Digitale Signaturen. Andreas Spillner. Kryptografie, SS 2018

Größe: px
Ab Seite anzeigen:

Download "Digitale Signaturen. Andreas Spillner. Kryptografie, SS 2018"

Transkript

1 Digitale Signaturen Andreas Spillner Kryptografie, SS 2018

2 Ausgangspunkt Digitale Signaturen bieten unter anderem das, was man auch mit einer eigenhändigen Unterschrift auf einem Dokument bezweckt. Beispiel: Einen belastbaren Nachweis zu haben, dass man einen Vertrag eingegangen ist. Digitale Signaturen werden aber auch bei anderen Anwendungen verwendet, wie z.b. der Prüfung der Integrität und Authentizität von Software-Updates. Unser Ziel ist ein Grundverständnis zu erlangen, wie digitale Signaturen basierend auf asymmetrischen Verschlüsselungsverfahren funktionieren. Wir werden dann auf das RSA-Probabilistic Signature Scheme (PSS) und den Digital Signature Algorithm (DSA) eingehen.

3 Braucht man unbedingt asymmetrische Verfahren? Die Erzeugung digitaler Signaturen ist eine wichtige Anwendung asymmetrischer Verschlüsselungsverfahren. Man nutzt dabei aus, dass nur einer der Kommunikationspartner Kenntnis vom nichtöffentlichen Schlüssel k pr hat (oder zumindest haben sollte). Dadurch gibt es, wie wir sehen werden, bestimmte Operationen, die nur dieser ausführen kann. Damit erhält man einen belastbaren Nachweis, dass er diese Operation tatsächlich durchgeführt hat. Mit symmetrischen Verschlüsselungsverfahren geht so etwas grundsätzlich nicht.

4 Digitale Signaturen basierend auf RSA Die Ausgangssituation ist identisch mit der, bei der RSA zur Verschlüsselung einer vertraulichen Nachricht x verwendet wird, die A an B senden möchte. Insbesondere muss vorher B einen nichtöffentlichen Schlüssel k pr = (d, n) und den zugehörigen öffentlichen Schlüssel erzeugen. k pub = (e, n) Wir gehen im Folgenden davon aus, dass k pub öffentlich zugänglich gemacht wurde und authentisch ist.

5 Erzeugung einer Signatur durch B A verlangt von B, dass er ein Dokument x digital unterschreibt. Wir gehen zunächst davon aus, dass x sich als natürliche Zahl kleiner n interpretieren lässt. B berechnet dann mit dem nur ihm bekannten nichtöffentlichen Schlüssel k pr = (d, n) die Zahl s = x d mod n. Dann sendet B das geordnete Paar an A. (x, s)

6 Verifizierung der Signatur durch A Wenn A das Paar (x, s) erhält, berechnet er mit dem öffentlichen Schlüssel (e, n) den Wert x = s e mod n. Jetzt sind zwei Fälle möglich: 1. Fall: x = x Dann ist die Unterschrift gültig und muss von B stammen, denn nur B kann aus x solch ein passendes s erzeugen. 2. Fall: x x Dann ist die Unterschrift ungültig. Die Gründe dafür können von einem Übertragungsfehler bis hin zu einem Betrugsversuch reichen.

7 Ein Beispiel für den gesamten Ablauf Vorbereitungsphase: B wählt p = 3 und q = 11. n = 3 11 = 33 ϕ(n) = (3 1) (11 1) = 20 B wählt e = 3 und berechnet d = 7. (3 7 mod 20 = 1) B macht kpub = (3, 33) öffentlich zugänglich. Nur B kennt kpr = (7, 33). B soll x = 4 unterschreiben: B berechnet s = x d mod n = 4 7 mod 33 = 16. B sendet (4, 16) an A. A verifiziert die Unterschrift: A berechnet x = s e mod n = 16 3 mod n = 4. Da x = x gilt, ist die Unterschrift gültig.

8 Was ist, wenn der Inhalt von x vertraulich ist? Das Ziel des beschriebenen Protokolls ist nicht, den evtl. vertraulichen Inhalt von x vor dem Zugriff durch Dritte zu schützen. Falls dies erforderlich ist, muss B das Paar (x, s) vor der Übermittlung an A z.b. mit AES verschlüsseln. Dafür müssen A und B vorher einen geheimen Schlüssel ausgetauscht haben...

9 Möglichst effiziente Verifikation Die Laufzeit der Verifikation hängt von der Länge von e ab. Deshalb wählt man oft möglichst kurze e. Beispiel: e =

10 Sicherheit auf RSA basierender Signaturen Völlig analog zur Verschlüsselung mit RSA kann es ein Angreifer auf den nichtöffentlichen Schlüssel (d, n) abgesehen haben. Praktisch muss der Angreifer dafür n faktorisieren, was für große n mit aktueller Technologie nicht zu bewältigen ist. Ein Angreifer kann allerdings ohne großen Aufwand Nachrichten x zu einer selbst gewählten Signatur s erzeugen. Er wählt s. Dann berechnet er x = s e mod n. Die Verifikation von (x, s) ergibt, dass s es eine gültige Unterschrift von B ist, auch wenn x mit hoher Wahrscheinlichkeit keinen Sinn ergibt.

11 Padding Das Dokument x wird vor dem Unterschreiben so formatiert/kodiert, dass Manipulationen auffallen. Wir schauen uns das RSA Probabilistic Signature Scheme an (RSA-PSS). Dieses hat drei Bausteine: Kodierung eines Fingerabdrucks von x Erzeugung einer Signatur s zum kodierten Fingerabdruck von x Verifikation der Signatur s

12 Kodierung von x beim RSA-PSS p 1, p 2 und p 3 bezeichnen im Folgenden bekannte feste Bitfolgen, mit denen zu kurze Bistrings auf eine vorgegebene Länge aufgefüllt werden. 1. Erzeugung eines zufälligen Wertes r. 2. Berechnung eines Hashwertes h 1 (x) des Dokuments. 3. Konkatenation: m = p 1 h 1 (x) r 4. Berechnung eines Hashwertes h 2 (m). 5. Konkatenation: b = p 2 r 6. Berechnung eines Hashwertes h 3 (h 2 (m)). 7. Berechnung von h 3 (h 2 (m)) b. Ergebnis: c = (h 3 (h 2 (m)) b) h 2 (m) p 3 = u v p 3

13 Erzeugung und Verifikation der Signatur bei RSA-PSS Erzeugung der Signatur: s = c d mod n Verifikation: (basierend auf k pub = (e, n), x und s) 1. Berechnung von s e mod n = u v p Prüfung, ob p 3 = p Gewinnung von r aus h 3 (v ) u. 4. Berechnung von h 2 (p 1 h 1 (x) r ) 5. Prüfung, ob h 2 (p 1 h 1 (x) r ) = v.

14 Digitale Signaturen basierend auf dem Elgamal-Verfahren Der Ablauf gliedert sich wieder in drei Phasen: Erzeugung des öffentlichen und zugehörigen nichtöffentlichen Schlüssels durch B. Erzeugung der digitalen Unterschrift für ein Dokument durch B. Verifikation der Unterschrift durch A.

15 Erzeugung der Schlüssel Der Ablauf ist völlig analog zur Erzeugung der Schlüssel bei der Verschlüsselung mit dem Elgamal-Verfahren: 1. B wählt eine große Primzahl p. 2. B wählt ein primitives Element c der zyklischen Gruppe Z p. 3. B wählt ein zufälliges Element d {2, 3,..., p 2}. 4. B berechnet b = c d mod p. Ergebnis: k pub = (p, c, b) k pr = d

16 Erzeugung der Signatur zu einem Dokument A möchte, dass B das Dokument x unterschreibt: 1. B wählt ein zufälliges k E {2, 3,..., p 2} mit 2. B berechnet r = c k E ggt(k E, p 1) = 1. mod p und s = (x d r)k 1 E mod (p 1). Die digitale Unterschrift von B zum Dokument x ist dann (x, (r, s)).

17 Verifikation der Signatur zu einem Dokument A liegen für die Verifikation x, (p, c, b) und (r, s) vor. A berechnet zuerst t = b r r s mod p. Falls t p c x ist, ist die Unterschrift gültig. Falls t p c x ist, ist die Unterschrift ungültig.

18 Ablauf an einem Beispiel Erzeugung der Schlüssel durch B: p = 29 c = 2 d = 12 b = Ergebnis: kpub = (29, 2, 7), k pr = 12 Erzeugung der digitalen Unterschrift durch B zu x = 26: ke = 5 (ggt(5, 28) = 1) r = 2 5 mod 29 = 3 s = ( ) 5 1 mod 28 = ( 10) 17 mod 28 = 26 Ergebnis: (26, (3, 26)) Verifikation der digitalen Unterschhrift durch A: t = mod 29 = mod 29 = 22 Ergebnis: Gültige Unterschrift.

19 Warum funktioniert die Verifikation der Unterschrift? A berechnet bei der Verifikation b r r s p (c d ) r (c k E ) s p c dr+k E s. Durch die Wahl der Werte gilt für den Exponenten dr+k E s (p 1) dr+k E (x dr)k 1 E (p 1) dr+x dr (p 1) x. Nach dem Satz von Euler gilt also b r r s p c x.

20 Gefahr bei Wiederverwendung von k E! Angenommen B verwendet k E bei der Unterschrift zweier verschiedener Dokumente x 1 und x 2. Dann gilt r 1 = r 2 = c k E Zudem weiß er, dass gilt: und ein Angreifer erkennt dies. s 1 (p 1) (x 1 dr)k 1 E s 2 (p 1) (x 2 dr)k 1 E Daraus gewinnt der Angreifer: s 1 s 2 (p 1) (x 1 x 2 )k 1 E bzw. k E (p 1) (x 1 x 2 )(s 1 s 2 ) 1 Im nächsten Schritt hat der Angreifer dann schon d (p 1) (x 1 s 1 k E )r 1.

21 Der Angriff an einem konkreten Beispiel Der Angreifer kennt: k pub = (29, 2, 7) (x1, (r, s 1 )) = (26, (3, 26)) (x2, (r, s 2 )) = (13, (3, 1)) Ziel des Angreifers: k pr = 12 Dazu berechnet der Angreifer: k E = (26 13) (26 1) 1 = = 13 9 = 5 d = ( )3 1 = 8 19 = 12

22 Der Digitial Signature Algorithm (DSA) Die auf dem Elgamal-Verfahren basierende Erzeugung einer Signatur wird in der Praxis häufig in Form des DSA verwendet. Wir schauen uns hier nur die Variante kurz an, bei der der Modul p eine Bitlänge von 1024 hat. Eines der Ziele des DSA ist es, die Verifikation der Signatur möglichst effizient zu machen.

23 Erzeugung der Schlüssel beim DSA B führt die folgenden Schritte durch. Wahl einer Primzahl p zwischen und Wahl eines Primfaktors q von p 1 zwischen und Wahl eines c Z p mit ord(c) = q. Wahl eines zufälligen d {2, 3,..., q 1}. Berechnung von b = c d mod p. Ergebnis: k pub = (p, q, c, b) und k pr = d

24 Erzeugung der Signatur beim DSA B unterschreibt ein Dokument x wie folgt. Wahl eines zufälligen k E {2, 3,..., q 1}. Berechnung von r = (c k E mod p) mod q. Berechnung von s = (H(x) + d r)k 1 E mod q Ergebnis: (x, (r, s)) H ist eine kryptografische Hashfunktion.

25 Verifikation der Signatur beim DSA A verifiziert (x, (r, s)) basierend auf (p, q, c, b) wie folgt. Berechnung von w = s 1 mod q. Berechnung von u 1 = w H(x) mod q. Berechnung von u 2 = w r mod q. Berechnung von v = (c u 1 b u 2 mod p) mod q Falls v q r gilt, ist die Signatur gültig. Falls v q r gilt, ist die Signatur ungültig. Dass die Verifikation funktioniert, überlegt man sich ähnlich wie beim einfacheren zuvor beschriebenen Verfahren.

26 DSA an einem konkreten Beispiel Erzeugung der Schlüssel durch B: p = 59 q = 29 c = 3 d = 7 b = 3 7 mod 59 = 4 Ergebnis: k pub = (59, 29, 3, 4) und k pr = 7 Erzeugung der Signatur zu x mit H(x) = 26 durch B: k E = 10 r = (3 10 mod 59) mod 29 = 20 s = ( ) 3 mod q = 5 Ergebnis: (x, (20, 5)) Verifikation der Signatur durch A: w = 5 1 mod 29 = 6 u1 = 6 26 mod 29 = 11 u2 = 6 20 mod 29 = 4 v = ( mod 59) mod 29 = 20 Ergebnis: v 29 r, also ist die Signatur gültig.

27 Abschließende Bemerkungen zum DSA Nicht jede Primzahl p ist so beschaffen, dass p 1 einen passenden Primteiler q hat. Daher geht man so vor, dass man zunächst q erzeugt und dann ein passendes p sucht. Auch dann muss man ggf. mehrere q probieren. Auch beim DSA muss für jede Erzeugung einer Signatur ein neues zufälliges k E gewählt werden.

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

VIII. Digitale Signaturen

VIII. Digitale Signaturen VIII. Digitale Signaturen Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit - Lauschen - Authentizität - Tauschen des Datenursprungs - Integrität - Änderung der

Mehr

Kryptografische Hashfunktionen

Kryptografische Hashfunktionen Kryptografische Hashfunktionen Andreas Spillner Kryptografie, SS 2018 Wo verwenden wir kryptografische Hashfunktionen? Der Hashwert H(x) einer Nachricht x wird oft wie ein Fingerabdruck von x vewendet.

Mehr

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer

Digitale Signaturen. Proseminar Kryptographie und Datensicherheit SoSe Sandra Niemeyer Digitale Signaturen Proseminar Kryptographie und Datensicherheit SoSe 2009 Sandra Niemeyer 24.06.2009 Inhalt 1. Signaturgesetz 2. Ziele 3. Sicherheitsanforderungen 4. Erzeugung digitaler Signaturen 5.

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 6.2 Digitale Signaturen 1. Sicherheitsanforderungen 2. RSA Signaturen 3. ElGamal Signaturen Wozu Unterschriften? Verbindliche Urheberschaft von Dokumenten Unterschrift

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 18.05.2015 1 / 30 Überblick 1 Asymmetrische Authentifikation von Nachrichten Erinnerung

Mehr

Kryptographie. Nachricht

Kryptographie. Nachricht Kryptographie Kryptographie Sender Nachricht Angreifer Empfänger Ziele: Vertraulichkeit Angreifer kann die Nachricht nicht lesen (Flüstern). Integrität Angreifer kann die Nachricht nicht ändern ohne dass

Mehr

Digitale Unterschriften mit ElGamal

Digitale Unterschriften mit ElGamal Digitale Unterschriften mit ElGamal Seminar Kryptographie und Datensicherheit Institut für Informatik Andreas Havenstein Inhalt Einführung RSA Angriffe auf Signaturen und Verschlüsselung ElGamal Ausblick

Mehr

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle

Digitale Unterschriften. Angriffe und Sicherheitsmodelle. Bemerkungen. Angriffe und Sicherheitsmodelle Digitale Unterschriften Auch digitale Signaturen genannt. Nachrichten aus Nachrichtenraum: M M. Signaturen aus Signaturenraum: σ S. Schlüssel sind aus Schlüsselräumen: d K 1, e K 2. SignierungsverfahrenS

Mehr

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle

Bemerkungen. Orientierung. Digitale Unterschriften. Angriffe und Sicherheitsmodelle Orientierung Haben bisher im Public-Key Bereich nur Verschlüsselung betrachtet. Haben dafür geeignete mathematische Strukturen und ihre Eigenschaften diskutiert. RSA, Rabin: Restklassenringe modulo n,

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

Public Key Kryptographie

Public Key Kryptographie 4. Dezember 2007 Outline 1 Einführung 2 3 4 Einführung 1976 Whitefield Diffie und Martin Hellman 2 Schlüsselprinzip Asymmetrische Verschlüsselungsverfahren public Key private Key Anwendung E-Mail PGP openpgp

Mehr

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES

Wiederholung. Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Wiederholung Symmetrische Verfahren: klassische Verfahren / grundlegende Prinzipien: Substitution, Transposition, One-Time-Pad DES AES Mathematische Grundlagen: algebraische Strukturen: Halbgruppe, Monoid,

Mehr

Proseminar Schlüsselaustausch (Diffie - Hellman)

Proseminar Schlüsselaustausch (Diffie - Hellman) Proseminar Schlüsselaustausch (Diffie - Hellman) Schlüsselaustausch Mathematische Grundlagen Das DH Protokoll Sicherheit Anwendung 23.06.2009 Proseminar Kryptographische Protokolle SS 2009 : Diffie Hellman

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Definition Homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : G G für Gruppen G, G. Π heißt homomorph, falls Enc(m 1 ) G Enc(m 2 ) eine gültige Verschlüsselung

Mehr

6.3 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen. die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde

6.3 Authentizität. Geheimhaltung: nur der Empfänger kann die Nachricht lesen. die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde 6.3 Authentizität Zur Erinnerung: Geheimhaltung: nur der Empfänger kann die Nachricht lesen Integrität: die Nachricht erreicht den Empfänger so, wie sie abgeschickt wurde Authentizität: es ist sichergestellt,

Mehr

Digitale Signaturen. Kapitel 10 p. 178

Digitale Signaturen. Kapitel 10 p. 178 Digitale Signaturen Realisierung der digitalen Signaturen ist eng verwandt mit der Public-Key-Verschlüsselung. Idee: Alice will Dokument m signieren. Sie berechnet mit dem privaten Schlüssel d die digitale

Mehr

Asymmetrische Algorithmen

Asymmetrische Algorithmen Asymmetrische Algorithmen Abbildung 9. Leonhard Euler Leonhard Euler, geboren am 15. April 1707 in Basel, gestorben am 18. September 1783 in Sankt Petersburg, war einer der produktivsten Mathematiker aller

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Klausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Klausur 21.07.2015 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 15.05.2017 1 / 25 Überblick 1 Hashfunktionen Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel: RSA

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 12.05.2014 1 / 26 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

VI. Public-Key Kryptographie

VI. Public-Key Kryptographie VI. Public-Key Kryptographie Definition 2.1 Ein Verschlüsselungsverfahren ist ein 5-Tupel (P,C,K,E,D), wobei 1. P die Menge der Klartexte ist. 2. C die Menge der Chiffretexte ist. 3. K die Menge der Schlüssel

Mehr

Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Public-Key-Kryptosystem

Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Public-Key-Kryptosystem Proseminar Bakkalaureat TM 2008/2009 Datensicherheit und Versicherungsmathematik Technische Universität Graz 29. Dezember 2008 Überblick Unterschied zwischen symmetrischen und asymmetrischen Verschlüsselungsverfahren

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 23.05.2016 1 / 32 Überblick 1 Symmetrische Authentifikation von Nachrichten Ziel Konstruktionen MACs

Mehr

6: Public-Key Kryptographie (Grundidee)

6: Public-Key Kryptographie (Grundidee) 6: Public-Key Kryptographie (Grundidee) Ein Teil des Schlüssels ist nur dem Empfänger bekannt. Der auch dem Sender bekannte Teil kann sogar veröffentlicht werden. Man spricht dann von einem Schlüsselpaar.

Mehr

4 Der diskrete Logarithmus mit Anwendungen

4 Der diskrete Logarithmus mit Anwendungen 4 Der diskrete Logarithmus mit Anwendungen 62 4.1 Der diskrete Logarithmus Für eine ganze Zahl a Z mit ggt(a, n) = 1 hat die Exponentialfunktion mod n zur Basis a exp a : Z M n, x a x mod n, die Periode

Mehr

Verteilte Kyroptographie

Verteilte Kyroptographie Verteilte Kyroptographie Klassische kryptographische Verfahren Kryptographische Hash-Funktionen Public-Key-Signaturen Verteilte Mechanismen Schwellwert-Signaturen Verteilt generierte Zufallszahlen Verteilte

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 08.05.2017 1 / 32 Überblick 1 Blockchiffren Erinnerung Varianten von DES Beispiel: AES Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer

Mehr

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen

Übung GSS Blatt 6. SVS Sicherheit in Verteilten Systemen Übung GSS Blatt 6 SVS Sicherheit in Verteilten Systemen 1 Einladung zum SVS-Sommerfest SVS-Sommerfest am 12.07.16 ab 17 Uhr Ihr seid eingeladen! :-) Es gibt Thüringer Bratwürste im Brötchen oder Grillkäse

Mehr

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976)

Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) Verschlüsselung durch Exponentiation (Pohlig, Hellman, 1976) p : eine (grosse) Primzahl e : Zahl 0 < e < p mit ggt(e, p 1) = 1 d Inverses von e in Z p 1, dh d e 1 mod p 1 (= φ(p)) M : numerisch codierter

Mehr

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer

Kryptographie. ein erprobter Lehrgang. AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ. LSR für NÖ, 28. April 2011 Alfred Nussbaumer Kryptographie ein erprobter Lehrgang AG-Tagung Informatik, April 2011 Alfred Nussbaumer, LSR für NÖ 1 Variante: Kryptographie in 5 Tagen Ein kleiner Ausflug in die Mathematik (Primzahlen, Restklassen,

Mehr

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie

Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie Dozent: Dr. Ralf Gerkmann Referenten: Jonathan Paulsteiner (10939570) und Roman Lämmel ( ) Zahlentheorieseminar: Einführung in die Public-Key-Kryptographie 0. Inhalt 1. Einführung in die Kryptographie

Mehr

Einführung in die asymmetrische Kryptographie

Einführung in die asymmetrische Kryptographie !"#$$% Einführung in die asymmetrische Kryptographie Dipl.-Inform. Mel Wahl Prof. Dr. Christoph Ruland Universität Siegen Institut für digitale Kommunikationssysteme Grundlagen Verschlüsselung Digitale

Mehr

El Gamal Verschlüsselung und seine Anwendungen

El Gamal Verschlüsselung und seine Anwendungen El Gamal Verschlüsselung und seine Anwendungen Andrés Guevara July 11, 2005 1 Kurze Einführung in die Kryptographie Situation: Absender will Empfänger eine Nachricht schicken. Einige Ziele der Kryptographie

Mehr

VII. Hashfunktionen und Authentifizierungscodes

VII. Hashfunktionen und Authentifizierungscodes VII. Hashfunktionen und Authentifizierungscodes Bob Eve Eve möchte - lauschen - ändern - personifizieren Alice 1 Aufgaben - Vertraulichkeit Lauschen - Authentizität Tauschen des Datenursprungs - Integrität

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Nachklausur Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Nachklausur 07.10.2013 Vorname: Nachname:

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel

Das RSA-Verfahren. Proseminar Kryptographische Protokolle SS Armin Litzel in der Praxis Proseminar Kryptographische Protokolle SS 2009 5.5.2009 in der Praxis Gliederung 1 Grundlegendes über RSA 2 in der Praxis Allgemeine Vorgehensweise zur Verschlüsselung Signieren mit RSA 3

Mehr

Elektronische Signaturen

Elektronische Signaturen Elektronische Signaturen Oliver Gasser TUM 3. Juni 2009 Oliver Gasser (TUM) Elektronische Signaturen 3. Juni 2009 1 / 25 Gliederung 1 Einführung 2 Hauptteil Signieren und Verifizieren Digital Signature

Mehr

Public-Key-Kryptographie

Public-Key-Kryptographie Kapitel 2 Public-Key-Kryptographie In diesem Kapitel soll eine kurze Einführung in die Kryptographie des 20. Jahrhunderts und die damit verbundene Entstehung von Public-Key Verfahren gegeben werden. Es

Mehr

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen

3: Primzahlen. 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen 3: Primzahlen 111 S. Lucks Diskr Strukt. (WS 18/19) 3: Primzahlen Definition 40 (Teiler, Vielfache, Primzahlen, zusammengesetzte Zahlen) Seien a, b N. a ist ein Teiler von b ( a b ), falls es ein k N gibt

Mehr

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch

Einführung in die Kryptographie. 20.6.2011, www.privacyfoundation.ch Einführung in die Kryptographie 20.6.2011, www.privacyfoundation.ch Kryptographie Name kryptós: verborgen, geheim gráphein: schreiben Verschlüsselung Text so umwandeln, dass man ihn nur noch entziffern/lesen

Mehr

2.4 Hash-Prüfsummen Hash-Funktion message digest Fingerprint kollisionsfrei Einweg-Funktion

2.4 Hash-Prüfsummen Hash-Funktion message digest Fingerprint kollisionsfrei Einweg-Funktion 2.4 Hash-Prüfsummen Mit einer Hash-Funktion wird von einer Nachricht eine Prüfsumme (Hash-Wert oder message digest) erstellt. Diese Prüfsumme besitzt immer die gleiche Länge unabhängig von der Länge der

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman

Kryptologie. Bernd Borchert. Univ. Tübingen SS Vorlesung. Teil 10. Signaturen, Diffie-Hellman Kryptologie Bernd Borchert Univ. Tübingen SS 2017 Vorlesung Teil 10 Signaturen, Diffie-Hellman Signatur Signatur s(m) einer Nachricht m Alice m, s(m) Bob K priv K pub K pub Signatur Signatur (Thema Integrity

Mehr

Institut für Theoretische Informatik Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur. Lösung

Institut für Theoretische Informatik Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester Klausur. Lösung Institut für Theoretische Informatik Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2017 Klausur Lösung 02.08.2017 Vorname: Nachname: Matrikelnummer: Klausur-ID: Hinweise - Schreiben

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Übungsblatt 5. pk = (g, y) und sk = (g, x). ? = y H(t m) t. g s Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Übungsblatt 5 Hinweis: Übungsblätter können freiwillig bei Jessica Koch, Raum 256, Geb.

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Kryptographie Techniken Symmetrische Verschlüsselung (One-time Pad,

Mehr

6. Übung - Kanalkodierung/Datensicherheit

6. Übung - Kanalkodierung/Datensicherheit 6. Übung - Kanalkodierung/Datensicherheit Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Kanalkodierung a) Bestimmen Sie die Kodeparameter (n, l, d min ) des zyklischen

Mehr

Ideen und Konzepte der Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn

Ideen und Konzepte der Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Ideen und Konzepte der Informatik Wie funktioniert Electronic Banking? Kurt Mehlhorn Übersicht Zwecke der Techniken Symmetrische Verschlüsselung (Caesar, One-time Pad, moderne Blockchiffres, seit 2000

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz IKS, KIT 06.05.2013 1 / 25 Überblick 1 Hashfunktionen Erinnerung Angriffe auf Hashfunktionen Zusammenfassung Hashfunktionen 2 Asymmetrische Verschlüsselung Idee Beispiel:

Mehr

Sicherheit im Internet

Sicherheit im Internet Sicherheit im Internet Ziele ( Authentifizierung, Vertrauchlichkeit, Integrität...) Verschlüsselung (symmetrisch/asymmetrisch) Einsatz von Verschlüsselung Ausblick auf weitere Technologien und Anwendungsprobleme

Mehr

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade

Übungsblatt 3. Stammvorlesung Sicherheit im Sommersemester Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2015 Übungsblatt 3 Aufgabe 1. Beurteilen Sie für die folgenden Konstruktionen jeweils, ob es sich

Mehr

Kryptographische Grundlagen

Kryptographische Grundlagen Kryptographische Grundlagen Bernhard Lamel Universität Wien, Fakultät für Mathematik 10. Mai 2007 Outline 1 Symmetrische Verschlüsselung 2 Asymmetrische Verschlüsselung 3 Praxis Verschlüsseln und Entschlüsseln

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Klausur 22.07.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Konstruktion von MACs. Message Authentication Codes. Sicherheitsmodell CBC-MAC

Konstruktion von MACs. Message Authentication Codes. Sicherheitsmodell CBC-MAC Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Kryptographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE

EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE EINIGE GRUNDLAGEN DER KRYPTOGRAPHIE Steffen Reith reith@thi.uni-hannover.de 22. April 2005 Download: http://www.thi.uni-hannover.de/lehre/ss05/kry/folien/einleitung.pdf WAS IST KRYPTOGRAPHIE? Kryptographie

Mehr

Universität Tübingen WS 2015/16. Kryptologie. Klausur

Universität Tübingen WS 2015/16. Kryptologie. Klausur Universität Tübingen WS 2015/16 Kryptologie Klausur 31.3.2016 Name: Matrikel-Nr.: 1 2 3 4 5 6 7 8 9 10 Summe 10 15 10 10 8 10 12 5 10 10 100 Aufgabe 1 a) (8P) Testen Sie mit Miller-Rabin, ob 13 eine Primzahl

Mehr

Bitcoin Wallet Hersteller - Vertrauen ist gut, Kontrolle ist besser

Bitcoin Wallet Hersteller - Vertrauen ist gut, Kontrolle ist besser Eberhard Karls Universität Tübingen Mathematisch-Naturwissenschaftliche Fakultät Wilhelm-Schickard-Institut für Informatik Bitcoin Wallet Hersteller - Vertrauen ist gut, Kontrolle ist besser Masterarbeit

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 20.04.2014 1 / 28 Überblick 1 Blockchiffren Erinnerung Angriffe auf Blockchiffren 2 Formalisierung

Mehr

Einführungs- und Orientierungsstudium Informatik, Teil 2. Digitales Geld: Bitcoin und Blockketten Günter Rote. Freie Universität Berlin

Einführungs- und Orientierungsstudium Informatik, Teil 2. Digitales Geld: Bitcoin und Blockketten Günter Rote. Freie Universität Berlin EinS@FU Einführungs- und Orientierungsstudium Informatik, Teil 2 Digitales Geld: Bitcoin und Blockketten Günter Rote Freie Universität Berlin Überblick Geld ohne zentrale Kontrolle Hashfunktionen zum Speichern

Mehr

4 Der diskrete Logarithmus mit Anwendungen

4 Der diskrete Logarithmus mit Anwendungen 4 Der diskrete Logarithmus mit Anwendungen 53 4.1 Der diskrete Logarithmus Sei G eine Gruppe (multiplikativ geschrieben) und a G ein Element der Ordnung s (die auch sein kann). Dann ist die Exponentialfunktion

Mehr

Lösung zur Klausur zu Krypographie Sommersemester 2005

Lösung zur Klausur zu Krypographie Sommersemester 2005 Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Hybride Verschlüsselungsverfahren

Hybride Verschlüsselungsverfahren Hybride Verschlüsselungsverfahren Ziel: Flexibilität von asym. Verfahren und Effizienz von sym. Verfahren. Szenario: Sei Π = (Gen, Enc, Dec) ein PK-Verschlüsselungsverfahren und Π = (Gen, Enc, Dec ) ein

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16

Elliptische Kurven in der Kryptographie. Prusoth Vijayakumar / 16 1 / 16 06. 06. 2011 2 / 16 Übersicht Motivation Verfahren 3 / 16 Motivation Relativ sicher, da auf der Schwierigkeit mathematischer Probleme beruhend (z.b. Diskreter Logarithmus, Faktorisieren) Schnellere

Mehr

Regine Schreier

Regine Schreier Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola. Stammvorlesung Sicherheit im Sommersemester 2017

Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola. Stammvorlesung Sicherheit im Sommersemester 2017 Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola Stammvorlesung Sicherheit im Sommersemester 2017 Übungsblatt 4 Aufgabe 1. Wir instanziieren das ElGamal-Verschlüsselungsverfahren

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

Kryptografie Die Mathematik hinter den Geheimcodes

Kryptografie Die Mathematik hinter den Geheimcodes Kryptografie Die Mathematik hinter den Geheimcodes Rick Schumann www.math.tu-freiberg.de/~schumann Institut für Diskrete Mathematik und Algebra, TU Bergakademie Freiberg Akademische Woche Sankt Afra /

Mehr

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002

Diffie-Hellman, ElGamal und DSS. Vortrag von David Gümbel am 28.05.2002 Diffie-Hellman, ElGamal und DSS Vortrag von David Gümbel am 28.05.2002 Übersicht Prinzipielle Probleme der sicheren Nachrichtenübermittlung 'Diskreter Logarithmus'-Problem Diffie-Hellman ElGamal DSS /

Mehr

Hintergründe zur Kryptographie

Hintergründe zur Kryptographie 3. Januar 2009 Creative Commons by 3.0 http://creativecommons.org/licenses/by/3.0/ CAESAR-Chiffre Vigenère CAESAR-Chiffre Vigenère Einfache Verschiebung des Alphabets Schlüsselraum: 26 Schlüssel Einfaches

Mehr

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptographie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Kryptographie Techniken Symmetrische Verschlüsselung (One-time Pad,

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) WS 2016/17 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (RSA-Verfahren) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Jörn Müller-Quade ITI, KIT basierend auf den Folien von Dennis Hofheinz, Sommersemester 2014 04.05.2015 1 / 20 Kummerkasten Vorlesungsfolien bitte einen Tag vorher hochladen : Sollte

Mehr

Kryptographische Protokolle

Kryptographische Protokolle Kryptographische Protokolle Lerneinheit 4: Schlüsselvereinbarung Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2017 8.5.2017 Einleitung Einleitung In dieser Lerneinheit

Mehr

Digitale Signaturen. GHR-und Chamäleon-Signaturen Björn Kaidel. FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK

Digitale Signaturen. GHR-und Chamäleon-Signaturen Björn Kaidel.   FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK Digitale Signaturen GHR-und Chamäleon-Signaturen Björn Kaidel FAKULTÄT FÜR INFORMATIK, INSTITUT FÜR THEORETISCHE INFORMATIK 0 2017-12-15 B. Kaidel Digitale Signaturen: GHR- und Chamäleon-Signaturen KIT

Mehr

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen

Digitale Unterschriften Grundlagen der digitalen Unterschriften Hash-Then-Sign Unterschriften Public-Key Infrastrukturen (PKI) Digitale Signaturen Sommersemester 2008 Digitale Unterschriften Unterschrift von Hand : Physikalische Verbindung mit dem unterschriebenen Dokument (beides steht auf dem gleichen Blatt). Fälschen erfordert einiges Geschick

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2016 Nachklausur 12.10.2016 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Voll homomorpe Verschlüsselung

Voll homomorpe Verschlüsselung Voll homomorpe Verschlüsselung Definition Voll homomorphe Verschlüsselung Sei Π ein Verschlüsselungsverfahren mit Enc : R R für Ringe R, R. Π heißt voll homomorph, falls 1 Enc(m 1 ) + Enc(m 2 ) eine gültige

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Klausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Klausur 22.07.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung stehen

Mehr

Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen

Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen Systemsicherheit 8: Das Internet und Public-Key-Infratrukturen Das TCP/IP-Schichtenmodell Das TCP/IP-Schichtenmodell (2) Modem Payload Payload Payload Payload http http http http TCP TCP TCP IP IP IP PPP

Mehr

Einführung. Andreas Spillner. Kryptografie, SS 2018

Einführung. Andreas Spillner. Kryptografie, SS 2018 Einführung Andreas Spillner Kryptografie, SS 2018 Ausgangssituation Person A muss in der Zukunft Person B eine Nachricht N zukommen lassen. Der Inhalt der Nachricht N ist geheim und soll keinem Dritten

Mehr

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Nachklausur Hinweise

Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz. Nachklausur Hinweise Institut für Theoretische Informatik Jun.-Prof. Dr. D. Hofheinz Stammvorlesung Sicherheit im Sommersemester 2014 Nachklausur 29.09.2014 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Ideen und Konzepte der Informatik Kryptographie

Ideen und Konzepte der Informatik Kryptographie Ideen und Konzepte der Informatik Kryptographie und elektronisches Banking Antonios Antoniadis (basiert auf Folien von Kurt Mehlhorn) 4. Dec. 2017 4. Dec. 2017 1/30 Übersicht Zwecke der Kryptographie Techniken

Mehr

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,

Mehr

Authentikation und digitale Signatur

Authentikation und digitale Signatur TU Graz 23. Jänner 2009 Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Überblick: Begriffe Authentikation Digitale Signatur Begriffe Alice und

Mehr

Bruce Schneier, Applied Cryptography

Bruce Schneier, Applied Cryptography Gnu Privacy Guard In der Praxis gibt es zwei Formen von Kryptographie: Mit der einen Form der Kryptographie können Sie Ihre Dateien vielleicht vor Ihrer kleinen Schwester schützen, mit der anderen Form

Mehr

Literatur. [8-9] ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung

Literatur. [8-9]   ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 6. Auflage, 2017 [8-3] Schneier,

Mehr

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 8: Asymmetrische Verschlüsselung 02.01.18 1 Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001

Mehr

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösung Hinweise

Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade. Nachklausur. Lösung Hinweise Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Stammvorlesung Sicherheit im Sommersemester 2016 Nachklausur Lösung 12.10.2016 Vorname: Nachname: Matrikelnummer: Hinweise - Für die Bearbeitung

Mehr

Trim Size: 176mm x 240mm Lang ftoc.tex V1-5.Juli :54 P.M. Page 9

Trim Size: 176mm x 240mm Lang ftoc.tex V1-5.Juli :54 P.M. Page 9 Trim Size: 176mm x 240mm Lang ftoc.tex V1-5.Juli 2018 7:54 P.M. Page 9 Auf einen Blick Über den Autor... 7 Einleitung... 19 Teil I: Verschlüsseln... 25 Kapitel 1: Sicherheit in Zeiten des Internet... 27

Mehr