cau berückschtgt werdenu, rat,,,,,, r Sre~scl~. l)c Nutzungsnrt der Irmoble sctwchtg, wel hc Jer vcrctctc

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr