D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ),

Größe: px
Ab Seite anzeigen:

Download "D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ),"

Transkript

1 D-MATH Topologie FS 15 Theo Bühler Musterlösung a) Da (C n, d n ) kompakt ist, nimmt die stetige Funktion d n : C n C n [0, ), (x, y) d(x, y) ihr Maximum diam C n an. Ersetzen wir d n durch d n = d n / diam C n, so können wir annehmen, dass d n 1 gilt. Auf C definiere die Metrik d(x, y) := n 0 n d n (x n, y n ), was wegen der Annahme d n 1 absolut konvergiert. Dann stimmt die Produkttopologie auf C mit der von d induzierten Topologie überein (Serie 3, Aufgabe 4). In einem metrischen Raum ist Kompaktheit äquivalent zur Folgenkompaktheit. Sei x i = {x i } i N eine beliebige Folge in X und sei x i (n) := π n (x i ) die Projektion dieser Folge auf den n-ten Faktor. Also gibt es eine Teilfolge x i1 (k)(1) von x i (1), die in K 1 gegen einen Punkt a 1 konvergiert. Dann ist x i1 (k)() eine Folge in K und es gibt wiederum eine Teilfolge x i (k)() die in K gegen einen Grenzwert a konvergiert. Iterativ finden wir Teilfolgen x il (k), sodass x il (k)(n) in K n konvergiert für n l. Wir behaupten, dass x il (l) eine konvergente Teilfolge von x i ist und gegen (a 1, a,...) konvergiert. Tatsächlich ist x il (l)(n) nach den ersten n Elementen eine Teilfolge von x in(l)(n). Weil x in(l)(n) gegen a n konvergiert tut dies auch x il (l)(n). Aus der Konvergenz von x il (l)(n) für alle n folgt aus der Definition der Metrik d, dass x il (l) in K gegen (a 1, a,...) konvergiert. b) Sei C ein kompakter metrischer Raum. Weil C kompakt ist gibt es für jedes n 1 endlich viele Punkte x i X n, sodass { } U n := (x i ) : x i X n B 1 n eine Überdeckung von C ist. Die Menge n 1 X n ist eine abzählbare dichte Teilmenge von C, denn ist x C ein beliebiger Punkt und B ε (x) ein offener Ball mit Radius ε, dann muss es für 1 < ε mindestens einen Punkt y in X n n geben, sodass y B ε (x) und x B 1 (y) B ε (x). Insbesondere ist U := n n 1 U n eine abzählbare Umgebungsbasis von C. Also ist C separabel und zweitabzählbar. Bitte wenden!

2 . Wir starten wie angegeben und zeigen, dass jedes B B sich als Vereinigung höchstens κ Elementen aus B schreiben lässt. Da B eine Basis ist, gibt es eine Menge I(B ) B, so dass B = B. B I(B ) Setze B 0(B ) = {U B : U B für ein B I(B )} B und wähle für jedes U B 0(B ) ein B U I(B ) mit U B U. Für jedes x B gibt es dann ein B I(B ) mit x B, und somit ein U B 0(B ) mit x U B. Für B U folgt dann x U B U, und damit B = U B 0 (B ) B U wobei #{B U : U B 0(B )} #B 0(B ) #B κ. Für jede der κ Mengen B B ist I 0 (B ) = {B U : U B 0(B )} B eine Menge von höchstens κ Elementen und einerseits ist B 0 = I 0 (B ) B B B eine Basis und andererseits hat sie höchstens κ = κ Elemente. 3. a) Wir zeigen zunächst, dass die Mengen V f = {x X : f(x) 0} eine Basis bilden. Ist U offen und x U, dann gibt es ein stetiges f : X [0, 1] mit f(x) = 1 und f X U = 0, da X ein T 3 1 -Raum ist. Es ist dann x V f U. Für die Menge F der stetigen Funktionen f : X [0, 1] erhalten wir die Basis B = {V f : f F } und wir finden nach Aufgabe 4 eine Teilmenge F 0 F mit #F 0 κ so dass B 0 = {V f : f F 0 } ebenfalls eine Basis ist. Die Menge F 0 trennt Punkte von abgeschlossenen Mengen. Dies liegt daran, dass es für x X F mit abgeschlossenem F ein V f gibt mit x V f X F, d.h. f(x) > 0, und damit f(x) / {0} = f(f ). b) Sei F 0 die in a) gewählte Menge von Funktionen f : X I f = [0, 1]. Nach dem Tychonov-Diagonalensatz ist die durch F 0 gegebene Abbildung f : X f F 0 I f x (f(x)) f F0 ein Homöomorphismus aufs Bild f : X = f(x). Schliesslich ist I f = [0, 1] #F 0 wegen #F 0 κ homöomorph zu einem Unterraum von [0, 1] κ. Siehe nächstes Blatt!

3 c) Als Produkt von T 3 1 -Räumen ist [0, 1] κ ein T 3 1 -Raum (als kompakter Haus- dorffraum ist der Tychonov-Würfel sogar normal). Wähle eine abzählbare Basis B von [0, 1]. Dann kriegen wir eine Basis von [0, 1] κ durch Bilden von Produkten mit nur endlich vielen Faktoren aus B, die ungleich [0, 1] sind. Also ist w ([0, 1] κ ) κ. Andererseits wissen wir wegen b), dass es eine Einbettung des diskreten Raums X mit Kardinalität κ in [0, 1] κ gibt, also ist κ = w(x) auch eine untere Schranke für das Gewicht des Tychonov-Würfels. 4. a) Da S ein T 0 -Raum ist, ist auch das κ-fache Produkt S κ ein T 0 -Raum. Wie in Aufgabe 6 c) sieht man, dass w(s) = κ ist. b) Wählen wir eine Basis B von X mit Gewicht w(x) κ, so kriegen wir eine Familie F = {χ U : U B} von stetigen Funktionen X S. Diese Familie trennt Punkte und abgeschlossene Mengen, da X ein T 0 -Raum ist. Wir kriegen eine Abbildung χ: X S w(x), die nach dem Diagonalensatz ein Homöomorphismus aufs Bild ist. 5. Sei X zunächst ein total geordneter Raum, so dass jede Teilmenge von X ein Supremum und ein Infimum besitzt, seien a = inf X und b = sup X. Sei {U i } i I offene Überdeckung von X. Sei x 0 das Supremum derjenigen Punkte x X, für die es eine endliche Teilmenge J I gibt, so dass [a, x] j J U j. Zunächst gilt x 0 > a. Nehmen wir x 0 < b an. Dann liegt x 0 U i0 für ein i 0 I, also gibt es ein Intervall (c, d) U i0 mit x 0 (c, d). Wegen c < x 0, gibt es eine endliche Familie J mit [a, c] j J U j. Dann überdeckt aber eine endliche Familie von U i s das Intervall [a, d] (nimm die U j, j J, das U i0, und, falls nötig, noch ein U i1, welches d enthält) aber d > x 0 widerspricht der Definition von x 0. Es muss also x 0 = b gelten. Wähle eine Umgebung U i0 mit (c, x 0 ] U i0, finde eine endliche Überdeckung [a, c] j J U j, und schliesslich haben wir eine endliche Teilüberdeckung [a, b] = X U i0 j J U j. Wir haben also gezeigt, dass aus der Ordnungsvollständigkeit eines beliebigen Ordnungsvollständigen Raums X die Kompaktheit von [a, b] folgt. Wir beweisen die umgekehrte Richtung der Aussage. Sei A X eine beschränkte Menge. Nach Voraussetzung ist Ā kompakt. Also hat das Netz A X : a a Bitte wenden!

4 ein konvergentes Teilnetz und insbesondere existiert ein Grenzwert b Ā. Dieser Grenzwert ist gerade das Supremum von A. Die Existenz des Infimums folgt genau gleich, wobei wir die Menge A in diesem Fall durch die umgekehrte Ordnung richten. 6. a) In der Vorlesung wurde der Spezialfall für D = {y} bewiesen. Daher überdeckt U = {U V : U C offen, V y offen, U V W } die Menge C D. Da D kompakt ist, gibt es U 1 V 1,..., U n V n U mit D V 1 V n =: V und U := U 1 U n C ist so, dass U V W. b) Induktion. Die Aussage ist trivial für n = 1 und der Fall n = wurde in Teil a) behandelt. Nehmen wir an, die Aussage ist für n 1 Räume, n 3 bewiesen. Setze X = X 1 X n 1 und Y = X n sowie C = C 1 C n 1 und D = C n. Beachte, dass C nach dem Satz von Tychonov kompakt in X ist. Dann ist W C D offen, und nach Teil a) gibt es offene U C in X und V D in Y mit C D U V W. Per Induktionsannahme finden wir offene U 1 X 1,..., U n 1 X n 1 mit U U 1 U n 1 C und mit U n = V haben wir wie gewünscht. C 1 C n 1 C n U 1 U n 1 U n W, c) Sei B die Standardbasis der Produkttopologie von X = i I X i. Da W X offen ist, ist U = {B B : B C, B W } eine offene Überdeckung von C = i I C i, und, da C nach dem Satz von Tychonov kompakt ist, gibt es B 1,..., B n U mit C B 1 B n W. Für k = 1,..., n sei J k = {i I : π Xi (B k ) X i } die endliche Menge der echten Faktoren von B k. Seien X k = i J k X i und π k : X X k die Projektion (die eindeutige Abbildung, die durch die π Xi : X X i, i J k induziert wird). Beachte, dass für W k = π k (B k ) gilt, dass W k offen ist, und B k = π 1 k (W k). Weiter ist mit C k = π k (C) C π1 1 (C 1 ) πn 1 (C n ) B 1 B n W Nach Teil b) gibt es für C k = π k (C) und W k = π k (B k ) endlich viele offene Mengen U (k) i X i, sodass C k U (k) 1 U (k)... U (k) J k W k. Also gilt (bis auf Umordnen der Faktoren), π 1 k (C k) U (k) i X i B k i J k i/ J k Siehe nächstes Blatt!

5 und C π1 1 (C 1 ) πn 1 (C n ) n U (k) i X i i Jk i/ J k k=1 Insbesondere, wiederum bis auf Umordnen der Faktoren, C U i X i W. n B k W. k=1 i n k=1 J k i/ n k=1 J k Weil J k endlich ist für alle k ist auch der Schnitt n k=1 J k endlich. 7. Die Implikation a) = b) wurde in der Vorlesung bewiesen und b) = c ist trivial. Nehmen wir an, X sei ein nicht kompakter Raum. Der in der Anleitung beschriebene Raum (Y, τ Y ) ist sowohl T 1 als auch normal. Zunächst folgt aus i I F i =, dass X ein T 1 -Raum ist: Sind x y beide in X, dann ist y / {x} und x / {y}, und für y = finden wir ein F i mit x / F i, also x / { } F i. Weiter ist Y ein T 4 -Raum, denn jede Teilmenge von Y, die nicht enthält, ist offen: Sind F 1 und F abgeschlossen und disjunkt, dann sei / F 1, also ist F 1 offen und U 1 = F 1 und U = Y \ F 1 sind offene disjunkte Mengen mit F i U i. Jedes Element der Umgebungsbasis { } (F i1 F in ) von hat nichtleeren Schnitt mit X, also ist X dicht in Y. Wir zeigen nun, dass π Y nicht abgeschlossen sein kann. Die Menge F = D mit D = {(x, x) : x X} ist abgeschlossen. Wegen π Y (D) = X und X = Y müsste π Y (F ) = Y gelten, wenn π Y abgeschlossen wäre. Es gäbe dann ein x 0 X mit (x 0, ) F. Da (x 0, ) D ist, muss (U V ) D sein, für alle Umgebungen V von. Insbesondere ist für U = {x 0 } und V = { } F i der Schnitt D (U V ) nicht leer, d.h. x 0 F i für alle i. Dies widerspricht i I F i =.

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann

Etwas Topologie. Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Etwas Topologie Handout zur Vorlesung Semi-Riemannsche Geometrie, SS 2004 Dr. Bernd Ammann Literatur Abraham, Marsden, Foundations of Mechanics, Addison Wesley 1978, Seiten 3 17 Definition. Ein topologischer

Mehr

Erste topologische Eigenschaften: Zusammenhang und Kompaktheit

Erste topologische Eigenschaften: Zusammenhang und Kompaktheit Abschnitt 2 Erste topologische Eigenschaften: Zusammenhang und Kompaktheit Zusammenhang 2.1 Definition. Ein Raum X heißt zusammenhängend, wenn er außer X und Ø keine Teilmengen hat, die zugleich offen

Mehr

8 KAPITEL 1. GRUNDLAGEN

8 KAPITEL 1. GRUNDLAGEN 8 KAPITEL 1. GRUNDLAGEN Beweis. 1. Sei A X abgeschlossen, dann ist X \ A offen und jede offene Überdeckung von A lässt sich durch Hinzunahme von X \ A auf ganz X fortsetzen. Die Kompaktheit von X erlaubt

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen.

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen. Ergänzungen zu offenen und abgeschlossenen Mengen Definition Ist L Teilmenge eines topologischen Raums M, so heißt x L innerer Punkt von L, wenn es eine offene Umgebung von x gibt, die ganz in L liegt.

Mehr

Elemente der mengentheoretischen Topologie

Elemente der mengentheoretischen Topologie Elemente der mengentheoretischen Topologie Es hat sich herausgestellt, dass das Konzept des topologischen Raumes die geeignete Struktur darstellt für die in der Analysis fundamentalen Begriffe wie konvergente

Mehr

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e)

(c) (a) X ist abgeschlossen. X = A,wobeiderDurchschnittüberalleabgeschlossenenMengengebildet wird, die X enthalten. (d) (e) 27 15. Metrische Räume Mit Hilfe einer Norm können wir den Abstand x y zweier Punkte x, y messen. Eine Metrik ist eine Verallgemeinerung dieses Konzepts: 15.1. Metriken. Es sei M eine beliebige Menge.

Mehr

Topologie - Übungsblatt 1

Topologie - Übungsblatt 1 1 Topologie - Übungsblatt 1 1. Sei τ die cofinite Topologie auf einer Menge X. Man zeige: i) Ist X abzählbar, dann ist (X, τ) ein A 2 -Raum. ii) Ist X überabzählbar, dann ist (X, τ) kein A 1 -Raum. 2.

Mehr

1 Topologische und metrische Räume

1 Topologische und metrische Räume 1 Topologische und metrische Räume 1.1 Topologische Räume und stetige Abbildungen Eine Topologie τ auf einer Menge X ist ein System von Teilmengen von X, die offene Mengen genannt werden, mit: (a) und

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

Übungen zu Grundbegriffe der Topologie

Übungen zu Grundbegriffe der Topologie Übungen zu Grundbegriffe der Topologie A. Čap Wintersemester 2018 (1) Wiederholen Sie die Definition des Durchschnittes i I A i einer beliebigen Familie {A i : i I} von Mengen und zeigen Sie, dass für

Mehr

J.M. Sullivan, TU Berlin B: Metrische Räume Analysis II, WS 2008/09

J.M. Sullivan, TU Berlin B: Metrische Räume Analysis II, WS 2008/09 B. METRISCHE RÄUME B1. Definition Definition B1.1. Sei X eine Menge. Eine Funktion oder Abbildung d : X X R heißt dann eine Metrik auf X, falls für alle x, y, z X die folgenden (axiomatischen) Bedingungen

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Aufgabensammlung Grundbegriffe der Topologie

Aufgabensammlung Grundbegriffe der Topologie Aufgabensammlung Grundbegriffe der Topologie Günther Hörmann, Roland Steinbauer Die vorliegende Aufgabensammlung dient als Grundlage für die Übungen zu Grundbegriffe der Topologie, das die gleichnamige

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Aufgabe 5. Beweisen Sie: Ein kompakter Hausdorffraum, welcher dem ersten Abzählbarkeitsaxiom genügt, ist folgenkompakt. Lösung. Es sei X ein kompakter

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

Kompaktheit in topologischen Räumen

Kompaktheit in topologischen Räumen Kompaktheit in topologischen Räumen Joel Gotsch 21. Januar 2011 Inhaltsverzeichnis 1 Notation und Allgemeines 2 2 Definitionen 2 2.1 Allgemeine Definitionen..................... 2 2.2 Globale Kompaktheitseigenschaften...............

Mehr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr Übungen zur Topologie, G. Favi 20. März 2009 Blatt 4 Abgabe: 27. März 2008, 12:00 Uhr Aufgabe 1. (a) Auf der 2-Sphäre S 2 := {(x, y, z) R 3 x 2 + y 2 + z 2 = 1} R 3 betrachten wir folgende Äquivalenzrelation:

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer In diesem Vortrag werden die Eigenschaften von kompakten, metrischen Räumen vertieft. Unser Ziel ist es Techniken zu erlernen, um

Mehr

B A C H E L O R A R B E I T

B A C H E L O R A R B E I T B A C H E L O R A R B E I T Die Dimension von topologischen Räumen ausgeführt am Institut für Analysis & Scientific Computing der Technischen Universität Wien unter der Anleitung von Ao.Univ.Prof. Dipl.-Ing.

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR 0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen

Mehr

Einführung in die Topologie - Sommer Lösungen 4.

Einführung in die Topologie - Sommer Lösungen 4. Einführung in die Topologie - Sommer 2012 Lösungen 4. (1) Wir brauchen eine Vorbereitung (vgl. Abs. 2 der Angabe): Sei (x n ) eine Folge in X. Sei x ein Punkt, dessen Umgebungen unendlich viele Folgenglieder

Mehr

Kapitel 8 - Kompakte Räume

Kapitel 8 - Kompakte Räume Kapitel 8 - Kompakte Räume Ein Vortrag von Philipp Dittrich nach B.v.Querenburg: Mengentheoretische Topologie Inhalt 8.1 Definition Kompaktheit....................... 2 Beispiel - das Intervall (0,1).....................

Mehr

Analyis I -Metrische Räume - eine Einführung in die Topologie

Analyis I -Metrische Räume - eine Einführung in die Topologie Analyis I -Metrische Räume - eine Einführung in die Topologie E = E isolierter Punkte x 1 x 2 x 3 E ist abgeschlossen U ɛ (x) x innerer Punkt Ω Häufungspunkte Ω Metrik Metrische Räume Definition Sei X

Mehr

Grundbegriffe der Topologie. V. Bangert. (zur Vorlesung Differentialgeometrie, WS 12/13 )

Grundbegriffe der Topologie. V. Bangert. (zur Vorlesung Differentialgeometrie, WS 12/13 ) 01.10.2012 Grundbegriffe der Topologie V. Bangert (zur Vorlesung Differentialgeometrie, WS 12/13 ) Def. 0.1 Ein topologischer Raum ist eine Menge X zusammen mit einem System O von Teilmengen von X, das

Mehr

12 Biholomorphe Abbildungen

12 Biholomorphe Abbildungen 12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt

Mehr

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit

Kompaktheit und Überdeckungen. 1 Überdeckungskompaktheit Vortrag zum Proseminar zur Analysis, 17.05.2010 Min Ge, Niklas Fischer 1 Überdeckungskompaktheit Einleitung P T Q A R S U B (a) (b) Abbildung 1: Beispiele verschiedener Überdeckungen (1.1) Definition (Überdeckung)

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

2 Differenzierbare Mannigfaltigkeiten

2 Differenzierbare Mannigfaltigkeiten $Id: diff.tex,v 1.6 2014/05/12 09:25:07 hk Exp hk $ 2 Differenzierbare Mannigfaltigkeiten 2.1 Topologische Räume In der letzten Sitzung haben wir begonnen den Kompaktheitsbegriff in allgemeinen topologischen

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

Serie 2 Lösungsvorschläge

Serie 2 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 2 Lösungsvorschläge 1. Seien folgende Mengen gegeben: und für a, b R R := [, ] := R {, }, (a, ] := (a, ) { }, [, b) := (, b) { }. Wir nennen

Mehr

Vergleich und Erzeugung von Topologien und topologischen

Vergleich und Erzeugung von Topologien und topologischen KAPITEL 3 Vergleich und Erzeugung von Topologien und topologischen Räumen 3.1. Definition. Auf einer Menge X seien zwei Topologien τ und σ gegeben. Ist jede bezüglich σ offene Menge auch bezüglich τ offen,

Mehr

Kommutativität. De Morgansche Regeln

Kommutativität. De Morgansche Regeln 1. Formale Logik Proposition 1.1. Die logischen Elementarverknüpfungen gehorchen folgenden Äquivalenzen: (1.1) (1.2) p p p p p p Idempotenz (1.3) (1.4) p q q p p q q p Kommutativität (1.5) (1.6) (p q)

Mehr

Vorlesung Topologie. Dirk Kussin

Vorlesung Topologie. Dirk Kussin Vorlesung Topologie (Sommersemester 2008) Dirk Kussin Institut für Mathematik, Universität Paderborn, Germany E-mail address: dirk@math.upb.de Hinweis. Für Druckfehler wird keine Haftung übernommen. Inhaltsverzeichnis

Mehr

Beschränktheits- und Kompaktheitsbegriffe

Beschränktheits- und Kompaktheitsbegriffe Beschränktheits- und Kompaktheitsbegriffe Alexander Marcel Birx E-Mail: alexander_marcel.birx@stud.tu-darmstadt.de Fachbereich Mathematik, Technische Universität Darmstadt Inhaltsverzeichnis 1 Vorwort

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Kapitel 12. Topologische Grundlagen Topologische Grundbegriffe

Kapitel 12. Topologische Grundlagen Topologische Grundbegriffe Kapitel 12 Topologische Grundlagen 12.1 Topologische Grundbegriffe Wir wollen in diesem und in den nächsten Abschnitten die Konvergenztheorie, wie wir sie für metrische Räume entwickelt haben, verallgemeinern.

Mehr

Topologische Grundbegriffe in metrischen und topologischen

Topologische Grundbegriffe in metrischen und topologischen KAPITEL 1 Topologische Grundbegriffe in metrischen und topologischen Räumen Die topologischen Grundbegriffe offene Mengen, abgeschlossene Mengen, Inneres einer Menge und Abschließung einer Menge, Stetigkeit

Mehr

und induziert eine Abbildung f : βx βy durch pr h f = h. Da h für alle h C(Y, I) stetig ist ist pr h f und damit f stetig.

und induziert eine Abbildung f : βx βy durch pr h f = h. Da h für alle h C(Y, I) stetig ist ist pr h f und damit f stetig. Eine Kompaktifizierung (Y ϕ) eines topologischen Raumes X ist ein kompakter Raum K mit einer injektiven Abbildung ϕ : X K für die ϕ(x) dicht in K ist und ϕ als Abbildung X ϕ(x) ein Homöomorphismus ist.

Mehr

EINFÜHRUNG IN DIE TOPOLOGIE (SS 2014)

EINFÜHRUNG IN DIE TOPOLOGIE (SS 2014) EINFÜHRUNG IN DIE TOPOLOGIE (SS 2014) BERNHARD HANKE 7.4.14 1. Metrische Räume und topologische Räume Definition 1.1. Ein metrischer Raum ist ein Paar (X, d) bestehend aus einer Menge X und einer Abbildung

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Kompakte Mengen und Räume

Kompakte Mengen und Räume 1 Analysis I für Physiker WS 2005/06 Kompakte Mengen und Räume Seien (M, d) ein metrischer Raum und K M. Definition (i) K heißt kompakt, falls {x k } K = TF {x kj } {x k } : x kj x K. (ii) K heißt relativ

Mehr

Kapitel 5 KONVERGENZ

Kapitel 5 KONVERGENZ Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 3 D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler Lösung 3 Hinweise 1. Wählen Sie in der Definition der Konvergenz ε < 1 und verwenden Sie die Definition der diskreten Metrik. 2. Argumentieren

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Aufgabe 13 Wie üblich sei l 1 = {x : N K x n < } mit Norm x l 1 = x n und l = {x : N K sup n N x n < } mit x l = sup n N x n Für die Unterräume d

Mehr

Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 3: Metrische und polnische Räume

Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 3: Metrische und polnische Räume Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 3: Metrische und polnische Räume Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik Oktober/November 2017

Mehr

Proseminar. Grundbegriffe der Topologie

Proseminar. Grundbegriffe der Topologie Proseminar Grundbegriffe der Topologie WS 2004/05 M. Grosser Die folgenden vier Aufgaben dienen der Wiederholung mengentheoretischer Grundlagen. 1) Wie lauten die Definitonen von A i und A i? i I i I 2)

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn

Stetige Funktionen. Definition. Seien (X, d) und (Y, D) metrische Räume und f : X Y eine Abbildung. i) f heißt stetig in x 0 (x 0 D(f)), wenn Stetige Funktionen Eine zentrale Rolle in der Analysis spielen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume). Dabei sind i.a. nicht beliebige

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

1 Metrische Räume. In diesem Abschnitt wollen wir den Begriff des metrischen Raumes einführen und an einigen Beispielen illustrieren.

1 Metrische Räume. In diesem Abschnitt wollen wir den Begriff des metrischen Raumes einführen und an einigen Beispielen illustrieren. 1 Metrische Räume 1 Metrische Räume In diesem Abschnitt wollen wir den Begriff des metrischen Raumes einführen und an einigen Beispielen illustrieren. Definition und Beispiele (1.1) Definition (Metrischer

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.2 2010/05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

Die Hausdorff-Metrik und Limiten von Mengen

Die Hausdorff-Metrik und Limiten von Mengen Die Hausdorff-Metrik und Limiten von Mengen Jakob Reiffenstein Seminararbeit aus Analysis SS 2017 1 Inhaltsverzeichnis 1 Die Hausdorff-Metrik 3 2 Konvergenz in H(X) 6 3 Kompaktheit in H(X) 8 2 Zusammenfassung

Mehr

Übungsblatt 5. D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. 1. Berechnen Sie die Ableitung v f(x, y) der Funktion

Übungsblatt 5. D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. 1. Berechnen Sie die Ableitung v f(x, y) der Funktion D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler Übungsblatt 5 1. Berechnen Sie die Ableitung v f(x, y) der Funktion ( ) ( ) x f : R 2 R 2 x 3 1 + y, 2 y (1 + e x ) 1. entlang des Vektors

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Kapitel 3 Sätze der offenen Abbildung

Kapitel 3 Sätze der offenen Abbildung Kapitel 3 Sätze der offenen Abbildung Wir werden in diesem Abschnitt uns folgender Frage zuwenden: Wann ist ein Morphismus f: G H von topologischen Gruppen offen, d.h. wann gilt für eine offene Menge U

Mehr

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91

4.1 Grundlegende Konstruktionen Stetigkeit von Funktionen Eigenschaften stetiger Funktionen... 91 Kapitel 4 Funktionen und Stetigkeit In diesem Kapitel beginnen wir Funktionen f : R R systematisch zu untersuchen. Dazu bauen wir auf den Begriff des metrischen Raumes auf und erhalten offene und abgeschlossene

Mehr

Lösungen zu Übungsblatt 9

Lösungen zu Übungsblatt 9 Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da

Mehr

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume Inhaltsverzeichnis 6 Topologische Grundlagen 1 6.1 Normierte Räume................................ 1 6.2 Skalarprodukte................................. 2 6.3 Metrische Räume................................

Mehr

Hilfsmittel zur mengentheoretischen Topologie

Hilfsmittel zur mengentheoretischen Topologie Hilfsmittel zur mengentheoretischen Topologie Nicolas Ginoux Universität Regensburg - WS 2008/9 11. Oktober 2012 Das Zeichen *** signalisiert eine Feinheit, die beim ersten Lesen übergangen werden kann.

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

EINFÜHRUNG IN DIE TOPOLOGIE (SS 2012)

EINFÜHRUNG IN DIE TOPOLOGIE (SS 2012) EINFÜHRUNG IN DIE TOPOLOGIE (SS 2012) BERNHARD HANKE 16.4.12 1. Metrische Räume und topologische Räume Definition 1.1. Ein metrischer Raum ist ein Paar (X, d) bestehend aus einer Menge X und einer Abbildung

Mehr

Angewandte Funktionalanalysis

Angewandte Funktionalanalysis Springer-Lehrbuch Masterclass Angewandte Funktionalanalysis Funktionalanalysis, Sobolev-Räume und elliptische Differentialgleichungen Bearbeitet von Manfred Dobrowolski 1. Auflage 2005. Taschenbuch. XII,

Mehr

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0

D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang. Lösung - Serie 2. + A k = A c k Ac k 0 D-MATH Mass und Integral FS 2018 Prof. Dr. Urs Lang Lösung - Serie 2 Abgabetermin: Mittwoch, 07.03.2018 in die Fächli im HG F 28. Homepage der Vorlesung: https://metaphor.ethz.ch/x/2018/fs/401-2284-00l/

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Das Lebesgue-Maß im R p

Das Lebesgue-Maß im R p Das Lebesgue-Maß im R p Wir werden nun im R p ein metrisches äußeres Maß definieren, welches schließlich zum Lebesgue-Maß führen wird. Als erstes definieren wir das Volumen von Intervallen des R p. Seien

Mehr

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen 1 Einleitung Können Sie die folgenden Fragen beantworten? Sie sollten es auf jeden Fall versuchen. Dieser Fragenkatalog orientiert sich an den Themen der Vorlesung Analysis 1 aus dem Wintersemester 2008/09

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Blatt 5. , womit (U jk ) n k=0

Blatt 5. , womit (U jk ) n k=0 Übungen zur Topologie, G. Favi 7. März 009 Blatt 5 Abgabe: 3. April 008, 1:00 Uhr Aufgabe 1. Zeige, daÿ für alle n N die n-sphäre S n in R n+1 kompakt ist. Beweis. Wir schreiben d(x, y) := y x für die

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

4 Messbare Funktionen

4 Messbare Funktionen 4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

Mathematik I. Vorlesung 19. Metrische Räume

Mathematik I. Vorlesung 19. Metrische Räume Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 19 Metrische Räume Euklidische Räume besitzen nach Definition ein Skalarprodukt. Darauf aufbauend kann man einfach die Norm eines Vektors

Mehr

Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg. Analysis III

Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik Universität Regensburg. Analysis III Prof. Dr. H. Garcke, D. Depner WS 2009/10 NWF I - Mathematik 18.11.2009 Universität Regensburg Analysis III Verbesserung der Zusatzaufgabe von Übungsblatt 4 Zusatzaufgabe Wir definieren die Cantormenge

Mehr

( ) ( ) < b k, 1 k n} (2) < x k

( ) ( ) < b k, 1 k n} (2) < x k Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel

Mehr

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I

Aufgaben und Lösungen Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Aufgaben und en Ausarbeitung der Übungsstunde zur Vorlesung Analysis I Wintersemester 2008/2009 Übung 6 Einleitung Eventuell auftretende Fragen zum Übungsblatt sollen beantwortet werden. Dazu ist es erforderlich,

Mehr

Elemente der Topologie

Elemente der Topologie Vorlesungsmanuskript: Wintersemester 2009/10 Elemente der Topologie Wolfgang Arendt i Einleitung Das Wort Topologie setzt sich aus den griechischen Wörtern topos = Ort und logos = Lehre zusammen. In einem

Mehr

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.

(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist. 8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =

Mehr

Serie 1 Lösungsvorschläge

Serie 1 Lösungsvorschläge D-Math Mass und Integral FS 2014 Prof. Dr. D. A. Salamon Serie 1 Lösungsvorschläge 1. a) Seien A, B X zwei Mengen, so dass keine der Mengen A \ B, B \ A, A B und X \ (A B) leer ist. Bestimmen Sie die Kardinalität

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 1. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 013/1 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 1. Übungsblatt Aufgabe

Mehr

4. Trennung und Kompaktheit

4. Trennung und Kompaktheit 4. Trennung und Kompaktheit 27 4. Trennung und Kompaktheit In diesem Kapitel wollen wir zwei weitere wichtige und miteinander zusammenhängende Eigenschaften topologischer Räume untersuchen nämlich die

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Serie 5 Lösungsvorschläge

Serie 5 Lösungsvorschläge D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 5 Lösungsvorschläge 1. Finden Sie eine stetige Funktion f : [, ) R, so dass f nicht Lebesgue-integrierbar T ist, jedoch der Grenzwert lim f(t)

Mehr