1 Analytische Geometrie und Grundlagen

Größe: px
Ab Seite anzeigen:

Download "1 Analytische Geometrie und Grundlagen"

Transkript

1 $Id: vektor.tex,v /05/03 14:55:15 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Nachdem wir uns am Ende der letzten Sitzung an den Orthogonalitätsbegriff der linearen Algebra u v u v = 0 und A B (a A) (b B) : a b für Vektoren u, v R d beziehungsweise für Teilmengen A, B R d erinnert haben, wollen wir nun zum entsprechenden affinen Begriff des Senkrechtstehens kommen. Wir wollen zunächst definieren was es heißt das eine Gerade senkrecht auf einem affinen Teilraum steht. Hierfür können wir nicht einfach den eben eingeführten Orthogonalitätsbegriff der linearen Algebra verwenden und benötigen daher eine weitere Definition. Definition 1.15 (Orthogonalität von Geraden und affinen Teilräumen) Seien d N, A R d ein affiner Teilraum und l R d eine Gerade. Dann nennen wir die Gerade l senkrecht auf dem Teilraum A wenn A l und R(A) R(l) gelten. In diesem Fall schreiben wir auch l A. Beachte das die Schreibweise l A dieser Definition nicht mit der obigen Definition der Orthogonalität zweier Teilmengen des R d zusammen passt, es wird aber immer klar welche der beiden Möglichkeiten gemeint ist. Steht weiter eine Gerade l senkrecht auf einem affinen Teilraum A so haben l und A einen eindeutigen Schnittpunkt. Denn zunächst gibt es wegen A l überhaupt einen Schnittpunkt und gäbe es sogar mehrere so hätten wir l A also auch {0} = R(l) R(A) im Widerspruch zur positiven Definitheit des Skalarprodukts. Dies können wir nun verwenden um Lote einzuführen. Angenommem wir haben einen affinen Teilraum A R d und einen Punkt p R d außerhalb von A, also p / A. Unter einem Lot von p auf A verstehen wir dann eine Gerade l R d die zum einen durch p läuft und zum anderen senkrecht auf A ist, also p l und l A. Den Schnittpunkt von l und A nennt man dann den Lotfußpunkt von p auf A. Um gelegentlich Ausnahmefälle zu vermeiden, stellt es sich als geschickter heraus auch den Fall p A zu erlauben und unsere Lotdefinition nimmt dann die folgende Form an. Definition 1.16 (Lote auf affine Teilräume) Seien d N, A R d ein affiner Teilraum und p R d. Ein Punkt q A heißt Lotfußpunkt von p auf A wenn p q R(A) gilt. Ist zuätzlich p / A so heißt die Gerade l durch p und q das Lot von p auf A. 7-1

2 Im Fall p / A deckt sich dies mit der eingangs beschriebenen Definition. Ist nämlich q ein Lotfußpunkt von p auf A und l die Verbindungsgerade von p und q so ist l A und R(l) = R (p q) also haben wir R(A) R(l) und somit auch l A. Ist umgekehrt l eine auf A senkrechte Gerade durch p und bezeichnet q den Schnittpunkt von l und A so ist p q R(l) R(A), d.h. q ist ein Lotfußpunkt von p auf A. Wir zeigen nun das es immer einen eindeutigen Lotfußpunkt von p auf A gibt und im Fall p / A gibt es damit auch ein eindeutiges Lot von p auf A. Lemma 1.21 (Grundeigenschaften des Lotfußpunktes) Seien d N, p R d und = A R d ein affiner Teilraum. Dann existiert genau ein Lotfußpunkt q von p auf A. Ist p A so gilt q = p und ist p / A und bezeichnet l die Verbindungsgerade von p und q so ist l A. Beweis: Wähle einen Aufpunkt a A, und dann gilt A = a + R(A). Aus der linearen Algebra wissen wir das es eindeutig bestimmte Vektoren u, v R d mit u R(A), v R(A) und p a = u + v gibt. Wir erhalten den Punkt q := a + u a + R(A) = A mit p q = p a u = v R(A), d.h. q ist ein Lotfußpunkt von p auf A. Sei umgekehrt q A ein Lotfußpunkt von p auf A. Dann gibt es ein u R(A) mit q = a + u und wir erhalten v := p q R(A) mit v = p q = p a u also p a = u + v und somit sind u = u und q = a + u = a + u = q. Damit sind Existenz und Eindeutigkeit des Lotfußpunkts bewiesen. Ist p A so ist auch A = p + R(A) also folgt p q R(A) und insbesondere p q p q = 0 also ist q = p. Ist dagegen p / A so ist l = q +R (p q) die Verbindungsgerade von p und q und wegen R(l) = R (p q) folgt R(l) R(A), d.h. l A. Der Orthogonalitätsbegriff erlaubt es uns nun auch eine Form des Satzes von Pythagoras für affine Teilräume zu beweisen. Satz 1.22 (Satz des Pythagoras für affine Teilräume) Seien d N, p R d, = A R d ein affiner Teilraum des R d und q der Lotfußpunkt von p auf A. Für jeden Punkt x A gilt dann px 2 = pq 2 + qx 2. Beweis: Sei x A = q + R(A). Dann existiert ein u R(A) mit x = q + u und wegen p q R(A) ist auch p q u. Wegen p x = p q u und x q = u folgt hieraus px 2 = p x 2 = p x p x = p q p q + u u 2 p q u = pq 2 + qx 2. Als einen Spezialfall erhalten wir den gewöhnlichen Satz des Pythagoas für Dreiecke. 7-2

3 Korollar 1.23 (Satz des Pythagoras) Seien d N, a, b, c drei nicht kollineare Punkte und die Verbindungsgerade von a und c sei senkrecht auf der Verbindungsgeraden von b und c. Dann gilt ab 2 = ac 2 + bc 2. Beweis: Klar nach Satz 22 da c der Lotfußpunkt von a auf b, c ist. Als ein weiteres Korollar können wir den Abstand eines Punktes zu einem affinen Teilraum berechnen. Korollar 1.24 (Abstand eines Punktes zu einem affinen Teilraum) Seien d N, p R d und A R d ein affiner Teilraum. Bezeichne q den Lotfußpunkt von p auf A. Dann gilt d(p, A) := inf{ px : x A} = pq und für jedes x A ist genau dann px = d(p, A) wenn x = q ist. Beweis: Dies ist klar nach Satz 22. Wir wollen uns nun einmal den Spezialfall einer Hyperebene im R d anschauen. Ist H R d eine solche so hatten wir in Aufgabe (10.a) gezeigt das es einen Vektor a R d \{0} und ein c R mit H = {x R d : a x = c} gibt. Die Richtung von H ist die Lösungsmenge des zugehörigen homogenen linearen Gleichungssystems, also R(H) = {x R d : a x = 0} =: a und da wir aus der linearen Algebra wissen das für b R d \{0} genau dann a = b gilt wenn es ein t R mit b = ta gibt, folgt das a bis auf Vielfache eindeutig durch H festgelegt ist. Normieren wir die Länge zu Eins, setzen also u := a/ a so ist mit d := c/ a H = {x R d : u x = d}. Dann ist u ein Vektor mit u = 1 und u R(H) und einen solchen Vektor nennt man einen Normalenvektor von H. Da a bis auf Vielfache eindeutig festgelegt ist, folgt das es genau zwei Normalenvektoren auf H gibt, nämlich u und u. Indem wir eventuell von u zu u und von d zu d übergehen können wir in der obigen Darstellung von H auch noch d 0 annehmen und erhalten die sogenannte Hessesche Normalform von H. 7-3

4 Satz 1.25 (Hessesche Normalform von Hyperebenen) Seien d N und H R d eine Hyperebene im R d. Dann läßt sich H in sogenannter Hessescher Normalform als H = H(u, c) := {x R d : u x = c} für geeignete u R d, c R mit u = 1 und c 0 schreiben. Dabei sind u ein Normalenvektor von H und c = d(0, H). Sind auch v R d mit v = 1 und e R mit e 0 so ist H(u, c) = H(v, e) (c = e > 0 u = v) (c = e = 0 v {u, u}). Beweis: Die Existenz von u und c und das u in diesem Fall stets ein Normalenvektor auf H ist haben wir bereits eingesehen. Sei p der Lotfußpunkt von 0 auf p. Dann gilt p R(H) also ist p = 0 oder p 0 und p/ p ist ein Normalenvektor auf H. In beiden Fällen gibt es ein t R mit t 0 und p = tu und wegen p H folgt c = u p = t u 2 = t also ist p = cu und Korollar 24 liefert d(0, H) = 0p = p = c u = c. Wir kommen zur Eindeutigkeitsaussage. Im Fall c = 0 haben wir dabei H( u, 0) = H(u, 0), es ist also nur die Implikation von links nach rechts zu zeigen. Seien also v R d mit v = 1 und e R mit e 0 so, dass auch H = H(v, e) gilt. Dann sind e = d(0, H) = c und v ist ein Normalenvektor auf H, also v {u, u}. Im Fall c > 0 ist dann sogar v = u und alles ist bewiesen. Wir kommen nun zur metrischen Form des Strahlensatzes und zum affinen Teilungsverhältnis. Seien also a, b, c drei paarweise verschiedene, kollineare Punkte im R 2 und schreibe b = λa + µc mit λ, µ R, λ + µ = 1. Dann sind b a = (λ 1)a + µc = µ(c a) und c b = c a (b a) = (1 µ)(c a) = λ(c a) und es folgen also auch ab = b a = µ c a = µ ac und ebenso bc = λ ac, (abc) = µ λ = µ ac λ ac = ab bc. Zusammenfassend erhalten wir eine Interpretation affiner Teilungsverhältnisse als mit Vorzeichen versehene Längenverhältnisse. 7-4

5 Lemma 1.26 (Affine Teilungsverhältnisse sind signierte Längenverhältnisse) Seien a, b, c R 2 drei paarweise verschiedene, kollineare Punkte. Dann gilt ab, b liegt zwischen a und c, bc (abc) = sonst. ab, bc Beweis: Es ist nur noch zu zeigen, dass das Vorzeichen von (abc) wie behauptet gegeben ist. Schreibe also b = λa + µc mit λ, µ R, λ + µ = 1. Dann ist auch b = λa + µb = (1 µ)a + µb, es ist also genau dann b [a, c] wenn 0 µ 1 gilt, beziehungsweise wenn µ > 0 und λ = 1 µ > 0 gelten. Andererseits ist genau dann sign(abc) = sign(µ/λ) = 1 wenn sign(λ) = sign(µ) gilt und wegen λ + µ = 1 ist dies genau dann der Fall wenn sign(λ) = sign(µ) = 1 ist. Mit diesem Lemma wird es nun möglich den Strahlensatz als einen Satz über Streckenverhältnisse zu formulieren. Die genaue Formulierung des Satzes ist dabei etwas kompliziert da es nicht nur auf Streckenverhältnisse sondern auch auf die korrekte Anordnung der betrachteten Punkte ankommt. Satz 1.27 (Metrische Form des Strahlensatzes) Seien h, h R 2 zwei verschiedene Geraden die sich in einem Punkt a schneiden. Weiter seien b, c h\{a} und b, c h \{a} und bezeichne l := b, b und g := c, c die Verbindungsgeraden von b und b beziehungsweise c und c. Die Punktetripel a, b, c und a, b, c seien gleich angeordnet, d.h. es gelte (a [b, c] a [b, c ]) (b [a, c] b [a, c ]) (c [a, b] c [a, b ]). Dann sind die folgenden beiden Aussagen äquivalent: (a) Es ist l g. (b) Es ist ab ac = ab ac. In diesem Fall haben gelten weiter auch ab ac = bb cc und cc ac = bb ab. Beweis: Wir beginnen mit dem Beweis der Äquivalenzaussage. Wir betrachten zunächst den Fall b = c. Ist auch b = c so ist l = g und die Aussagen (a) und (b) sind beide wahr. Nun nehmen wir b c an. Dann schneidet l die Gerade h in b und g schneidet 7-5

6 sie in c b, also ist g l und wegen b l g ist l g, die Aussage (a) ist also nicht erfüllt. Wegen a / [b, c] ist b [a, c ] oder c [a, b ] und somit liegen b, c auf derselben Seite von a in h. Es gibt also einen Strahl S mit Startpunkt a und b, c S und die Eindeutigkeit des Streckenabtragens liefert wegen b c auch ab = ac. Damit gilt ab / ac 1 = ab / ac, d.h. auch (b) ist falsch. Damit ist die Äquivalenz von (a) und (b) bewiesen wenn b = c ist und im Fall b = c folgt dies analog. Wir können also b c und b c annehmen. Nach unserer Annahme ist genau dann b [a, c] wenn b [a, c ] gilt, nach Lemma 26 haben wir damit sign(abc) = sign(ab c ). Nach Lemma 26 ist (b) damit äquivalent zu (abc) = (ab c ) und die Behauptung folgt mit der affinen Form des Strahlensatzes Satz 16. Damit ist die erste Aussage bewiesen und wir nehmen nun an das l g gilt. Setze u := c a und u = c a. Dann sind h = a + Ru und h = a + Ru, also gibt es t, t R mit b = a + tu und b = a + t u. Nach unserer Annahme ist genau dann a [b, c] wenn a [b, c ] gilt, also ist sign(t) = sign(t ). Es gilt ab ac = tu u = t und ebenso ab ac = t also ist t = t und damit sogar t = t. Weiter gilt bb = b b = t u tu = tu tu = t u u und dies bedeutet = t (a + u ) (a + u) = t c c = t cc bb cc Hieraus folgt dann auch die letzte Aussage. = t = ab ac. 7-6

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.8 017/04/4 15:51:58 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene In der letzten Sitzung hatten wir die Sätze von Ceva und Menelaos bewiesen. Wir

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.4 2017/04/13 14:48:29 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir hatten einen affinen Teilraum A des R d als eine Teilmenge der Form A = a + U definiert,

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.34 018/04/19 14:11:43 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene Wir beschäftigen uns gerade mit Aussagen über ebene Geraden und haben einige

Mehr

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $

Mathematische Probleme, SS 2019 Donnerstag $Id: dreieck.tex,v /04/12 17:03:16 hk Exp $ $Id: dreieck.tex,v 1.53 2019/04/12 17:03:16 hk Exp $ 1 Dreiecke 1.1 Rechtwinklige Dreiecke Wir beschäftigen uns gerade mit den primitiven pythagoräischen Tripeln. Haben wir ein solches Tripel, also teilerfremde

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.21 2017/05/13 16:28:55 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.36 2018/04/24 14:50:37 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.3 Sätze über Geraden in der Ebene Wir beschäftigen uns gerade mit dem Schwerpunkt eines Dreiecks, gegeben sind

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6 $Id: dreieck.tex,v 1.35 017/06/15 13:19:44 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck In diesem Abschnitt wollen wir die sogenannten speziellen Punkte im Dreieck, also den Schwerpunkt, die

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen Mathematische Probleme, SS 208 Dienstag 0.4 $Id: vektor.tex,v.30 207/07/7 08:09:23 hk Exp hk $ Analytische Geometrie und Grundlagen In dieser Vorlesung wollen wir uns mit Fragen der sogenannten Elementargeometrie

Mehr

1 Dreiecke. 1.3 Teilungsverhältnisse. Mathematische Probleme, SS 2019 Montag $Id: dreieck.tex,v /04/16 09:08:06 hk Exp $

1 Dreiecke. 1.3 Teilungsverhältnisse. Mathematische Probleme, SS 2019 Montag $Id: dreieck.tex,v /04/16 09:08:06 hk Exp $ $Id: dreieck.tex,v 1.54 2019/04/16 09:08:06 hk Exp $ 1 Dreiecke 1.3 Teilungsverhältnisse Wir kommen nun zum Begriff des Teilungsverhältnis und allgemeiner des Verhältnis zweier Strecken AB und CD. Eine

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.31 2018/04/10 15:11:07 hk Exp hk $ 1 Analytische Geometrie und Grundlagen 1.1 Affine Geometrie im R d Wir beschäftigen uns gerade mit den affinen Teilräumen des R d, diese erlauben

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $

$Id: anageo.tex,v /01/18 21:24:38 hk Exp hk $ $Id: anageo.tex,v 1.3 9/1/18 1:4:38 hk Exp hk $ II. Lineare Algebra 1 Analytische Geometrie 1.1 Das Skalarprodukt v w u p Wir wollen noch eine weiteres Ergebnis der eben durchgeführten Überlegung festhalten.

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.24 2017/05/18 11:18:04 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe In diesem Abschnitt wollen wir die Automorphismengruppe der euklidischen

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.37 2018/04/26 14:09:00 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.4 Anordnungseigenschaften Am Ende der letzten Sitzung hatten wir begonnen uns mit den konvexen Teilmengen des

Mehr

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $ $Id: dreieck.tex,v 1.61 019/05/07 10:51:36 hk Exp $ 1 Dreiecke 1.7 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks

Mehr

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $

$Id: hilbert.tex,v /06/21 13:11:01 hk Exp hk $ $Id: hilbert.tex,v 1.5 2013/06/21 13:11:01 hk Exp hk $ 7 Hilberträume In der letzten Sitzung hatten wir die Theorie der Hilberträume begonnen, und sind gerade dabei einige vorbereitende elementare Grundtatsachen

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

2 Affine und projektive Ebenen

2 Affine und projektive Ebenen $Id: ebenen.tex,v 1.3 2018/11/06 12:51:04 hk Exp $ 2 Affine und projektive Ebenen Nachdem wir in der letzten Sitzung affine Ebenen definiert und ein wenig untersucht haben kommen wir nun zu den sogenannten

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.19 217/5/11 12:3:56 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir eine metrische Form des Strahlensatzes hergeleiten,

Mehr

3 Konstruktion von Maßräumen

3 Konstruktion von Maßräumen $Id: caratheodory.tex,v 1.10 2011/11/17 11:43:55 hk Exp hk $ 3 Konstruktion von Maßräumen 3.4 Der Fortsetzungssatz von Caratheodory Wir hatten in der letzten Sitzung mit dem Beweis des Satzes von Caratheodory

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 06 Lineare Algebra analytische Geometrie II Vorlesung 35 Winkeltreue Abbildungen Definition 35.. Eine lineare Abbildung ϕ: V W zwischen euklidischen Vektorräumen V W heißt

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie Sommersemester 2009 Franz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 13, 6020

Mehr

Affine Eigenschaften ( stets K = R)

Affine Eigenschaften ( stets K = R) Affine Eigenschaften ( stets K = R) Def. 15 Sei M eine Teilmenge eines affinen Raums A über V (über K). Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : A A 1 die Bildmenge {F(a)wobei

Mehr

Elementare Geometrie Vorlesung 16

Elementare Geometrie Vorlesung 16 Elementare Geometrie Vorlesung 16 Thomas Zink 19.6.2017 1.Homothetien Definition Es sei E eine Ebene. Eine Homothetie h : E E ist eine bijektive Abbildung, so dass (1) Wenn a E eine Gerade ist, so ist

Mehr

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $

Mathematische Probleme, SS 2016 Dienstag $Id: dreieck.tex,v /04/26 17:29:37 hk Exp $ $Id: dreieck.tex,v 1.5 016/04/6 17:9:37 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Nachdem wir in der letzten Sitzung den Schwerpunkt S m eines Dreiecks = als den Schnittpunkt der Seitenhalbierenden,

Mehr

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie

Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Christoph Vogelsang Matr.Nr. 66547 Nils Martin Stahl Matr.Nr. 664 Seminar: Geometrie Dozent: Epkenhans Wintersemester 005/006 Erste Schnittpunktsätze und Anfänge einer Dreiecksgeometrie Ausarbeitung der

Mehr

Homogene und inhomogene Koordinaten und das Hyperboloid

Homogene und inhomogene Koordinaten und das Hyperboloid Seminararbeit zum Seminar aus Reiner Mathematik Homogene und inhomogene Koordinaten und das Hyperboloid Gernot Holler 1010674 WS 2012/13 28.November 2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Homogene

Mehr

Elementare Geometrie Vorlesung 13

Elementare Geometrie Vorlesung 13 Elementare Geometrie Vorlesung 13 Thomas Zink 7.6.2017 1.Vektoren Es sei E eine Ebene. Eine Translation T : E E wird auch als Vektor bezeichnet. Wenn O, A E, so gibt es genau einen Vektor T, so dass T

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

4 Funktionenfolgen und normierte Räume

4 Funktionenfolgen und normierte Räume $Id: norm.tex,v 1.57 2018/06/08 16:27:08 hk Exp $ $Id: jordan.tex,v 1.34 2018/07/12 20:08:29 hk Exp $ 4 Funktionenfolgen und normierte Räume 4.7 Kompakte Mengen Am Ende der letzten Sitzung hatten wir zwei

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

1.5 Kongruenz und Ähnlichkeit

1.5 Kongruenz und Ähnlichkeit 19 1.5 Kongruenz und Ähnlichkeit Definition Sei A n der affine Standardraum zum Vektorraum R n. Eine Abbildung F : A n A n heißt Isometrie, falls d(f (X), F (Y )) = d(x, Y ) für alle X, Y A n gilt. Es

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Aufbau der Projektiven Geometrie

Aufbau der Projektiven Geometrie Seminararbeit zum Seminar aus Reiner Mathematik Aufbau der Projektiven Geometrie Leonie Knittelfelder Matr. Nr. 1011654 WS 2012/13 Inhaltsverzeichnis 1 Einleitung 3 2 Linearmengen 4 2.1 Satz (1.3.1): Das

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln

Mathematische Probleme, SS 2017 Donnerstag 1.6. $Id: dreieck.tex,v /06/01 11:41:57 hk Exp $ 2.1 Dreiecksberechnung mit Seiten und Winkeln Mathematische Proleme SS 2017 Donnerstag 1.6 $Id: dreieck.texv 1.31 2017/06/01 11:41:57 hk Exp $ 2 Dreiecke 2.1 Dreieckserechnung mit Seiten und Winkeln Am Ende der letzten Sitzung hatten wir eine weitere

Mehr

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Noch ein Beispiel aus Vorl. 1, Seite 10) Zuerst zeigen wir, dass jede

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.4 2009/05/28 16:37:16 hk Exp $ 7 Vektorräume und Körperweiterungen Bisher haben wir zwar die Existenz und Eindeutigkeit von Tensorprodukten bewiesen, und auch einige ihrer Eigenschaften

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

2 Riemannsche Flächen

2 Riemannsche Flächen $Id: flaechen.tex,v 1.12 2016/12/01 19:00:20 hk Exp $ 2 Riemannsche Flächen 2.4 Direkte Limites und Halme von Garben Am Ende der letzten Sitzung hatten wir die Windungspunkte einer holomorphen Funktion

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade. $Id: folgen.tex,v. 202/05/3 2:40:06 hk Exp $ 6 Folgen Am Ende der letzten Sitzung hatten wir Folgen in einer Menge X als Abbildungen a : N X definiert, die dann typischerweise in der Form (a n ) n N, also

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische

Mehr

5 Sphärische Trigonometrie

5 Sphärische Trigonometrie $Id: sphaere.tex,v 1.23 2017/07/10 14:46:08 hk Exp $ 5 Sphärische Trigonometrie 5.2 Sphärische Dreiecksberechnung In der letzten Sitzung haben wir begonnen uns mit sphärischer Trigonometrie zu beschäftigen.

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: quadratisch.tex,v /06/22 12:08:41 hk Exp $ Mathematische Probleme, SS 15 Montag 6 $Id: quadratischtex,v 111 15/06/ 1:08:41 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen In der letzten Sitzung hatten wir die Normalform (1 ɛ )x + y pɛx p =

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

17. Orthogonalsysteme

17. Orthogonalsysteme 17. Orthogonalsysteme 17.1. Winkel und Orthogonalität Vorbemerkung: Sei V ein Vektorraum mit Skalaprodukt, und zugehöriger Norm, dann gilt nach Cauchy-Schwarz: x, y V \ {0} : x, y x y 1 Definition: (a)

Mehr

Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS /3): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 a)

Mehr

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen In diesem Kapitel werden nur endlich dimensionale

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Dienstag $Id: jordantex,v 8 9// 4:48:9 hk Exp $ $Id: quadrattex,v 9// 4:49: hk Exp $ Eigenwerte und die Jordansche Normalform Matrixgleichungen und Matrixfunktionen Eine

Mehr

Kapitel 17 Skalar- und Vektorprodukt

Kapitel 17 Skalar- und Vektorprodukt Kapitel 17 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 1 / 22 Bisher hatten wir die Möglichkeit Vektoren des R n zu addieren und Vektoren mit rellen Zahlen zu multiplizieren. Man

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof Dr H Brenner Osnabrück SS 26 Lineare Algebra und analytische Geometrie II Vorlesung 2 Orthogonalität Mit dem Skalarprodukt kann man die Eigenschaft zweier Vektoren, aufeinander senkrecht zu stehen,

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen $Id: folgen.tex,v.7 200//29 :58:57 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Folgenkonvergenz In der letzten Sitzung hatten wir den Begriff der Konvergenz einer reellen oder komplexen Folge gegen

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Diplomvorprüfung LA H 06 VD : 1

Diplomvorprüfung LA H 06 VD : 1 Diplomvorprüfung LA H 6 VD : Aufgabe : (3 + + = 6 Punkte) Gegeben sei die Matrix A = a) Bestimmen Sie die Eigenwerte von A b) Bestimmen Sie alle Eigenvektoren der Matrix A c) Ist die Matrix A invertierbar?

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

Blatt 10 Lösungshinweise

Blatt 10 Lösungshinweise Lineare Algebra und Geometrie I SS 05 Akad. Rätin Dr. Cynthia Hog-Angeloni Dr. Anton Malevich Blatt 0 Lösungshinweise 0 0 Aufgabe 0. Es seien die Vektoren u =, v = und w = in R gegeben. a # Finden Sie

Mehr

Kapitel 16 Skalar- und Vektorprodukt

Kapitel 16 Skalar- und Vektorprodukt Kapitel 16 Skalar- und Vektorprodukt Mathematischer Vorkurs TU Dortmund Seite 210 / 246 Bisher hatten wir die Möglichkeit Vektoren des Vektoren mit rellen Zahlen zu multiplizieren. n zu addieren und Man

Mehr

Analytische Geometrie

Analytische Geometrie Kapitel 2 Analytische Geometrie 21 Vektoren Die Elemente des kartesischen Produktes R n, d h die n Tupel oder Zeilenvektoren (a 1,, a n ) mit a k R für k n, interpretiert man als Punkte eines n dimensionalen

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 06.12.2013 Alexander Lytchak 1 / 16 Wiederholung Ist V ein Vektorraum, so heißen Abbildungen T v : V V der Form w w

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

9 Differentialrechnung für Funktionen in n Variablen

9 Differentialrechnung für Funktionen in n Variablen $Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Lineare Algebra und analytische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Geraden am Kreis Stefan Witzel Segmente und Geraden am Kreis Sei k ein Kreis. Eine Sekante ist eine Gerade, die k in zwei Punkten schneidet.

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 22 Blatt 2.7.22 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag 4. a) Die Gerade

Mehr

Vorkurs Mathematik - SoSe 2017

Vorkurs Mathematik - SoSe 2017 3 Vorkurs Mathematik - SoSe 2017 Regula Krapf Lösungen Übungsblatt 2 Aufgabe 1. Zeigen Sie, dass die beiden Aussagen ( x : P(x)) ( x : Q(x)) und x : (P(x) Q(x)). nicht dasselbe ausdrücken. Wie sieht es

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.7 2009/05/13 13:23:45 hk Exp $ $Id: algab.tex,v 1.2 2009/03/24 14:45:49 hk Exp hk $ 5 Der Transzendenzgrad Jetzt können wir endlich die, schon mehrfach angekündigte, Eindeutigkeit des

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Geraden am Kreis. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Geraden am Kreis Stefan Witzel Segmente und Geraden am Kreis Sei k ein Kreis. Eine Sekante ist eine Gerade, die k in zwei Punkten schneidet.

Mehr

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2. LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Geometrie. Ingo Blechschmidt. 4. März 2007

Geometrie. Ingo Blechschmidt. 4. März 2007 Geometrie Ingo Blechschmidt 4. März 2007 Inhaltsverzeichnis 1 Geometrie 2 1.1 Geraden.......................... 2 1.1.1 Ursprungsgeraden in der x 1 x 2 -Ebene.... 2 1.1.2 Ursprungsgeraden im Raum..........

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr