Lösungen zu Kapitel 10 (Abschnitt 10.7)

Größe: px
Ab Seite anzeigen:

Download "Lösungen zu Kapitel 10 (Abschnitt 10.7)"

Transkript

1 Lösungen zu Kpitel 0 (Abschnitt 0.7) L0. ) b) 0 = E0 + E0 = 2,5 V, CEmin = E0, d dnn C =0 gilt. Dmit folgt: C0 = E0 + E0 + û e + û E0 + E0 + û = 4,5 V. E = E0 E0 = C =,24 kω C0 0C C0 0 0 = C0 0C C0 = 65 kω bc bc = 0 re 2 = = = = 62 kω c) v u = = -87 v D = = 3,2 C E L0.2 emx = mx = mv vu d) C0 = v D E = v D D = -323 mv Entsprechend Abschnitt 0.2. besitzt die Prllelschltung us der Emitterkpzität C E und dem Emitterwiderstnd E eine chrkteristische Frequenz f E = =, 7Hz 2πCEE und drus folgend eine Hochpssfrequenz von u fgue = f v E = 97, 7Hz v D Die Koppelkpzität C liefert gemeinsm mit dem Eingngswiderstnd der Verstärkerschltung eine Hochpssgrenzfrequenz f g = = 97, 8Hz 2πCe r Dbei gilt im Signlfrequenzbereich r e = 2 r E. D über den Signlgenertor nichts usgesgt ist muss hier G = 0 ngenommen werden. Ein Einfluss von C 2 uf die untere Grenzfrequenz knn nicht berechnet werden, solnge m Ausgng Leerluf vorliegt.

2 Die beiden berechneten Hochpssfrequenzen sind nhezu identisch. ei dieser Frequenz beträgt die Signldämpfung folglich 6d. Geht mn von der guten Näherung der dentität us, dnn überlgern sich beide Wirkungen zu der unteren Grenzfrequenz (-3d-Frequenz) von f u = f g 2. Mn erhält f u = 52 Hz. nterhlb von f u ergibt sich zunächst ein Absinken der Spnnungsverstärkung mit 40d/Dekde. L0.3 ) Ds Digrmm enthält die Zeitfunktion der Ausgngsspnnung bei einer Eingngsspnnungsmplitude Û e von mv (schwrz) und zum Vergleich bei Û e = mv (rot). b) Ds Protokoll der PSpice-echnung bei Û e = mv zeigt einen Klirfktor (HD - otl Hrmonic Distortion) von K = 9%. FOE COMPONENS OF ANSEN ESPONSE V(A) DC COMPONEN = E+00 HAMONC FEQENCY FOE NOMALZED PHASE NOMALZED NO (HZ) COMPONEN COMPONEN (DEG) PHASE (DEG).000E E E E E E+03.67E E-02.60E E E E E E E E E E E E E E E E E+02

3 OAL HAMONC DSOON = E+00 PECEN Ds Protokoll der PSpice-echnung bei Û e = mv zeigt einen Klirfktor (HD - otl Hrmonic Distortion) von K = 0,82%. FOE COMPONENS OF ANSEN ESPONSE V(A) DC COMPONEN = E+00 HAMONC FEQENCY FOE NOMALZED PHASE NOMALZED NO (HZ) COMPONEN COMPONEN (DEG) PHASE (DEG).000E E-0.000E E E E E E-03.6E E E E E E E E E E E E E E E E E+02 OAL HAMONC DSOON = E-0 PECEN L0.4 ) Ziel der Dimensionierung des Arbeitspunktes ist eine mximle Ausgngsspnnungsmplitude. Dies knn mit E0 = 0C /2 gut erreicht werden. E0 E = = 2kΩ E0 0 E0 + E0 E0 + E0 2 = = = = 48, 7kΩ C0 0C + E0 0C + E0 0C + E0 = = = = 26, kω C0 N b) Die beiden Kleinsignlwiderstände r und r e sind us dem Kleinsignlerstzschltbild der Kollektorschltung (ild 0.7b) bzuleiten. Kleinsignlusgngswiderstnd: m etriebsfll ergibt sich bei G = 0 und unter erücksichtigung des Genertorinnenwiderstndes G und mit r CE (( ) )( ) G 2 + re EC ( G 2 ) + re r = = r' E = E = E = E = 7, 5Ω E ( + b)( ) + b G = 0 G = 0 Dbei ist r der hinter dem E wirkende Ausgngswiderstnd, wenn mn vom Ausgng in die Kleinsignlerstzschltung hinein schut. Kleinsignleingngswiderstnd: e r E e = = 2 r e' = 2 = 2 ( re + ( + b) ΩE) = 5, 7k e = 0 = 0 Dbei ist r e der hinter der Prllelschltung von und 2 wirkende Eingngswiderstnd, wenn mn vom Eingng in die Kleinsignlerstzschltung hinein schut. c) Ein Genertorsignl erfährt über dem Spnnungsteiler us dem nnenwiderstnd des Signlgenertors G und dem Eingngswiderstnd der Kollektorschltung r e eine Spnnungsteilung. Für den Signlfrequenzbereich drf m Koppelkondenstor C kein Spnnungsbfll uftreten. Ds m Verstärkereingng nkommende Signl drf eine Amplitude ufweisen, die gerde zur Mximlussteuerung des Verstärkers führt. D die Spnnungsverstärkung der Kollektorschltung in guter Näherung ls ngesetzt werden knn, gilt = =. e E0

4 E0 ( G + re ) = = 3 V G,mx re L0.5 ) Die Whl des Arbeitspunktes erfolgt nhnd des Aussteuerdigrmms 0 = E0 + E0 =,6V 0C 0 0C + 0 = + = = 2 2 u ˆ =,7V C0 0 3,3V 0C C0 = C0 = = kω C = =, 7kΩ C0 0C 0 0C 0 0C 0 = = = = = 85kΩ C = = = = 48kΩ C0 5 b) E0 E E0 N c) Kleinsignlspnnungsverstärkung: v u = e = 0 ( ) = + = b r + CE e C CE e e = b + rce + C r E Nch / e uflösen: r + b CE r v E u = = r e + CE C e flls r CE >> C, r E re b+ C rce b vu = C r + re rce d) v u = 65, 4 C E

5 L0.6 ) Aussteuerdigrmm der Drinschltung Für einen Verstärkerbetrieb muss der FE im Pentodenbereich rbeiten, d.h. für seine Drin- Source-Spnnung muss gelten DS > GS t. Weiterhin gilt: GS0 = S0 = S = D0S = 3V und ls Grenzwert für DS : DSS = GS0 t = 0, 5V Nebenbei sei erwähnt, dss durch ds Wertepr GS0 und DS0 uch die Gleichung (6.3) für den Drinstrom 2 GS D DSS = t erfüllt sein muss. Drus resultiert ber uch, dss bei Aussteuerung e (t) und der dmit verbundenen Drinstromänderung D (t) eine Änderung der Gte- Source-Spnnung GS (t) uftritt. Für die mximle Signlmplitude m Ausgng des Verstärkers folgt:,mx = min ( 0C DSS ) S0, S0 = min 6, 5V, 3V = 3V ( ) ( ) b) ( ) = S GS r DS S e = GS + => = S ( e )( rds S ) => + S ( rds S ) = S e( rds S ) => S e ( rds S ) = + S ( r ) DS S v S u = = = 0, 92 e + S S = 0 r = = r = = 3kΩ DS S S e = 0 S, d lut gegebener Strom-Spnnungs-eziehung r DS gilt. L0.7 Emitterschltung mit Stromspiegellst

6 ) ei rückwirkungsfreiem rnsistor entspricht der etriebseingngswiderstnd dem, der einfchen Emitterschltung. r e e = = V re, e = 0 Der etriebsusgngswiderstnd entspricht der Prllelschltung us L und dem Ausgngswiderstnd des Stromspiegels r = r CE,2. r = = rce,2' L e = 0 b) Ds Spiegelverhältnis M besitzt bei identischen rnsistoren 2 und 2 nnähernd den Wert. Es gilt M = M. em. Mit der Vereinfchung r CE für lle rnsistoren folgt: M L em L vu = = = M = b L e e e + 2 re, c) 0 < < 0C - E0,2 dmit der rnsistor 2 nicht übersteuert wird. L0.8 rnsistormodell: E C S e = (beide rnsistoren sind identisch) Differenz der Kollektorströme: e e e e E E2 e E e2 E C C2 = N S N S = N S e E e2 E E e e2 C C2 = S e e e e = Se e e ()

7 + E C 2 C2 C C2 C C2 Knotengleichung m Knoten E: = = = N ( + ) Gleichung (2) nch e e2 N e e C C2 = E + e e2 N e + e E E2 e E e2 E + E = S e S e ( ) S e e + = + + N E e e2 E = ( + ) Se e + e E Se (2) umstellen und in Gleichung () einsetzen. ei symmetrischer Aussteuerung mit e2 = - e folgt e C C2 = E tnh + zw. mit D = e - e2 = 2 e D C C2 = E tnh + 2 Für die Ausgngsspnnungsdifferenz D = - e2 erhält mn D D = 2 = C ( C C2 ) = CE tnh + 2 D D = CEtnh 2 Eine linere Näherung des Kurvenverlufs in der mgebung des Nullpunkts ( D << ) liefert: EC D D = 2 L0.9 ) D ref ein konstnter Strom ist, weisen die beiden rnsistoren 2 und 2 keine Änderung ihrer sis-emitter-spnnung bzw. des zugehörigen sisstromes uf, so dss deren Stromquelle b. im

8 Kleinsignlerstzschltbild den Wert null besitzt. Vom gesmten Stromspiegel bleibt im Kleinsignlerstzschltbild des Verstärkers nur der r CE,2 übrig. b) r = = r CE, r CE,2' e = 0 L0.0 Wenn die spiegelsymmetrisch ngeordneten rnsistoren und 4 und 4 identisch sind, erhält mn: b C, C,' ( e e2 ) (vgl. Abschnitt 0.4.2) r E, C,4' C,4 C,2' C,2 C, und C,3' C,3 C,' Dmit folgt: b = C,3' C,4' = C, C,' = e e2 re ( ) ( ) Für den Kleinsignlusgngswiderstnd folgt unter der Vorussetzung, dss lle rnsistoren ls rückwirkungsfrei betrchtet werden, entsprechend der Überlegung us Aufgbe 0.9 r = = r CE,3' r CE,4' e = 0 L0. emerkung: Wenn beide sis-emitter-spnnungen ls gleich ngenommen werden, dnn bedeutet dies exkterweise, dss uch die sisströme beider rnsistoren gleich sein müssen. Dies ist jedoch in sehr guter Näherung nur bei einem Spiegelverhältnis M = / ref = gegeben. Für den llgemeinen Fll ist es besser, diese Vorussetzung nicht nzunehmen. Kennliniengleichungen des rnsistors: E Se = bzw. E ln = S = C C E = + C Am rnsistor gilt: 0, = E0, + E,E = E0, + C,+ E 2 und mit ref = C, +, +,' = C,+ ref 0, = E0, E + N Am rnsistor gilt: 0,' = E0,' + + D die sispotentile der beiden rnsistoren identisch sind ergibt sich ref E0, + E E0,' 2 + = + + +

9 , ref,' ln + + E = ln S, N + S,' C, ref C,' ln + + E = ln + + 2, S, N,' + S,' C,,' S,' ref ln + + E = + 2 C,', S, + ei identischen rnsistoren vereinfcht sich die eziehung. C, ref ln + + E = + 2 C,' + E = + ln ref 2 ref 2 + ref + N + N N E Es folgt in guter Näherung: = ln. ref ref ref Der zweite erm in obiger Gleichung stellt die Abweichung vom delwert dr. Wenn ds Spiegelverhältnis M beträgt, ist die Abweichung verschieden von null. Die Gleichung ist nur grfisch oder itertiv lösbr. M Ds Ergebnis für die etws umgestellte Gleichung E = M ln( M ) E (M ) L0.2

10 ) E Z E0 E = = = 5, 25 kω + + 0C Z 0C Z = = = 40 kω 0, b) Der mximle Lstwiderstnd Lmx leitet sich us der miniml erforderlichen Kollektor-Emitter- Spnnung des rnsistors b, bei der dieser noch im ktiv normlen etriebszustnd rbeitet: CEmin = E0 Mit der usreichenden Näherung E = C erhält mn: 0C E0 E L, mx = = 4, 05kΩ c) r = r E r + brce + + re + E E E r CE = 878 kω.

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengng Wirtschftsingenieurwesen (Bchelor) Prktikum Grundlgen der Elektrotechnik und Elektronik ersuch Spnnungsteiler Teilnehmer: Nme ornme Mtr.-Nr. Dtum der ersuchsdurchführung: Spnnungsteiler

Mehr

Transistorverstärker Emitterschaltung

Transistorverstärker Emitterschaltung Trnsistorverstärker mitterschltung. Grundschltung Vernschulichung siehe http://www.eit.htwk-leipzig.de/~reinhold/html/lehre/el/ipo-verst_sw.html 2. Areitspunkteinstellung Sttionäre Ströme 0, B0 und Spnnungen

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

Einfache Elektrische Netzwerke

Einfache Elektrische Netzwerke un esstechnik Netzwerke un Schltungen Nme, Vornme Testt Besprechung:..8 Abgbe:..8 infche lektrische Netzwerke Aufgbe : Strommessung ( Wir berechnen zuerst ie Wierstäne,, un. m B messen wir Ströme bis zu

Mehr

311 Leistungsanpassung

311 Leistungsanpassung Physiklisches Grundprktikum 311 Leistungsnpssung 1. Aufgben 1.1 Mit einem Wechselspnnungsgenertor ist ein Verbrucher (Schiebewiderstnd) zu speisen. Dessen Leistungsufnhme P ist in Abhängigkeit seines Widerstndswertes

Mehr

B005: Baumechanik II

B005: Baumechanik II Sommersemester 05 Fkultät für uingenieurwesen und Umwelttechnik Dozent: nsgr Neuenhofer 005: umechnik II 3. März 05 Husübung -ösung ufgbe () Wie hoch könnten wir theoretisch eine Sthlstütze (konstnter

Mehr

Gebrochenrationale Funktionen (Einführung)

Gebrochenrationale Funktionen (Einführung) Gebrochenrtionle Funktionen (Einführung) Ac Eine gebrochenrtionle Funktion R ist von der Form R(x) P(x) und Q(x) gnzrtionle Funktionen n-ten Grdes sind. P(x) Q(x), wobei Im Allgemeinen ht eine gebrochenrtionle

Mehr

2. Funktionen in der Ökonomie

2. Funktionen in der Ökonomie FHW, ZSEBY, ANALYSIS - - Funktionen in der Ökonomie Beispiele: qudrtische Funktionen, Eponentilfunktion Qudrtische Funktionen Einfchste qudrtische Funktion: y = Allgemeine qudrtische Funktion: y = + b

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt HEA 005/06 Formelzettel Elektrotechnik Teilübung: Belsteter Snnungsteiler Gruenteilnehmer: Jkic, Tok Abgbedtum: 4.0.006 Jkic, Tok nhltsverzeichnis HEA NHALTSVEZECHNS. Aufgbenstellung.... Theorie...

Mehr

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3

Übungen zur Vorlesung Physikalische Chemie I Lösungsvorschlag zu Blatt 3 Übungen zur Vorlesung Physiklische Chemie I Lösungsvorschlg zu Bltt 3 Prof. Dr. Norbert Hmpp 1. Aufgbe ) Die gegebene Verteilung besteht nur us diskreten Werten! Die durchgezogene Linie würde nur bei einer

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Inhltsverzeichnis: NAE Nchrichtentechnik und ngewndte Elektronik Them nterpunkt Seite etriebsrten von eistungsverstärkern Klsse-A-etrieb 4- Klsse-A-etrieb 4- Klsse--etrieb 4- Kollektorschltung im Klsse-A-etrieb

Mehr

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9

D-MAVT/D-MATL Analysis I HS 2016 Dr. Andreas Steiger. Lösung - Serie 9 D-MAVT/D-MATL Anlysis I HS 26 Dr. Andres Steiger Lösung - Serie 9. MC-Aufgben (Online-Abgbe). Es sei f die Funktion f() = e + 7. Welche der folgenden Funktionen sind Stmmfunktionen von f? () g() = 2 2

Mehr

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert:

b) Dasselbe System, die Unbekannten sind diesmal durchnummeriert: 1 Linere Gleichungssysteme 1. Begriffe Bspl.: ) 2 x - 3 y + z = 1 3 x - 2 z = 0 Dies ist ein Gleichungssystem mit 3 Unbeknnten ( Vriblen ) und 2 Gleichungen. Die Zhlen vor den Unbeknnten heißen Koeffizienten.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Lösungsvorschlag zu Übung 3

Lösungsvorschlag zu Übung 3 PCI Thermodynmik G. Jeschke FS 2015 Lösungsvorschlg zu Übung 3 (5. März 2015) Aufgbe 1. Der kritische Punkt. () Gegeben sind die Gleichungen für und b us dem Skrit Einsetzen der zweiten Gleichung in die

Mehr

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration

Integrieren. Regeln. Einige Integrale die man auswendig kennen sollte. Partielle Integration Integrieren Regeln (f() + g())d = f()d + g()d c f()d = c f()d b f()d = f()d b Einige Integrle die mn uswendig kennen sollte s d = s + s+ + C (für s ) d = ln + C cos d = sin + C sin d = cos + C sinh d =

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

4.6 Integralrechnung III. Inhaltsverzeichnis

4.6 Integralrechnung III. Inhaltsverzeichnis 4.6 Integrlrechnung III Inhltsverzeichnis 1 Integrlrechnung 10.03.2010 Theorie und Übungen 2 1 Exponentilfunktionen Aus der Differentilrechnung wissen wir, dss gilt: f(x)=e x f (x)=e x Stz 1 Für die ntürliche

Mehr

Ferienkurs Experimentalphysik

Ferienkurs Experimentalphysik Ferienkurs Experimentlphysik 4 009 Übung 1 Heisenberg sche Unschärfereltion Zeigen Sie, dss eine Messprtur beim Doppelspltexperiment, die den Durchgng eines Teilchens durch ein Loch detektieren knn, ds

Mehr

Gleichspannung. Ersatzspannungsquelle

Gleichspannung. Ersatzspannungsquelle niversity of Appld Scnces Cologne Cmpus Gummersch Dipl.-ng. (FH) Dipl.-Wirt. ng. (FH) G. Dnlk Gleichspnnung Erstzspnnungsquelle L-ESpQ- Stnd: 9..6; D hr gezeigten Lösungen ezhen sich uf d lten Klusuren

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 015/16 Bltt 4 09.11.015 Übungen zur Vorlesung Differentil und Integrlrechnung I Lösungsvorschlg 13. Zu betrchten ist die durch 0 = 1 und

Mehr

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf:

Lösungen Quadratische Gleichungen. x = x x = Also probieren wir es 3 4 = 12. x + + = Lösen Sie die folgenden Gleichungen nach x auf: Aufgbe : ) Lösen Sie die folgenden Gleichungen nch uf: = kein Problem einfch die Wurel iehen und ds ± nicht vergessen.. = = ±, b) + 5 = 0 Hier hben wir bei jedem Ausdruck ein, lso können wir usklmmern:

Mehr

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1

Abiturprüfung Mathematik 2013 (Baden-Württemberg) Berufliche Gymnasien Analysis, Aufgabe 1 www.mthe-ufgben.com Abiturprüfung Mthemtik 013 (Bden-Württemberg) Berufliche Gymnsien Anlysis, Aufgbe 1 1.1 Die Funktion f ist gegeben durch π f( x) = + sin x ; x. Ds Schubild von f ist K. 1.1.1 (8 Punkte)

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Multiplikative Inverse

Multiplikative Inverse Multipliktive Inverse Ein Streifzug durch ds Bruchrechnen in Restklssen von Yimin Ge, Jänner 2006 Viele Leute hben Probleme dbei, Brüche und Restklssen unter einen Hut zu bringen. Dieser kurze Aufstz soll

Mehr

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG

11. DER HAUPTSATZ DER DIFFERENTIAL- UND INTEGRALRECHNUNG 91 Dieses Skript ist ein Auszug mit Lücken us Einführung in die mthemtische Behndlung der Nturwissenschften I von Hns Heiner Storrer, Birkhäuser Skripten. Als StudentIn sollten Sie ds Buch uch kufen und

Mehr

Universität Ulm Abgabe: Freitag,

Universität Ulm Abgabe: Freitag, Universität Ulm Abgbe: Freitg, 19.06.2009 Prof. Dr. W. Arendt Robin Nittk Sommersemester 2009 Punktzhl: 38+7 13. Zeige: Lösungen Prtielle Differentilgleichungen: Bltt 5 Sei (, b) ein reelles Intervll.

Mehr

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b]

38 Das Riemann-Integral vektorwertiger Funktionen über [a, b] 38 Ds Riemnn-Integrl vektorwertiger Funktionen über [, b] 38.2 Riemnn-Integrierbrkeit von Wegen 38.4 Ds Riemnn-Integrl ist eine linere Abbildung von R([, b], V ) in V 38.9 Integrlbschätzung 38.10 Huptstz

Mehr

Massendichte und Massenzunahme des Weltalls

Massendichte und Massenzunahme des Weltalls rtin Bock Diefflen, 700 ssendichte und ssenzunhme des Weltlls Ich will den Nmen meinen Brüdern verkünden, inmitten der emeinde dich preisen Die ihr den Herrn fürchtet, preist ihn, ihr lle vom Stmm Jkobs,

Mehr

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018

HM I Tutorium 14. Lucas Kunz. 9. Februar 2018 HM I Tutorium 14 Lucs Kunz 9. Februr 218 Inhltsverzeichnis 1 Theorie 2 1.1 Uneigentliche Integrle............................. 2 1.1.1 Typ 1.................................. 2 1.1.2 Typ 2..................................

Mehr

Heterogenes chemisches Gleichgewicht

Heterogenes chemisches Gleichgewicht Heterogenes chemisches Gleichgewicht 1 Ziel des Versuches: Es ist ds Mssenwirkungsgesetz uf ds Zersetzungsgleichgewicht eines Nickel-Hexmmin- Komplexes nzuwenden. Aus der Temperturbhängigkeit der Gleichgewichtskonstnten

Mehr

BINOMISCHE FORMELN FRANZ LEMMERMEYER

BINOMISCHE FORMELN FRANZ LEMMERMEYER BINOMISCHE FORMELN FRANZ LEMMERMEYER Ds Distributivgesetz. Die binomischen Formeln sind im wesentlichen Vrinten des Distributivgesetzes. Dieses kennen wir schon; es besgt, dss () (b + = b + c und ( + b)c

Mehr

Grundschaltungen der Elektronik

Grundschaltungen der Elektronik FAKLTÄT ELEKTROTECHNIK Hochschule für Technik und Wirtschft Dresden niversity of Applied Sciences Prktikum Elektronik für Wirtschftsingenieure Versuch 2 Grundschltungen der Elektronik 1 Allgemeine Hinweise

Mehr

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1.

Analysis. Klausur zu e-funktionen (Produkt-/Kettenregel, momentane Änderungsrate) (Bearbeitungszeit: 90 Minuten) Gymnasium J1. Anlysis Klusur zu e-funktionen (Produkt-/Kettenregel, momentne Änderungsrte) (Berbeitungszeit: 90 Minuten) Gymnsium J Alender Schwrz www.mthe-ufgben.com Jnur 05 Pflichtteil - ohne Hilfsmittel Aufgbe :

Mehr

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers

Versuchsumdruck. Schaltungsvarianten des Operationsverstärkers Hchschule STDIENGANG Wirtschftsingenieurwesen Bltt n 6 Aschffenburg Prf. Dr.-Ing.. Bchtler, Armin Huth Versuch 2 Versin. m 23.3.2 Versuchsumdruck Schltungsrinten des Opertinserstärkers Inhlt Verwendete

Mehr

Elektrizitätslehre. Bipolartransistor. Elektronik MESSUNG DER RELEVANTEN KENNLINIEN EINES NPN-TRANSISTORS. ALLGEMEINE GRUNDLAGEN

Elektrizitätslehre. Bipolartransistor. Elektronik MESSUNG DER RELEVANTEN KENNLINIEN EINES NPN-TRANSISTORS. ALLGEMEINE GRUNDLAGEN Elektrizitätslehre Elektronik Bipolrtrnsistor MESSUNG DER RELEVANTEN KENNLINIEN EINES NPN-TRANSISTORS. Messung der Eingngskennlinie, d.h. des Bsisstroms IB in Abhängigkeit von der Bsis-Emitter-Spnnung

Mehr

Mathematik 1 für Bauwesen 14. Übungsblatt

Mathematik 1 für Bauwesen 14. Übungsblatt Mthemtik für Buwesen Übungsbltt Fchbereich Mthemtik Wintersemester 0/0 Dr Ivn Izmestiev 8/900 Dr Vince Bárány, M Sc Juli Plehnert Gruppenübung Aufgbe G () Berechnen Sie ds Volumen des Rottionskörpers,

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 5 Ds Pumping Lemm Schufchprinzip (Folie 144) Automten und formle Sprchen Notizen zu den Folien Im Block Ds Schufchprinzip für endliche Automten steht m n (sttt m > n), weil die Länge eines Pfdes die Anzhl

Mehr

Numerische Integration

Numerische Integration Kpitel 4 Numerische Integrtion Problem: Berechne für gegebene Funktion f :[, b] R ds Riemnn-Integrl I(f) := Oft ist nur eine numerische Näherung möglich. f(x)dx. Beispiel 9. (i) Rechteckregel: Wir pproximieren

Mehr

Mathematik K1, 2017 Lösungen Vorbereitung KA 1

Mathematik K1, 2017 Lösungen Vorbereitung KA 1 Mthemtik K, 07 Lösungen Vorbereitung KA Pflichtteil (etw 0..0 min) Ohne Tschenrechner und ohne Formelsmmlung (Dieser Teil muss mit den Lösungen bgegeben sein, ehe der GTR und die Formlsmmlung verwendet

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Bden-Württemberg: Abitur 014 Whlteil A www.mthe-ufgben.com Huptprüfung Abiturprüfung 014 (ohne CAS) Bden-Württemberg Whlteil Anlysis Hilfsmittel: GTR und Formelsmmlung llgemeinbildende Gymnsien Alexnder

Mehr

Numerische Mathematik Sommersemester 2013

Numerische Mathematik Sommersemester 2013 TU Chemnitz 5. Februr 2014 Professur Numerische Mthemtik Prof. Dr. Oliver Ernst Dipl.-Mth. Ingolf Busch Dipl.-Mth. techn. Tommy Etling Numerische Mthemtik Sommersemester 2013 Musterlösungen zu nicht behndelten

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) =

b f(x)p(x) dx = f(ξ) 2e 2 , Hess f (2, 0) = Es seien U R n offen und ψ : U R n stetig differenzierbr. Weiter sei f : U R zweiml stetig differenzierbr. Kennzeichnen Sie whre Aussgen mit W und flsche Aussgen mit F. F Flls dψ(x) ein Isomorphismus für

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Integration von Regelfunktionen

Integration von Regelfunktionen Integrtion von Regelfunktionen Inhltsverzeichnis Einleitung 2 Treppen- und Regelfunktionen 3 Denition des Integrls 4 Rechen mit Integrlen 2 4. Grundlegende Eigenschften.............................................

Mehr

2. Das Rechnen mit ganzen Zahlen (Rechnen in )

2. Das Rechnen mit ganzen Zahlen (Rechnen in ) . Ds Rechnen mit gnzen Zhlen (Rechnen in ).1 Addition und Subtrktion 5 + = 7 Summnd Summnd Summe 5 - = 3 Minuend Subtrhend Differenz In Aussgen mit Vriblen lssen sich nur gleiche Vriblen ddieren bzw. subtrhieren.

Mehr

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2

Wir wählen einen Punkt O des zwei- bzw. dreidimensionalen euklidischen Raums als Ursprung oder Nullpunkt. b 3 c. b 2 IV. Teilung und Teilverhältnis im Punktrum ================================================================ 4.1 Der Punktrum Wir wählen einen Punkt O des zwei- zw. dreidimensionlen euklidischen Rums ls

Mehr

Quadratische Funktionen

Quadratische Funktionen Qudrtische Funktionen Die Scheitelpunktform ist eine spezielle Drstellungsform von qudrtischen Funktionen, nhnd der viele geometrische Eigenschften des Funktionsgrphen bgelesen werden können. Abbildung

Mehr

Das Bogenintegral einer gestauchten Normalparabel

Das Bogenintegral einer gestauchten Normalparabel Ds Bogenintegrl einer gestuchten Normlprbel Jn Günther und Luks Vrnhorst Im Mthemtikleistungskurs der Jhrgngsstufe sind wir uf folgende Aufgbe gestoÿen: Bestimmen Sie eine Stmmfunktion von f(x) + x mit

Mehr

7.9A. Nullstellensuche nach Newton

7.9A. Nullstellensuche nach Newton 7.9A. Nullstellensuche nch Newton Wir hben früher bemerkt, dß zur Auffindung von Nullstellen einer gegebenen Funktion oft nur Näherungsverfhren helfen. Eine lte, ber wirkungsvolle Methode ist ds Newton-Verfhren

Mehr

4. Lineare Gleichungen mit einer Variablen

4. Lineare Gleichungen mit einer Variablen 4. Linere Gleichungen mit einer Vrilen 4. Einleitung Werden zwei Terme einnder gleichgesetzt, sprechen wir von einer Gleichung. Enthlten eide Terme nur Zhlen, so entsteht eine Aussge, die whr oder flsch

Mehr

MC-Serie 12 - Integrationstechniken

MC-Serie 12 - Integrationstechniken Anlysis D-BAUG Dr. Meike Akveld HS 15 MC-Serie 1 - Integrtionstechniken 1. Die Formel f(x) dx = xf(x) xf (x) dx i) ist im Allgemeinen flsch. ii) folgt us der Sustitutionsregel. iii) folgt us dem Huptstz

Mehr

Grundwissen Mathematik 8

Grundwissen Mathematik 8 Grundwissen Mthemtik 8 Proportionle Zuordnung Gehört bei einer Zuordnung zweier Größen zu einem Vielfchen der einen Größe ds gleiche Vielfche der nderen Größe, so heißt sie proportionle Zuordnung. Die

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

BRÜCKENKURS MATHEMATIK

BRÜCKENKURS MATHEMATIK Brückenkurs Linere Gleichungssysteme - Prof. r. M. Ludwig BRÜCKENKURS MATHEMATIK LINEARE GLEICHUNGSSYSTEME Schwerpunkte: Modellbildung Lösungsmethoden Geometrische Interprettion Prof. r. hbil. M. Ludwig

Mehr

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i

f(x + iy) = u(x, y) + iv(x, y), f(z)dz := Re [f(γ(t)) γ(t)] dt + i Funktionentheorie Komplexe Kurvenintegrle Themen des Tutoriums m 24.6.25: Jede komplexe Funktion f : D C knn mn drstellen ls f(x + iy) = u(x, y) + iv(x, y), wobei u und v reellwertige Funktionen uf R 2

Mehr

Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I

Mathematik-Aufgabenpool > Normalparabeln, spezielle allgemeine Parabeln I Michel Buhlmnn Mthemtik-Aufgbenool > Normlrbeln, sezielle llgemeine Prbeln I Einleitung: Normlrbeln sind qudrtische Funktionen von der Form: y = + + q (Normlform), y = ( d) + c (Scheitelform), y = (- )(-

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Schriftliche Reifeprüfung aus Mathematik

Schriftliche Reifeprüfung aus Mathematik Schriftliche Reifeprüfung us Mthemtik 1) Linere Optimierung Ein Händler für Bürortikel füllt für den Schulnfng sein Lger mit Tschenrechnern des Typs Advnced und des Typs Bsic uf. Typ A kostet ihn im Einkuf

Mehr

Numerische Integration durch Extrapolation

Numerische Integration durch Extrapolation Numerische Integrtion durch Extrpoltion Pblo Thiel Romberg-Verfhren Idee: Im Gegenstz zur numerischen Integrtion mit Hilfe der einfchen bzw. zusmmengesetzten Trpez-, Simpson-, 3/8- oder zum Beispiel der

Mehr

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft.

Aufgaben: 1. Gib eine Gleichung der Ebene E an, die durch A in Richtung von u und v verläuft. Prmeergleichung und Koordinenform einer Ebene Prmeergleichung und Koordinenform einer Ebene Die Lge einer Ebene E im Rum is durch drei Größen eindeuig fesgeleg: X. Einen Punk A, durch den die Ebene verläuf..

Mehr

Arkus-Funktionen. Aufgabensammlung 1

Arkus-Funktionen. Aufgabensammlung 1 ANALYSIS Arkus-Funktionen Aufgbensmmlung 1 Dtei Nummer 4730 Stnd: 15. November 017 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 4730 Aufgbensmmlung Arkusfunktionen Aufgbe 1 (Lösung Seite

Mehr

Mathematik Rechenfertigkeiten

Mathematik Rechenfertigkeiten 2 Mthemtik Rechenfertigkeiten Skript Freitg Dominik Tsndy, Mthemtik Institut, Universität Zürich Winterthurerstrsse 9, 857 Zürich Irmgrd Bühler (Überrbeitung: Dominik Tsndy) 9.August 2 Inhltsverzeichnis

Mehr

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1

Vorkurs Mathematik Frankfurt University Of Applied Sciences, Fachbereich 2 1 Vorkurs Mthemtik Frnkfurt University Of Applied Sciences, Fchbereich 1 Rechnen mit Potenzen N bezeichnet die Menge der ntürlichen Zhlen, Q die Menge der rtionlen Zhlen und R die Menge der reellen Zhlen.

Mehr

4. Der Cauchysche Integralsatz

4. Der Cauchysche Integralsatz 22 Andres Gthmnn 4. Der Cuchysche Integrlstz Es seien D C offen und f : D C eine stetige Funktion. Ht f in D eine Stmmfunktion, so hben wir im letzten Kpitel gesehen, dss Kurvenintegrle über f in D nur

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

6. Quadratische Gleichungen

6. Quadratische Gleichungen 6. Qudrtische Gleichungen 6. Vorbemerkungen Potenzieren und Wurzelziehen, somit uch Qudrieren und Ziehen der Qudrtwurzel, sind entgegengesetzte Opertionen. Sie heben sich gegenseitig uf. qudrieren Qudrtwurzel

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 10. dt. Welche der folgenden Aussagen ist richtig? t3 + 2 D-MAVT/D-MATL Anlysis I HS 7 Dr. Andres Steiger Lösung - Serie.. Sei f(x) : () f() . x (c) f( ) . Die Funktion g : t t + ist, dss ds Integrl b dt. Welche der folgenden Aussgen

Mehr

Zwei Kreise im gleichseitigen Dreieck

Zwei Kreise im gleichseitigen Dreieck -. ein Aufgbe us der pnischen Tempelgeometrie 3. August 006 Gegeben sei ds gleichseitige Dreieck ABC mit der Seitenlänge. Auf der öhenlinie h c = CD befinden sich die Mittelpunkte der Kreise k 1 und k.

Mehr

$Id: integral.tex,v /05/15 15:03:49 hk Exp $ $Id: uneigentlich.tex,v /05/16 13:37:14 hk Exp $

$Id: integral.tex,v /05/15 15:03:49 hk Exp $ $Id: uneigentlich.tex,v /05/16 13:37:14 hk Exp $ $Id: integrl.te,v.3 24/5/5 5:3:49 hk Ep $ $Id: uneigentlich.te,v. 24/5/6 3:37:4 hk Ep $ 2 Integrlrechnung 2.5 Ergänzungen Wir sind jetzt m Ende des Kpitels über ds Riemn-Integrl im eigentlichen Sinne ngelngt,

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x...

(3) a x a x a x... a x b n n 1. (2) a x a x a x... a x b n n n n (m) a x a x a x... LINEARE GLEICHUNGSSYSTEME () x x x... x b n n () x x x... x b n n () x x x... x b n n.............. (m) x x x... x b m m m mn n m Inhltsverzeichnis Kpitel Inhlt Seite Bestimmung von Funktionstermen Ds

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Beugung m Dopplesplt Es ist nicht möglich, Detils eines Ojektes ufzulösen, die (wesentlich) kleiner sind ls die Wellenlänge

Mehr

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert

Aufgabe 1 mit Lösung. Stelle x x + 2a x 2a VZW EPArt Wert Aufgbe mit Lösung 4 ( 8 ) ( 4 8 ) f x = x x x + x= f x Achsensymmetrie + =. 4 lim x x + : Fll = c+ d 0! < 0 + x ±... Extrempunkte = = =. NB: f ( x) ( 4x 6 x) x( x ) x( x ) x MESt ( f ) { ;0;}. HB: 0 =

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Algebraische Topologie WS 2016/17 Lösungen der Woche 9

Algebraische Topologie WS 2016/17 Lösungen der Woche 9 6.132 - Algebrische Topologie WS 2016/17 Lösungen der Woche 9 Mrtin Frnklnd 5.1.2017 Aufgbe 1. Es sei X ein Rum und X = α U α eine disjunkte Vereinigung offener Teilmengen U α X. Zeigen Sie, dss X ds Koprodukt

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

Lösungshinweise zu den zusätzliche Übungsaufgaben

Lösungshinweise zu den zusätzliche Übungsaufgaben Lösungshinweise zu den zusätzliche Übungsufgben Aufgbe Z.1 (Mximin Regel [1]) Als Gleichgewicht ergibt sich, mit Auszhlungsvektor 5, 5. Aufgbe Z. (Dominnzüberlegungen und Nsh Gleichgewicht ) & b) [1]/

Mehr

4.2 Potentialtopf. Gruppe Neumann: Sebastian Guttenbrunner Dario Knebl Maria Kortschak Cornelia Reinharter Peter Schantl Gerald Schwarzbauer

4.2 Potentialtopf. Gruppe Neumann: Sebastian Guttenbrunner Dario Knebl Maria Kortschak Cornelia Reinharter Peter Schantl Gerald Schwarzbauer 4. Potentiltopf Gruppe Neumnn: Sebstin Guttenbrunner Drio Knebl Mri Kortschk Corneli Reinhrter Peter Schntl Gerld Schwrzbuer Ein rechteckiger, eindimensionler Potentiltopf ist ein einfches Modell, ds ls

Mehr

Exponential- und Logarithmusfunktion

Exponential- und Logarithmusfunktion Mthemtik I und II für Ingenieure (IAM) Version.3/..003.0.5 Eponentil- und Logrithmusfunktion Definition.0.0: Sei +, dnn ist die llgemeine Form einer Eponentilfunktion f: + gegeben durch die Funktionsgleichung

Mehr

Lineare Algebra I 5. Tutorium mit Lösungshinweisen

Lineare Algebra I 5. Tutorium mit Lösungshinweisen Fchbereich Mthemtik Prof Dr JH Bruinier Mrtin Fuchssteiner Ky Schwieger TECHNISCHE UNIVERSITÄT DARMSTADT AWS 07/08 0607 (T ) Linere Algebr I 5 Tutorium mit Lösungshinweisen Welche Gruppen kennen Sie? Welche

Mehr

Quadratische Funktionen und p-q-formel

Quadratische Funktionen und p-q-formel Arbeitsblätter zum Ausdrucken von softutor.com Qudrtische Funktionen und -q-formel Gib den Vorfktor und die Anzhl der Schnittstellen mit der -Achse n. x 3 Beschreibe die Reihenfolge beim Umformen einer

Mehr

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014

Klausurvorbereitungsausfgaben für die Feiertage Analysis II im WS 2013/2014 Institut für Mthemtik Freie Universität Berlin C. Hrtmnn, A. Ppke Wer spricht von Siegen, Überleben ist lles. Riner Mri Rilke Lösung zu Klusurvorbereitungsusfgben für die Feiertge Anlysis II im WS 23/24

Mehr

Ideale Gasgleichung, Gaskonstante und Zustandsgleichung

Ideale Gasgleichung, Gaskonstante und Zustandsgleichung Idele Gsgleichung, Gskonstnte und Zustndsgleichung Ds idele Gsgesetz lutet P P 0 0 0 Wählen wir P 0 = 1 tm, 0 = 73,15 K dnn ht 1 Mol eines Gses ein olumen 0 =,414 l. Dieser Zusmmenhng geht uf die Entdecker

Mehr

Mathematik für Informatiker II (Maikel Nadolski)

Mathematik für Informatiker II (Maikel Nadolski) Lösungen zum 7 Aufgbentt zur Vorlesung Mthemti für Informtier II Miel Ndolsi) Abgbe: bis Freitg, den 0Juni 0, 05 Uhr Häufungspunte ) Sei n ) eine reellwertige Folge mit Grenzwert sei b n ) eine beschränte

Mehr

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen

56. Mathematik-Olympiade 2. Stufe (Regionalrunde) Olympiadeklasse 8 Lösungen 56. Mthemtik-Olympide. Stufe (Regionlrunde) Olympideklsse 8 Lösungen c 016 Aufgbenusschuss des Mthemtik-Olympiden e.v. www.mthemtik-olympiden.de. Alle Rechte vorbehlten. 56081 Lösung 10 Punkte Nehmen wir

Mehr

Nicht-Euklidische Geometrie (Weiss) WS Vorlesungsnotizen, Woche 4

Nicht-Euklidische Geometrie (Weiss) WS Vorlesungsnotizen, Woche 4 12.11.2015 Nicht-Euklidische Geometrie (Weiss) WS 2015-16 Vorlesungsnotizen, Woche 4 4.1. Die hyperbolische Ebene ls metrischer Rum Definition 4.1.1. Die hyperbolische Ebene ist H {x R 2 x 2 > 0} mit der

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Lösungshinweise zu den zusätzlichen Übungsaufgaben

Lösungshinweise zu den zusätzlichen Übungsaufgaben Lösungshinweise zu den zusätzlichen Übungsufgben Aufgbe Z.1 Als Gleichgewicht ergibt sich, mit Auszhlungsvektor 5, 5. Aufgbe Z. Spieler 1: Zentrlbnk mit reinen und diskreten Strtegien 0 und 4. Spieler

Mehr

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN Professur für VWL II Wolfgng Scherf Die Exmensklusur us der Volkswirtschftslehre Erschienen in: WISU 8-9/2000, S. 1163 1166. Fchbereich Wirtschftswissenschften Prof. Dr.

Mehr

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017

HM I Tutorium 13. Lucas Kunz. 2. Februar 2017 HM I Tutorium 3 Lucs Kunz. Ferur 07 Inhltsverzeichnis Theorie. Differentilgleichungen erster Ordnung..................... Linere DGL zweiter Ordnung..........................3 Uneigentliche Integrle.............................

Mehr