s 1 Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2. Abb. 1: Schwerlinien vorgegeben

Größe: px
Ab Seite anzeigen:

Download "s 1 Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2. Abb. 1: Schwerlinien vorgegeben"

Transkript

1 Hans Walser, [ ] Kopunktale Geraden 1 Worum geht es? In der Schule lernt man, dass sich die drei Schwerlinien eines Dreieckes in einem Punkt schneiden, dem Schwerpunkt. Wir fragen nun umgekehrt: Wie findet man zu drei Geraden, die sich in einem Punkt schneiden (so genannte kopunktale Geraden) ein passendes Dreieck mit den drei gegebenen Geraden als Schwerlinien? Analoge Frage für weitere spezielle Punkte im Dreieck. Die Lösungen sind immer nur bis auf Ähnlichkeit machbar. Die Lösungen basieren auf Schließungsfiguren und lassen Verallgemeinerungen zu. 2 Schwerpunkt und Schwerlinien Gegeben sind drei Geraden s 0, s 1, s 2 mit einem gemeinsamen Schnittpunkt S (Abb. 1). Gesucht ist ein passendes Dreieck A 0 A 1 A 2. s 2 s 0 S s 1 Abb. 1: Schwerlinien vorgegeben Wir wählen den Punkt A 0 auf s 0 und ergänzen zum Parallelogramm A 0 B 2 A 1 S gemäß Abbildung 2.

2 Hans Walser: Kopunktale Geraden 2 / 14 s 2 s 0 S A 0 A 1 B 2 s 1 Abb. 2: Parallelogramm einpassen Nun fügen wir ein zweites und ein drittes Parallelogramm gemäß Abbildung 3 ein. Wir erhalten eine Schließungsfigur. Das Dreieck A 0 A 1 A 2 löst unser Problem, ebenso das Dreieck B 0 B 1 B 2. Der Nachweis ergibt sich dadurch, dass sich die Diagonalen im Parallelogramm gegenseitig halbieren. A 2 s 2 B 1 B 0 s 0 S A 0 A 1 B 2 s 1 Abb. 3: Lösungen

3 Hans Walser: Kopunktale Geraden 3 / 14 3 Höhen und Mittelsenkrechte 3.1 Höhen Wir wählen den Punkt A 0 auf h 0 (Abb. 4) und fällen das Lot auf h 2. Der Schnittpunkt der Lotgeraden mit h 1 ist A 1. h 2 h 0 A 0 H A 1 Abb. 4: Höhen gegeben Entsprechend fahren wir weiter und erhalten eine Schließungsfigur, welche das Problem löst (Abb. 5). h 2 h 1 A 2 h 0 A 0 H A 1 h 1 Abb. 5: Lösung

4 Hans Walser: Kopunktale Geraden 4 / Mittelsenkrechte Mittelsenkrechte und Mittelsenkrechtenschnittpunkt eines Dreieckes sind zugleich Höhen und Höhenschnittpunkt im zugehörigen Kantenmittendreieck. Wir konstruieren daher zunächst analog zum Vorgehen in der Abbildung 5 das Kantenmittendreieck M 0 M 1 M 2 und ergänzen dieses zum Dreieck (Abb. 6). A 1 m 2 M 2 m 0 M A 0 0 M M 1 m 1 4 Winkelhalbierende Abb. 6: Mittelsenkrechte Dazu brauchte ich etwas Rechnung. An den Ecken A i, i = 0,1,2 haben wir die entsprechenden Dreieckwinkel α i. Weiter führen wir die drei Winkel!α i gemäß Abbildung 7 ein. A 2 w 2 A w 0 A 0 A 1 w 1 Abb. 7: Bezeichnungen

5 Hans Walser: Kopunktale Geraden 5 / 14 Mit diesen Bezeichnungen ist:!α i = π α i+1 2 α i+2, Indizes modulo 3 2 Wegen α 0 + α 1 + α 2 = π ergibt sich:!α i = π π 2 α i ( 2 ) = π 2 + α i 2 Somit ist: α i 2 =!α i π 2 Daher ergibt sich folgende Konstruktion: Wir subtrahieren von!α 0 einen rechten Winkel und erhalten so α 0 2. Diesen Winkel tragen wir in einem auf w 0 gewählten Punkt A 0 ab (Abb. 8). w w 0 2 A 0 2 Abb. 8: Halber Dreieckswinkel Damit können wir A 1 konstruieren und durch Weiterspiegeln A 2 (Abb. 9). Wir haben erneut eine Schließungsfigur. w 1

6 Hans Walser: Kopunktale Geraden 6 / 14 w A 2 w 0 A 0 2 A 1 2 w 1 5 Verallgemeinerungen Abb. 9: Konstruktion des Dreieckes 5.1 Schließungsfigur mit Parallelogrammen Das entspricht der Lösung bei drei kopunktalen Geraden, welche Schwerlinien werden sollen Vier kopunktale Geraden Mit vier kopunktalen Geraden erhalten wir keine Schließungsfigur, sondern eine Spirale (Abb. 10). In welchen Sonderfällen gibt es trotzdem eine Schließungsfigur? Abb. 10: Spirale bei vier kopunktalen Geraden Fünf kopunktale Geraden Bei fünf kopunktalen Geraden ergibt sich eine Schließungsfigur (Abb. 11a).

7 Hans Walser: Kopunktale Geraden 7 / 14 Abb. 11a: Schließungsfigur Für den Beweis der Schließungseigenschaft verwenden wir die Bezeichnungen der Abbildung 11b. a a 4 a 2 4 a 3 a3 a a 1 a 0 a 4 2 a 2 a a 1 a 1 1 a 0 Abb. 11b: Bezeichnungen Wir verwenden den Sinussatz in den halben Parallelogrammen. Zunächst ist: a 1 = a 0 sin ϕ 0 sin ϕ 1 a 1 = sin ( ϕ 0 ) a 0 sin ϕ 1

8 Hans Walser: Kopunktale Geraden 8 / 14 Analog finden wir: a 1 = sin ( ϕ 0 ) a 0, a 2 = sin ( ϕ 2 ) a 1, a 3 = sin ( ϕ 4 ) a 2, a 4 = sin ( ϕ 1) a 3, a 5 = sin ( ϕ 3) a 4 sin ϕ 1 sin ϕ 3 sin ϕ 0 sin ϕ 2 sin ϕ 4 Man beachte den Paritätssprung nach der ersten halben Runde. Dieser Paritätssprung tritt immer bei einer ungeraden Zahl von Geraden auf. Nun können wir einsetzen und kürzen: a 5 = sin ( ϕ 3) sin ϕ 4 sin ϕ 1 sin ϕ 2 sin ϕ 4 sin ϕ 0 sin ϕ 2 sin ϕ 3 a 0 = a 0 sin ϕ 0 sin ϕ 1 Der Paritätssprung erlaubt das vollständige Kürzen. Wegen a 5 = a 0 schließt sich die Figur. Man kann die Figur mit weiteren Parallelogrammen zu einer schönen Figur ergänzen (Abb. 12). Abb. 12: Ergänzung mit weiteren Parallelogrammen

9 Hans Walser: Kopunktale Geraden 9 / 14 Die nächste Runde von Parallelogrammen geht nach innen (Abb. 13). Abb. 13: Weitere Parallelogramme Und schließlich schließt sich die Figur (Abb. 14). Abb. 14: Schließungsfigur

10 Hans Walser: Kopunktale Geraden 10 / Sechs kopunktale Geraden Bei sechs kopunktalen Geraden ergibt sich wieder eine Spirale (Abb. 15). Abb. 15: Sechs kopunktale Geraden Sieben kopunktale Geraden Bei sieben kopunktalen Geraden ergibt sich wieder eine Schließungsfigur (Abb. 16), die wir mit weiteren Parallelogrammen ergänzen können (Abb. 17). Abb. 16: Sieben kopunktale Geraden Abb. 17: Ergänzung mit Parallelogrammen

11 Hans Walser: Kopunktale Geraden 11 / Paritätsproblem Offenbar gibt es bei einer ungeraden Anzahl von Geraden eine Schließungsfigur, bei einer Geraden Anzahl eine Spirale. 5.2 Schließungsfigur mit Orthogonaltrajektorien Es ergibt sich wieder der Paritätsunterschied Gerade Anzahl kopunktaler Geraden Wir erhalten im Regelfall eine Spirale (Abb. 18). Abb. 18: Spirale

12 Hans Walser: Kopunktale Geraden 12 / Ungerade Anzahl kopunktaler Geraden Nun ergibt sich eine Schließungsfigur. Der Beweis kann mit Trigonometrie erbracht werden (Walser 2011, S. 32, 33, 70-72). Abb. 19: Schließungsfigur 5.3 Schließungsfiguren mit Spiegelungen Wir beginnen mit einer Geraden mit einem beliebigen Winkel zu einer der drei vorgegebenen kopunktalen Geraden und spiegeln dann fortlaufend an den kopunktalen Geraden. Es zeigt sich wiederum eine Paritätsunterscheidung Ungerade Anzahl Geraden Wir haben eine Schließungsfigur mit einer Periodenlänge, die doppelt so groß wie die Anzahl der Geraden ist. Die Abbildung 20 zeigt die Situation bei drei Geraden. Abb. 20: Drei Geraden

13 Hans Walser: Kopunktale Geraden 13 / 14 Die Schließungseigenschaft ergibt sich daraus, dass die sukzessive Spiegelung an einer ungeraden Anzahl kopunktaler Geraden auf eine einzige Geradenspiegelung reduziert werden kann. Zweimalige Anwendung dieser Abbildung ist dann die Identität. Die Figur hat einen Inkreis (Abb. 21). Abb. 21: Inkreis Gerade Anzahl Geraden Die sukzessive Spiegelung an einer geraden Anzahl kopunktaler Geraden ist eine Drehung um den gemeinsamen Schnittpunkt. Der Drehwinkel ist das Doppelte der Summe von Schnittwinkeln aufeinanderfolgender Geradenpaare. Falls der Drehwinkel in einem rationalen Verhältnis zum vollen Winkel steht, haben wir eine Schließungsfigur, sonst nicht. Im Regelfall also nicht. Die Abbildung 22 zeigt den einfachsten Fall mit zwei Geraden. Die Figur hat einen Inkreis. Abb. 220:Schließungsfigur?

14 Hans Walser: Kopunktale Geraden 14 / 14 Literatur Walser, Hans (2011): Geometrische Miniaturen. Figuren Muster Symmetrien. Leipzig. EAGLE, Edition am Gutenbergplatz. ISBN

Abb. 1: Kiepert-Hyperbel

Abb. 1: Kiepert-Hyperbel Hans Walser, [20150124] Kiepert-Hyperbel 1 Die Kiepert-Hyperbel Der Kegelschnitt durch die drei Eckpunkte eines Dreieckes sowie dessen Schwerpunkt und Höhenschnittpunt ist immer eine gleichseitige Hyperbel

Mehr

n x n y n Tab.1: Zwei Beispiele

n x n y n Tab.1: Zwei Beispiele Hans Walser, [0404] Konvergente Fibonacci-Folgen Worum geht es? Die klassische Fibonacci-Folge,,,, 5, 8,,,... ist divergent. Wir untersuchen Beispiele von konvergenten Folgen mit der Rekursion: a n = pa

Mehr

, T 4 = = 1, T 2 = , T 3 T 1 (1) 3 Determinanten Die Tabelle 1 zeigt die ersten Determinanten der Matrizen T n

, T 4 = = 1, T 2 = , T 3 T 1 (1) 3 Determinanten Die Tabelle 1 zeigt die ersten Determinanten der Matrizen T n Hans Walser, [20181104] Hinkende Parität 1 Worum geht es? Es wird ein Beispiel mit hinkender Symmetrie besprochen. Auflistung von Daten. Der Hintergrund ist eine Verallgemeinerung der Fibonacci-Folge und

Mehr

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:

In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates: Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot

Mehr

a) b) Abb. 1: Rechtwinklig gleichschenkliges Dreieck und Wurzel-2-Dreieck

a) b) Abb. 1: Rechtwinklig gleichschenkliges Dreieck und Wurzel-2-Dreieck Hans Walser, [09030] Wurzel--Dreieck Anregung: Horst Steibl, Braunschweig Worum geht es? Das rechtwinklig gleichschenklige Dreieck (Abb. a) hat das Seitenverhältnis ::. Wir vertauschen nun die beiden Längen

Mehr

Abb. 1: Konstruktionsfolge

Abb. 1: Konstruktionsfolge Hans Walser, [20180501] DIN-Format, Goldener Schnitt und gleichseitiges Dreieck 1 Worum geht es? Die klassische Konstruktion eines Rechtecks im DIN-Format (Walser 2013b) wird iteriert und führt zum gleichseitigen

Mehr

Wir zeigen, dass zu einem gegebenen Dreieck alle Delta-Kurven denselben Umfang haben.

Wir zeigen, dass zu einem gegebenen Dreieck alle Delta-Kurven denselben Umfang haben. Hans Walser, [20160201] Delta-Kurven-Umfang Anregung: Renato Pandi 1 Worum geht es Delta-Kurven sind geschlossene Kurven, welche in einem gleichseitigen Dreieck bei Drehungen einen Zwangslauf machen, indem

Mehr

Zum Einstieg. Mittelsenkrechte

Zum Einstieg. Mittelsenkrechte Zum Einstieg Mittelsenkrechte 1. Zeichne einen Kreis um A mit einem Radius r, der größer ist, als die Länge der halben Strecke AB. 2. Zeichne einen Kreis um B mit dem gleichen Radius. 3. Die Gerade durch

Mehr

Nun fügen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2).

Nun fügen wir auf beiden Seiten des gleichseitigen Dreieckes je ein gleichschenkliges Dreieck an (Abb. 2). Hans Walser, [20160521] Gigampfi 0 Worum geht es? Es werden zwei Gigampfi-Probleme mit invarianten Winkeln vorgestellt. 1 Beispiel 1 1.1 Das Problem An der Spitze eines gleichseitigen Dreiecks bringen

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen

MB1 LU 20, 21,23,24 Kongruenzabbildungen MB1 LU 20, 21,23,24 Kongruenzabbildungen Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung, die

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $

Mathematische Probleme, SS 2015 Montag $Id: dreieck.tex,v /04/27 13:26:30 hk Exp $ $Id: dreieck.tex,v 1.17 2015/04/27 13:26:30 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen das die drei Mittelsenkrechten eines Dreiecks = sich

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Rückblick. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Rückblick Stefan Witzel Outline Grundlagen, Axiome Euklid I Bewegungen Verhältnisse, Ähnlichkeiten Kreise Fundamentale Objekte und Eigenschaften

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 203 Zusammensetzung von Geradenspiegelungen Symmetriegruppen Hans Walser: Modul 203, Zusammensetzung von Geradenspiegelungen. Symmetriegruppen ii Inhalt

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Repetition Begriffe Geometrie. 14. Juni 2012

Repetition Begriffe Geometrie. 14. Juni 2012 Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte

Mehr

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $

Mathematische Probleme, SS 2019 Montag 6.5. $Id: dreieck.tex,v /05/07 10:51:36 hk Exp $ $Id: dreieck.tex,v 1.61 019/05/07 10:51:36 hk Exp $ 1 Dreiecke 1.7 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks

Mehr

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: dreieck.tex,v /04/29 12:45:52 hk Exp $ $Id: dreieck.tex,v 1.26 2016/04/29 12:45:52 hk Exp $ 1 Dreiecke 1.6 Einige spezielle Punkte im Dreieck Wir beschäftigen uns weiterhin mit den speziellen Punkten eines Dreiecks und haben in der letzten

Mehr

2.5. Aufgaben zu Dreieckskonstruktionen

2.5. Aufgaben zu Dreieckskonstruktionen 2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere

Mehr

Hans Walser, [ ], [ ], [ b] Zerlegungsgleichheit

Hans Walser, [ ], [ ], [ b] Zerlegungsgleichheit Hans Walser, [20130516], [20130520], [20130525b] Zerlegungsgleichheit 1 Worum es geht In der Ebene sind flächengleiche Polygone immer auch zerlegungsgleich. Wie finden wir bei Dreiecken und Rechtecken

Mehr

Winkelteilung 1 Worum geht es? 2 Mit Zirkel und Lineal 3 Winkeldrittelung 3.1 Konstruktion einer Kurve

Winkelteilung 1 Worum geht es? 2 Mit Zirkel und Lineal 3 Winkeldrittelung 3.1 Konstruktion einer Kurve Hans Walser, [208084] Winkelteilung Anregung: Jo Niemeyer, Berlin Worum geht es? Es wird eine Methode besprochen, einen Winkel in eine ungerade Anzahl gleicher Teile zu unterteilen. 2 Mit Zirkel und Lineal

Mehr

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt

MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt MB1 LU 20, 21,23,24 Kongruenzabbildungen Ausgefüllt Definitionen: 1. Kongruenz: Zwei Figuren, die sich beim Aufeinanderlegen decken, heißen deckungsgleich oder kongruent. 2. Kongruenzabbildung: Eine Abbildung,

Mehr

2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1.

2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1. Hans Walser, [20170526] Kreispackungen Anregung: Heinz Klaus Strick, Leverkusen. Siehe auch (Strick 2017, S. 269f). 1 Ausgangslage Wir arbeiten mit zwei Kreisscharen (Abb. 1). Abb. 1: Zwei Kreisscharen

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr.

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck Überraschung? Haus der Vierecke. Dr. Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 40 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck Überraschung? 2 / 40 Wir betrachten nur

Mehr

Geometrie Modul 4b WS 2015/16 Mi HS 1

Geometrie Modul 4b WS 2015/16 Mi HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Hans Walser. Die allgemeine Fibonacci-Folge

Hans Walser. Die allgemeine Fibonacci-Folge Hans Walser Die allgemeine Fibonacci-Folge Hans Walser: Die allgemeine Fibonacci-Folge ii Inhalt Die Rekursion... Heuristischer Hintergrund... 3 Formel von Binet... 4 Übersicht... 5 Sonderfälle...3 6 Beispiele...3

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

Unterrichtsreihe zur Parabel

Unterrichtsreihe zur Parabel Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis

Mehr

Hans Walser Schnittpunkte

Hans Walser Schnittpunkte Hans Walser Schnittpunkte 101-200 Die Bildsequenzen sind im Sinne einer minimal art als Bilder ohne Worte konzipiert. Dabei wurde folgende grafische Systematik verwendet: Ausgangspunkt Folgepunkt Schnittpunkt

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

VI.0 Vorbemerkungen S A. Bereitstellung von notwendigem Handwerkszeug:

VI.0 Vorbemerkungen S A. Bereitstellung von notwendigem Handwerkszeug: VI.0 Vorbemerkungen S. 160 161 A. Bereitstellung von notwendigem Handwerkszeug: Punktmenge P = {A, B, P, Q...}, Geradenmenge G = {a, b, g, h,...} P g (bedeutet P liegt auf g) Geraden der Anschauungsebene:

Mehr

1.1 Sonderfall Quadrat Wir halbieren die Seiten eines Quadrates und verbinden gemäß Abbildung 1. Abb. 1: Unterteilung eines Quadrates

1.1 Sonderfall Quadrat Wir halbieren die Seiten eines Quadrates und verbinden gemäß Abbildung 1. Abb. 1: Unterteilung eines Quadrates Hans Walser, [20111220a] Rechtecksunterteilung Anregung: F. E., V. Ein Rechteck wird in dazu ähnliche Rechtecke unterteilt. Neben dem Quadrat gibt das DIN-Rechteck einige schöne Beispiele her. Auch die

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 4.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 4.2 Inhaltsverzeichnis Geometrie 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen 3 Längen-,

Mehr

Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM September 2016 Saarbrücken

Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM September 2016 Saarbrücken Hans Walser Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM 9. - 11. September 2016 Saarbrücken Zusammenfassung: Analog zum Reuleaux-Dreieck, das sich in verschiedenen Positionen ins immer gleiche Quadrat

Mehr

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $

Mathematische Probleme, SS 2015 Donnerstag $Id: dreieck.tex,v /04/23 18:14:20 hk Exp $ $Id: dreieck.tex,v 1.16 015/04/3 18:14:0 hk Exp $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck m Ende der letzten Sitzung hatten wir gezeigt das die drei Seitenhalbierenden eines Dreiecks sich immer

Mehr

a) b) Abb. 2: Verkleinertes Fünfeck

a) b) Abb. 2: Verkleinertes Fünfeck Hans Walser, [20170828], [20181120] Halbregulärer Pflasterstein Anregungen: Heinz Klaus Strick, Leverkusen; Boris Odehnal, Wien 1 Worum geht es? Mit dem regelmäßigen Fünfeck lässt sich die Ebene nicht

Mehr

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck. Haus der Vierecke. Dr. Elke Warmuth. Sommersemester 2018

Konvexes Viereck Trapez Drachenviereck Parallelogramm Sehnenviereck Tangentenviereck. Haus der Vierecke. Dr. Elke Warmuth. Sommersemester 2018 Haus der Vierecke Dr. Elke Warmuth Sommersemester 2018 1 / 39 Konvexes Viereck Trapez Drachenviereck Parallelogramm Rhombus Rechteck Sehnenviereck Tangentenviereck 2 / 39 Wir betrachten nur konvexe Vierecke:

Mehr

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen.

Die Kapitel 1 und 2.1 haben wir im Jahr 2012 behandelt. Im Zirkel am haben wir mit Kapitel 2.2 begonnen. Das vorliegende Skript beschäftigt sich mit dem Thema Elementargeometrie. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft(MSG) im Schuljahr 2012/2013. Die vorliegende

Mehr

Hans Walser, [ a] Pentagramma mirificum Anregung: [Heinrich 2010]

Hans Walser, [ a] Pentagramma mirificum Anregung: [Heinrich 2010] Hans Walser, [011019a] Pentagramma mirificum Anregung: [Heinrich 010] 1 Worum es geht Ein Pentagramma mirificum ist ein sphärisches Pentagramm mit rechten Winkeln an den Spitzen. Die Abbildung zeigt ein

Mehr

1 Zahlen und Funktionen

1 Zahlen und Funktionen 1 Zahlen und Funktionen 1.1 Variablen Variablen sind Platzhalter für Zahlen aus einer vorgegebenen Grundmenge. Bsp.: a IN, b Z oder x QI Betrag einer Variablen a falls a 0 a = Bsp.: 7 = 7; -5 = -(-5) =

Mehr

Magische Kreise 1 Die Probleme 1.1 Drei Kreise Abb. 1: Drei Kreise

Magische Kreise 1 Die Probleme 1.1 Drei Kreise Abb. 1: Drei Kreise Hans Walser, [20050829a], [20171103] Magische Kreise 1 Die Probleme 1.1 Drei Kreise In die quadratischen Felder sind die Zahlen 1 bis 6 so einzusetzen, dass auf jedem Kreis die Summe gleich ist. Abb. 1:

Mehr

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014

Examen Kurzfragen (sortiert) VI. Dreiecke. 24. Juni 2014 Examen Kurzfragen (sortiert) VI. Dreiecke 24. Juni 2014 VI. Dreiecke Frage 1 Wie werden im rechtwinkligen Dreieck die beiden Seiten genannt, die dem rechten Winkel anliegen? VI. Dreiecke Frage 1 Wie werden

Mehr

( 2 ) 2 π 1 4 π = 1 2 = A Dreieck

( 2 ) 2 π 1 4 π = 1 2 = A Dreieck Hans Walser, [20130407] Die Möndchen von Hörhausen Ausarbeitung einer Idee von R. L. 1 Das Möndchen Der Hypotenuse eines rechtwinklig gleichschenkligen Dreiecks setzen wir gemäß Abbildung 1 ein Möndchen

Mehr

Gittergeometrie und pythagoreische Dreiecke

Gittergeometrie und pythagoreische Dreiecke Alfred Hoehn und Hans Walser Gittergeometrie und pythagoreische Dreiecke Dieser Artikel wurde von der Praxis der Mathematik zur Publikation angenommen und erscheint demnächst. Kurzfassung Werden in einem

Mehr

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $

1 Dreiecke. 1.6 Ähnliche Dreiecke. Mathematische Probleme, SS 2019 Donnerstag 2.5. $Id: dreieck.tex,v /05/03 14:05:29 hk Exp $ $Id: dreieck.tex,v 1.60 2019/05/03 14:05:29 hk Exp $ 1 Dreiecke 1.6 Ähnliche Dreiecke Wir hatten zwei Dreiecke kongruent genannt wenn in ihnen entsprechende Seiten jeweils dieselbe Länge haben und dann

Mehr

Symmetrien erzeugen Muster und Zerlegungen Stephan Rosebrock

Symmetrien erzeugen Muster und Zerlegungen Stephan Rosebrock Symmetrien erzeugen Zerlegungen S. Rosebrock Seite 1 Symmetrien erzeugen Muster und Zerlegungen Stephan Rosebrock Zusätzliches Material zum Artikel in MU Auf dem Foto sieht man zwei im 45 Grad Winkel zueinander

Mehr

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6

2 Dreiecke. 2.3 Einige spezielle Punkte im Dreieck. Mathematische Probleme, SS 2017 Donnerstag 15.6 $Id: dreieck.tex,v 1.35 017/06/15 13:19:44 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck In diesem Abschnitt wollen wir die sogenannten speziellen Punkte im Dreieck, also den Schwerpunkt, die

Mehr

Konstruktionen am Dreieck

Konstruktionen am Dreieck Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln

Mehr

Die Hyperbel als Kreis

Die Hyperbel als Kreis Kapitel 6 Die Hyperbel als Kreis Wir haben uns im vorigen Kapitel mit der von der Wellenausbreitung nahegelegten Spiegelungskonstruktion und dem Lichteck (Abb. 4.8, 5.1) auseinandergesetzt. Diese Konstruktion

Mehr

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.

Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)

Mehr

2.6. Aufgaben zu Kongruenzabbildungen

2.6. Aufgaben zu Kongruenzabbildungen Aufgabe.6. Aufgaben zu Kongruenzabbildungen Gegeben sind die Dreiecke ABC mit A(0 ), B( 0) und C(3 0) sowie A B C mit A ( ), B (3 ) und C ( ). Beschreibe die Abbildung, die das Dreieck ABC auf das Dreieck

Mehr

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene

SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 202 Isometrien Lernumgebung Hans Walser: Modul 202, Isometrien. Lernumgebung ii Inhalt 1 Translationssymmetrie im lltag?... 1 2 Symmetrien einer Funktion...

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe 1 Modul 05 Schnecken und Spiralen Lernumgebung Hans Walser: Modul 05, Schnecken und Spiralen. Lernumgebung ii Inhalt 1 Spiralen in der Umwelt... 1 Archimedische

Mehr

Mathematik für die Sekundarstufe 1

Mathematik für die Sekundarstufe 1 Hans Walser Mathematik für die Sekundarstufe Modul 202 Isometrien Hans Walser: Modul 202, Isometrien ii Inhalt Was sind Isometrien?.... Fragebogen....2 Definition... 2 2 Klassifizierung der Isometrien...

Mehr

Der Inkreis Hans Walser Tag der Mathematik 9. Februar 2017 Karl-Franzens-Universität Graz

Der Inkreis Hans Walser Tag der Mathematik 9. Februar 2017 Karl-Franzens-Universität Graz Der Inkreis Hans Walser Tag der Mathematik 9. Februar 2017 Karl-Franzens-Universität Graz Zusammenfassung: Mit einfachen geometrischen und mechanischen Modellen und/oder dynamischer Geometriesoftware lassen

Mehr

Ein modularer Ring mit 11 Ecken

Ein modularer Ring mit 11 Ecken www.mathegami.de September 2017 Ein modularer Ring mit 11 Ecken Michael Schmitz In [2], [3] und [4] haben wir bereits verschiedene regelmäßige n-ecke aus Modulen zusammengesetzt. Dazu kam die Anregung

Mehr

a) b) Abb. 1: Die klassische Aufgabe a) b) Abb. 2: Umkehrung

a) b) Abb. 1: Die klassische Aufgabe a) b) Abb. 2: Umkehrung Hans Walser, [20180528] Sehwinkel bei Kegelschnitten Anregung: N. Th.-Sch., V. 1 Wie das Problem entstand Eine klassische Aufgabe im Abiturtraining geht so: Gegeben sind eine Punkt und eine Parabel (Abb.

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Gruppen Eine Menge G von Bijektionen X X ist eine Gruppe, wenn 1. die Identität id: X X in G liegt, 2. für

Mehr

4.18 Buch IV der Elemente

4.18 Buch IV der Elemente 4.18 Buch IV der Elemente Buch IV behandelt die folgenden Konstruktionsaufgaben: Buch IV, Einem Kreis ein Dreieck mit vorgegebenen Winkeln einschreiben. Buch IV, 3 Einem Kreis ein Dreieck mit vorgegebenen

Mehr

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse. Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck

Mehr

Hans Walser, [ ] Affensattel 1 Worum geht es? Mit Hilfe des Affensattels werden Raumfüller konstruiert. 2 Der Affensattel Die durch

Hans Walser, [ ] Affensattel 1 Worum geht es? Mit Hilfe des Affensattels werden Raumfüller konstruiert. 2 Der Affensattel Die durch Hans Walser, [20180212] Affensattel 1 Worum geht es? Mit Hilfe des Affensattels werden Raumfüller konstruiert. 2 Der Affensattel Die durch z = x 3 3xy 2 (1) beschriebene Fläche wird als Affensattel bezeichnet

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Gruppen Eine Menge G von Bijektionen X X ist eine Gruppe, wenn 1. die Identität id: X X in G liegt, 2. für

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck

Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck Hans Walser, [20040416a] Pythagoreische Rechtecke 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Wir starten mit einem beliebigen rechtwinkligen Dreieck in der üblichen Beschriftung. Startdreieck

Mehr

Modul 206 Regelmäßige Vielecke!

Modul 206 Regelmäßige Vielecke! Modul 206 Regelmäßige Vielecke! Regelmäßige Vielecke In- und Umkreise Gleichseitiges Dreieck h = 3 2 s s h r r s r = 2 3 h = 3 3 s ρ = 1 3 h = 3 6 s s A = 3 4 s2 Gleichseitiges Dreieck Gleichseitiges Dreieck

Mehr

Konstruktion von Zahlen

Konstruktion von Zahlen Universität Bielefeld Elementare Geometrie Sommersemester 2018 Konstruktion von Zahlen Stefan Witzel Rechnen durch Konstruktion Wir haben gesehen, wie man mit Konstruktionen Rechnungen durchführen kann.

Mehr

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004

Klausur zum Modul 2 im SS 2004 und Klausur zur Einführung in die Geometrie im SS 2004 Klausur zum Modul im SS 004 und Klausur zur Einführung in die Geometrie im SS 004 PO neu PO alt Name, Vorname... Matr.Nr.... Semester-nzahl im SS 004:... Studiengang G/H/R... Tutor/in:... ufg.1 ufg, ufg.3

Mehr

mentor Lernhilfe: Mathematik 7. Klasse Baumann

mentor Lernhilfe: Mathematik 7. Klasse Baumann mentor Lernhilfen mentor Lernhilfe: Mathematik 7. Klasse Geometrie: Achsen- und Punktspiegelung, Drehung, Verschiebung, Winkelgesetze von Rolf Baumann 1. Auflage mentor Lernhilfe: Mathematik 7. Klasse

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke

Kapitel 5: Dreieckslehre. 5.1 Bedeutung der Dreiecke edeutung+winkelsumme 1 Kapitel 5: Dreieckslehre 5.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke

Mehr

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1

Landeswettbewerb Mathematik Baden-Württemberg. Runde 1 2006 Runde 1 Aufgabe 1 Die Ziffern von 1 bis 5 sollen so in einer Reihe angeordnet werden, dass jedes Paar benachbarter Ziffern eine Zahl ergibt, die ein Produkt zweier einstelliger Zahlen ist. Bestimme

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

10.7 Zum Können im Lösen geometrischer Konstruktionsaufgaben

10.7 Zum Können im Lösen geometrischer Konstruktionsaufgaben 10.7 Zum Können im Lösen geometrischer Konstruktionsaufgaben 10.7.1 Begriff und Arten von Konstruktionsaufgaben a) Begriff (im Mathematikunterricht): Herstellen einer ebenen Figur unter Verwendung von

Mehr

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke

Kapitel 4: Dreieckslehre. 4.1 Bedeutung der Dreiecke Kapitel 4: Dreieckslehre 4.1 edeutung der Dreiecke Durch Triangulation lassen sich Vielecke in Dreiecke zerlegen ( n Eck in n- Dreiecke) eweis von Sätzen mittels Sätzen über Dreiecke (z.. Winkelsumme,

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Abb. 1: Viereck mit aufgesetzten halben Quadraten. Dann sind die beiden roten Strecken gleich lang und orthogonal.

Abb. 1: Viereck mit aufgesetzten halben Quadraten. Dann sind die beiden roten Strecken gleich lang und orthogonal. Hans Walser, [20120528] Viereck Es werden einige Spielereien am Viereck untersucht. Daraus ergeben sich interessante Eigenschaften für spezielle Vierecke, die im üblichen Kanon des Hauses der Vierecke

Mehr

und a 2 = 1 1 deren Spitzen auf einer logarithmischen Spirale liegen: Logarithmische Spirale a 1 a 2 a 1

und a 2 = 1 1 deren Spitzen auf einer logarithmischen Spirale liegen: Logarithmische Spirale a 1 a 2 a 1 Hans Walser, [0090b] Schnecke von Fibonacci Worum es geht Die Fibonacci-Rekursion wird verallgemeinert und auf Vektoren in der Ebene angewandt. Es entstehen Kreise und logarithmische Spiralen. Da die Fibonacci-Rekursion

Mehr

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13

Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösungen der Serie 2, Schuljahr 2007/08, Klasse 11/13 Lösung 110706. Das Produkt einer endlichen Anzahl reeller Zahlen ist genau dann größer oder gleich 0, wenn die Anzahl der negativen Faktoren gerade

Mehr

8.5.1 Real Geometrie Viereck, Dreieck

8.5.1 Real Geometrie Viereck, Dreieck 8.5.1 Real Geometrie Viereck, Dreieck P8: Mathematik 8 G2: komb.üchlein Zeitraum : 3 Wochen Inhalte Kernstoff Zusatzstoff Erledigt am Vierecke Typen: Quadrat, Rechteck, P8: 146 P8: 147 Rhombus, Parallelogramm,

Mehr

1 Yin Yang Figur Die Abbildung 1 zeigt das Yin Yang, wie es leibt und lebt. Es ist unter Farbwechsel punktsymmetrisch. Weiter hat es keine Symmetrien.

1 Yin Yang Figur Die Abbildung 1 zeigt das Yin Yang, wie es leibt und lebt. Es ist unter Farbwechsel punktsymmetrisch. Weiter hat es keine Symmetrien. Hans Walser, [20130505] Yin Yang Eine nostalgische fraktale Erinnerung. Anregung: Strick (2013) 1 Yin Yang Figur Die Abbildung 1 zeigt das Yin Yang, wie es leibt und lebt. Abb. 1: Yin Yang Es ist unter

Mehr

Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen)

Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Klasse 7 Mathematik Vorbereitung zur Klassenarbeit Nr. 4 im Mai 2019 Themen: Geometrie (Kongruenzabbildungen, Winkelsätze, Flächenberechnungen) Checkliste Was ich alles können soll Ich kenne den Begriff

Mehr

Landeswettbewerb Mathematik

Landeswettbewerb Mathematik Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen. Runde 010/011 Aufgabe 1 In einem 10x10-Gitter mit quadratischen Feldern werden 10 Spielsteine so gesetzt, dass in jeder Spalte und jeder Zeile

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Spender A B AB 0 Empfänger A B AB 0 1 0 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 verträglich 0 unverträglich Modul 210 Koordinatensysteme. Matrizen Lernumgebung Hans

Mehr