Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7

Größe: px
Ab Seite anzeigen:

Download "Klausurenkurs zum Staatsexamen (WS 2012/13): Lineare Algebra und analytische Geometrie 7"

Transkript

1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS /3): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 a) Geben Sie eine Parameterdarstellung für die Schnittgerade der beiden Ebenen an. b) Zeigen Sie, dass der Punkt P = in der Ebene E liegt. Geben Sie eine Parameterdarstellung für die Gerade g an, welche im Punkt P senkrecht auf der Ebene E steht. c) In welchem Punkt durchstößt die Gerade g die Ebene E? 7. (Herbst, Thema 3, Aufgabe ) Im euklidischen Raum R 3 sei E die Ebene, auf der die drei Punkte P = (,,), Q = (,,), R = (,, ) liegen. Sei g die Gerade, die den Ursprung enthält und die auf E orthogonal ist. Man bestimme g, sowie den Schnittpunkt von g mit E und den Spiegelpunkt des Ursprungs in Bezug auf E. 7.3 (Frühjahr, Thema, Aufgabe 4) Betrachten Sie die Ebene E := { (x,y,z) R 3 x+y = } R 3 und zu gegebenem λ R die Teilmenge G λ := { (x,y,z) R 3 x+y λz = und x 3y +λz = +λ } R 3 im euklidischen Vektorraum R 3. a) Zeigen Sie, dass G λ für jede Wahl von λ R eine Gerade ist und geben Sie eine Gleichung dieser Geraden in Parameterform an. b) Bestimmen Sie alle λ R, so dass E und G λ einen nicht-leeren Schnitt haben und berechnen Sie diesen jeweils.

2 7.4 (Frühjahr 6, Thema 3, Aufgabe ) a) Bestimmen Sie eine Gleichung der Ebene E R 3, auf der die drei Punkte ( 3), ( ), ( ) liegen. b) Bestimmen Sie den Abstand des Punktes P = (3 ) von der Ebene E. 7.5 (Frühjahr 8, Thema 3, Aufgabe 5) Gegeben seien die Punkte A :=, B :=, C :=, D := 3 4 R 3. 5 a) Bestimmen Sie die Hessesche Normalform für die Gleichung der durch A, B, C verlaufenden Ebene. Welchen Abstand hat D von dieser Ebene? b) Geben Sie eine Parameterdarstellung für jede Gerade durch D an, welche auf der Ebene aus a) senkrecht steht. Bestimmen Sie den Schnittpunkt dieser Geraden mit der Ebene. 7.6 (Herbst 5, Thema, Aufgabe 3) Im euklidischen Raum R 3 mit den Koordinaten x, y, z seien zwei Ebenen E und E gegeben durch ihre Gleichungen E : x+y =, E : y +z =. Bestimmen Sie den Abstand des Nullpunkts (,,) R 3 a) von der Ebene E, b) von der Schnittgerade L = E E. 7.7 (Herbst 8, Thema 3, Aufgabe 3) Im R 3 seien die Ebenen E durch die Punkte A = (,,) t, B = (,, ) t und C = (,,) t, E durch den Punkt Q = (,,3) t und senkrecht auf dem Vektor v = (,, ) und der Punkt R = (5,,) t Berechnen Sie die Abstände des Punktes R von den Ebenen E und E. 7.8 (Herbst 7, Thema, Aufgabe 4) Im euklidischen R 3 seien die Ebene E und die Gerade G gegeben durch x E := y x+y+3z =, G := +r : r R. z a) Zeigen Sie, dass E und G parallel sind. b) Bestimmen Sie den euklidischen Abstand der Gerade G von der Ebene E.

3 7.9 (Frühjahr, Thema 3, Aufgabe 5) Gegeben seien im euklidischen R 3 die Gerade g durch ihre Punkte A = (,,) t und B = (,,) t, sowie die Gerade g durch ihren Punkt C = (3,,7) t und ihren Richtungsvektor v = (,,4) t. a) Bestimmen Sie die Gleichung der Ebene E, welche die Gerade g enthält und zur Geraden g parallel ist. b) Welchen Abstand hat die Gerade g von der Ebene E? Liegt g auf der gleichen Seite von E wie der Ursprung? 7. (Frühjahr, Thema, Aufgabe ) Im R 3 seien die Geraden g := +R 3 und h := R 5 Finden Sie zwei verschiedene Punkte p g und q h so, dass die Gerade durch p und q auf beiden Geraden g und h senkrecht steht. 7. (Frühjahr 3, Thema 3, Aufgabe ) Gegeben seien im euklidischen R 3 die Schnittgerade G der Ebenen sowie die x 3 Achse H. x +x +x 3 = und x x +x 3 = a) Bestimmen Sie diejenige Gerade L des R 3 durch den Nullpunkt, deren Richtungsvektor senkrecht zu den Richtungsvektoren von G und H ist. b) Bestimmen Sie die Endpunkte p G und q H der kürzesten Verbindungsstrecke zwischen Punkten p G und q H. 7. (Frühjahr 7, Thema, Aufgabe 4) Im euklidischen R 3 seien die Vektoren t = 4, u =, t = 4, u = und damit die Geraden g = t +Ru sowie g = t +Ru a) Zeigen Sie, dass g und g windschief sind. b) Bestimmen Sie die gemeinsame Lotgerade l von g und g. c) Berechnen Sie den Abstand zwischen g und g.

4 7.3 (Frühjahr 9, Thema, Aufgabe ) Im R 3 seien die beiden Geraden 5 g = +R, g = +R 3 Bestimmen Sie die Fußpunkte des gemeinsamen Lotes und den Abstand beider Geraden. 7.4 (Herbst, Thema, Aufgabe ) Im euklidischen R 3 mit den Koordinaten x, y, z seien zwei Geraden gegeben, und zwar die Gerade L, welche die beiden Punkte P = und P = enthält, sowie der Durchschnitt M der Ebenen E : x z =, E : x+y =. Bestimmen Sie den Abstand zwischen L und M. 7.5 (Herbst 7, Thema 3, Aufgabe ) Im R 3 seien die beiden folgenden Geraden gegeben: g := +R, g = +R. 3 a) Geben Sie ein lineares Gleichungssystem an, dessen Lösungsmenge die Gerade g ist. b) Bestimmen Sie für das gemeinsame Lot der beiden Geraden die Fußpunkte auf g und g. 7.6 (Herbst, Thema 3, Aufgabe 4) Im euklidischen R 3 seien die beiden folgenden Geraden gegeben: 7 g = +R 3 und h = +R. 7 a) Zeigen Sie, dass l = +R die gemeinsame Lotgerade von g und h ist. Bestimmen Sie die beiden Lotfußpunkte und damit den Abstand von g und h. b) Berechnen Sie den Mittelpunkt einer Kugel mit kleinstem Radius, welche g und h berührt, und begründen Sie diese Rechnung.

5 7.7 (Herbst 9, Thema, Aufgabe 4) Im euklidischen R 3 seien die windschiefen Geraden 3 g : R und g : +R a) Finden Sie Punkte A g und B g so, dass die Strecke AB parallel zur x,y Ebene ist und die Länge hat. b) Wie groß ist die minimale Länge l einer Strecke, die einen Punkt auf g mit einem Punkt auf g verbindet und zur x,y Ebene parallel ist? 7.8 (Frühjahr 7, Thema 3, Aufgabe ) a) Geben Sie im R 3 zwei nicht parallele Geraden g durch (,,) und h durch (,,) an, welche sich nicht schneiden. b) Bestimmen Sie den Abstand zwischen g und h. 7.9 (Frühjahr, Thema, Aufgabe 5) Sei e, e, e 3, e 4 die Standardbasis in R 4. Bestimmen Sie mit Hilfe des Standardskalarproduktes den Abstand des Punktes e von der Ebene U R 4, welche von den Vektoren e +e und e 3 +e 4 aufgespannt wird. 7. (Herbst, Thema, Aufgabe ) Im euklidischen R 4 mit Standardskalarprodukt und Standardnorm seien 3 u =, u =, u 3 = 4, v = 3, v = u R U = u +Ru +Ru 3, V = v +Rv, a) Berechnen Sie eine Basis von W. W = Ru +Ru 3 +Rv R 4. b) Berechnen Sie den Abstand von U und V. 7. (Frühjahr, Thema, Aufgabe ) Es sei a R ein Parameter. a) Geben Sie eine Gleichung an für die Menge M a aller Punkte P = welche ( a vom Punkt Q = a) den gleichen Abstand haben. und von der Geraden G = R x R y,

6 b) Bestimmen Sie v a, w a R so, dass va M a und M a. w a c) Zeigen Sie: Nur für a = ist M a eine Gerade. 7. (Herbst, Thema, Aufgabe 3) Gegeben sei das Dreieck im R mit den Ecken A = (,), B = (4,), C = (,). a) Bestimmen Sie für dieses Dreieck den Schwerpunkt S, den Umkreismittelpunkt U und den Höhenschnittpunkt H. b) Zeigen Sie, dass S, U und H zusammen auf einer Geraden liegen. 7.3 (Frühjahr, Thema, Aufgabe 5) In der euklidischen Ebene R werde das Dreieck mit den Ecken betrachtet. A = (,), B = (,), C = (,) a) Bestimmen Sie für dieses Dreieck den Mittelpunkt und den Radius des Umkreises. b) Bestimmen Sie Gleichungen für die Tangenten T A, T B und T C an den Umkreis in den Punkten A, B und C. c) Berechnen Sie die Schnittpunkte A von T A und BC, B von T B und CA, C von T C und AB dieser Tangenten mit den Verlängerungen der ihnen gegenüberliegenden Dreiecksseiten. 7.4 (Herbst 8, Thema 3, Aufgabe 5) In der euklidischen Ebene R werde das Dreieck mit den Ecken betrachtet. A = (,), B = (4,), C = (,3) a) Es sei t R und P = (t,t) R. Bestimmen Sie die Hessesche Normalform der Geradengleichung für die Gerade BC und damit den Abstand d des Punktes P von der Geraden BC als Funktion von t. b) Berechnen Sie den Inkreismittelpunkt I des Dreiecks ABC. c) Berechnen Sie die Berührpunkte A BC, B CA und C AB des Inkreises mit den Dreiecksseiten. d) Zeigen Sie: Die drei Geraden AA, BB und CC treffen sich in einem Punkt.

7 7.5 (Herbst 5, Thema, Aufgabe 4) In der euklidischen Ebene R mit den Koordinaten x, y sei ein Dreieck PQR gegeben durch seine Ecken P = (,), Q = (,), R = (,). a) Zeigen Sie: Der Kreis K mit Mittelpunkt (, ) und Radius geht durch P und berührt die durch die Dreieckseite QR definierte Gerade in R. b) Finden Sie eine Gleichung für den Kreis K, der durch Q geht und die durch die Seite RP definierte Gerade in P berührt, sowie eine Gleichung für den Kreis K 3, der durch R geht und die durch die Seite PQ definierte Gerade in Q berührt. c) Bestimmen Sie die Schnittpunkte der Kreise K und K. Zeigen Sie: Es gibt einen Punkt B R, in dem sich alle drei Kreise K, K, K 3 schneiden. 7.6 (Herbst 9, Thema 3, Aufgabe 3) Es sei V ein euklidischer Vektorraum mit Skalarprodukt,. Weiter seien a b V Punkte in V. Es bezeichne E V die Menge aller Punkte x V, welche von a und b den gleichen Abstand haben. a) Rechnen Sie nach, dass (a+b) E. b) Zeigen Sie, dass E die affine Hyperebene mit der Gleichung ist. a b,x = a,a b,b c) Bestimmen Sie im Fall, dass V der euklidische R 3 ist, sowie 5 a = 6 und b = 3 für E eine Parameterdarstellung E = p+rv +Rv := {p+λ v +λ v λ,λ R}. 7.7 (Frühjahr 8, Thema, Aufgabe 4) Der euklidische R 3 sei mit dem Standardskalarprodukt versehen. Zeigen Sie, dass der Punkt P := R 3 3 Mittelpunkt einer Kugel K R 3 ist, die sowohl die Gerade 5 g := 7 +R 3 8 als auch die Ebene x E := y R 3 3x+y 6z = 38 z berührt. Geben Sie den Radius r dieser Kugel K sowie ihre Berührpunkte mit der Geraden g und der Ebene E an.

8 7.8 (Herbst 6, Thema, Aufgabe 5) Ermitteln Sie im euklidischen Raum R 3 alle Kugeln Σ (durch Angabe von Mittelpunkt und Radius), welche die Ebene ε : z = im Punkt E = ( 3,, ) berühren und zusätzlich die Gerade g : x = y = z berühren. 7.9 (Frühjahr 4, Thema, Aufgabe 4) Imeuklidischen R 3 seien dievier Punkte O = (,,),A = (,,),B = (,3,) und C = (,,) a) Man ermittle den Flächeninhalt des Dreiecks ABC und das Volumen des Tetraeders OABC. b) Manbestimme denmittelpunkt M(a,b,c) unddenradiusr > einer Kugel Σ mit den folgenden drei Eigenschaften: M liegt im ersten Oktanten, d.h. a >, b >, c >. Σ berührt jede der drei Geraden OA, OB und OC. Σ berührt die Ebene ABC. Wieviele solcher Kugeln Σ gibt es? 7.3 (Herbst 8, Thema, Aufgabe 4) In der Ebene R sei die Gerade g mit der Gleichung x + y = Die Spiegelung an dieser Geraden sei S : R R. ( x a) Berechnen Sie für einen Punkt P = die Koordinaten des gespiegelten y) Punktes S(P). b) Berechnen Sie für die Gerade g mit der Gleichung x y = die Gleichung der gespiegelten Geraden g = S(g ). 7.3 (Herbst 6, Thema, Aufgabe 4) Im euklidischen Raum R 3 sei die Ebene E gegeben durch die Gleichung x +x +x 3 = 5. Weiter sei f : R 3 R 3 die Orthogonalprojektion auf die Ebene E. Bestimmen Sie die 3 3 Matrix A und den Vektor t R 3 so, dass für alle x R 3 gilt: 7.3 (Frühjahr 7, Thema 3, Aufgabe 5) Im R 3 seien die Ebenen f(x) = Ax+t. H : x+y +z = und E : z = Weiter sei π : E H die Orthogonalprojektion von E auf H, d.h. die Parallelprojektion längs der Normalenrichtung von H. Finden Sie eine 3 Matrix A und einen Vektor v R 3 so, dass x π y = A x +v für alle y x y E.

9 7.33 (Herbst 7, Thema, Aufgabe ) a) Zeigen Sie, dass die Punkte P := (,,) t, P := (,,) t, P := (,3,) t und P 3 := ( 3,,3) t R 3 nicht in einer Ebene liegen. b) Es sei ψ : R 3 R 3 die bijektive affine Abbildung mit ψ(p ) = (,,) t, ψ(p ) = (,,) t, ψ(p ) = (,,) t, ψ(p 3 ) = (,,) t. Finden Sie eine 3 3 Matrix A und einen Vektor b R 3 so, dass für alle x R 3 gilt ψ(x) = A x+b (Frühjahr 3, Thema 3, Aufgabe 3) Im R seien die Vektoren v =, v =, v 3 = sowie w =, w = 5, w 3 = 3 a) Gibt es eine lineare Abbildung F : R R mit F(v i ) = w i für i =,,3? b) Bekanntlich heißt eine Abbildung F : R R affin, wenn es eine reelle Matrix A und einen Vektor b R gibt mit F(v) = A v +b für alle v R. Gibt es eine affine Abbildung F : R R mit F(v i ) = w i für i =,,3? Bestimmen Sie gegebenenfalls die Matrix A und den Vektor b (Frühjahr, Thema, Aufgabe 4) In der euklidischen Ebene R seien das Dreieck mit den Ecken 7 a =, b = und c =, 5 5 sowie das Dreieck mit den Ecken 8 a =, b = und c = 3 5 a) Skizzieren Sie die beiden Dreiecke und im kartesischen Koordinatensystem der Ebene und berechnen Sie ihre Seitenlängen. b) Zeigen Sie, dass es genau eine Drehung d : R R, d(x) = D x+t, mit einer Drehmatrix D und einem Vektor t R gibt, welche das Dreieck auf das Dreieck abbildet. Geben Sie D und t explizit an.

10 7.36 (Herbst, Thema 3, Aufgabe 4) Eine Abbildung f : R R heißt eine Bewegung, wenn es einen Vektor b R und eine orthogonale Matrix A gibt so, dass f(x) = A x+b für alle x R. Weiter sei e, e die Standardbasis des R, d.h. e = und e =. Geben Sie alle Bewegungen f : R R an, für die gilt f(e ) = und f(e 3 ) = 7.37 (Frühjahr 5, Thema, Aufgabe ) a) Zeigen Sie, dass es genau eine Bewegung (= abstandserhaltende affine Transformation) g im R gibt, welche die Menge { } 8 4,, 3 auf die Menge { ( ( 3 8,, 3 3) 3)} abbildet. b) Berechnen Sie das Bild des Dreiecks {, unter g (Herbst 5, Thema, Aufgabe 5), } Es seien A R und t R. Die affine Abbildung. f : R R mit f(x) = Ax+t sei eine Drehung der euklidischen Ebene R mit Drehzentrum z. a) Begründen Sie, dass für alle p R gilt: p z = f(p) z. b) In R seien die folgenden vier Punkte gegeben: ( 7 5,5 p =, q =, p = 3 ), q =,5. Zeigen Sie, dass es genau eine Drehung f um ein Drehzentrum z R gibt mit f(p) = p und f(q) = q. Berechnen Sie z, sowie die Matrix A und den Vektor t von f.

11 7.39 (Herbst, Thema, Aufgabe 4) In der euklidischen Ebene R seien die Punkte 6 p =, p =, q 6 = 4, q 3 = 5 6 a) Berechnen Sie für i =, Parameterdarstellungen der Mittelsenkrechten m i zu den( Strecken ) p i q i. Bestimmen Sie den Durchschnitt m m. (Zur Kontrolle: m m.) b) Zeigen Sie, dass es genau eine Drehung δ : R R, δ(x) = Ax+t A eine reelle Matrix und t R, um einen Punkt z R gibt, die p auf q und p auf q abbildet. Bestimmen Sie das Drehzentrum z, den Kosinus des Drehwinkels und die Matrix A von δ.

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema, Aufgabe 4) Im R seien die beiden Ebenen E : 6 x + 4 y z = und E : + s + t 4 gegeben.

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 6/7): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Lineare Algebra und analytische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 8 Dr. Erwin Schörner Klausurenkurs zum Staatseamen (SS 205): Lineare Algebra und analtische Geometrie 8 8. (Herbst 202, Thema 3, Aufgabe 4) Bestimmen Sie die euklidische Normalform der Quadrik Q, gegeben

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Zweidimensionale Vektorrechnung:

Zweidimensionale Vektorrechnung: Zweidimensionale Vektorrechnung: Gib jeweils den Vektor AB und seine Länge an! (a A(, B(6 5 (b A(, B( 4 (c A(, B( 0 (d A(0 0, B(4 (e A(0, B( 0 (f A(, B( Gib jeweils die Summe a + b und die Differenz a

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner SS 22 Blatt 2.7.22 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag 4. a) Die Gerade

Mehr

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen

Vorkurs Mathematik. Vektoren, lineare Gleichungssysteme und Matrizen Dorfmeister, Boiger, Langwallner, Pfister, Schmid, Wurtz Vorkurs Mathematik TU München WS / Blatt Vektoren, lineare Gleichungssysteme und Matrizen. In einem kartesischen Koordinatensystem des R sei eine

Mehr

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14

Aufgabe A6/13. Aufgabe A7/13. Aufgabe A6/14 Aufgabe A6/ Gegeben sind die Ebene 4 : Abituraufgaben Analytische Geometrie (Pflichtteil) ab und : 8. Bestimmen Sie eine Gleichung der Schnittgeraden. (Quelle Abitur BW Aufgabe 6) Aufgabe A7/ Gegeben sind

Mehr

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2.

Lage zweier Ebenen. Suche alle Punkte von E 1 die in E 2 enthalten sind. Setze also die Parameterform von E 1 in die Koordinatenform von E 2. LAGE Lage zweier Ebenen Suche alle Punkte von E die in E 2 enthalten sind. Setze also die Parameterform von E in die Koordinatenform von E 2. B = E : X E 2 : x + x 2 + x 3 = Parameterform (PF) in Koordinatenform

Mehr

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Aufgabe F Punkte (max) Punkte. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1.06.015 Aufgabe 1 5 6 7 8 9 10 F Punkte (max 11 1 1 Punkte Gesamtpunktzahl /0 Notenpunkte Für vorbildliche Darstellung wird ein Extrapunkt vergeben. (1 Bestimmen sie die ersten beiden Ableitungen

Mehr

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten

Aus folgt: 1; 3 Eingesetzt in : $$$$$ #! * 1 + ; # $$$$$$$ # $$$$$ 2 $$$$$! * 3 Der Bildpunkt hat die Koordinaten Abituraufgaben Analytische Geometrie (Pflichtteil) ab Lösung A6/ Wir stellen die gegebene Normalengleichung von in die Koordinatengleichung um und bilden. Im Gleichungssystem mit drei Unbekannten und zwei

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)

Mehr

Aufgabenpool. Aufgabe 1.2 Beweisen Sie die folgende Tautologien und logischen Äquivalenzen mithilfe einer Wahrheitstabelle.

Aufgabenpool. Aufgabe 1.2 Beweisen Sie die folgende Tautologien und logischen Äquivalenzen mithilfe einer Wahrheitstabelle. Lineare Algebra und Geometrie I SS 06 Woche Aussagenlogik und Mengen Aufgabenpool Aufgabe Beweisen Sie die folgende Tautologien und logischen Äquivalenzen mithilfe einer Wahrheitstabelle e # [ (A B (C

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie

Mehr

Erweiterte Beispiele 1 1/1

Erweiterte Beispiele 1 1/1 Erweiterte Beispiele 1 1/1 Gegeben ist das Dreieck ABC [A(-20/-9), B(30/-9), C(12/15)]. Die Seitenmittelpunkte D, E, F bilden ein Dreieck. Zeige, dass der Umkreis dieses Dreiecks den Inkreis des Dreiecks

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

1 lineare Gleichungssysteme

1 lineare Gleichungssysteme Hinweise und Lösungen: http://mathemathemathe.de/lineare-algebra-grundlagen 1 lineare Gleichungssysteme Übung 1.1: Löse das lineare Gleichungssystem: I 3x + 3y + 7z = 13 II 1x 2y + 2, 5z = 1, 5 III 4x

Mehr

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand

Abituraufgaben bis 2018 Baden-Württemberg. Geraden, Ebenen, Abstand Abituraufgaben bis 8 Baden-Württemberg Geraden, Ebenen, Abstand allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 8 Aufgabe : (Abiturprüfung 8) Gegeben sind die Ebenen E: xx x

Mehr

Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie

Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Technische Universität Chemnitz 0. Dezember 0 Fakultät für Mathematik Höhere Mathematik I. Aufgabenkomplex 5: Inverse Matrix, Determinanten, Analytische Geometrie Letzter Abgabetermin: 3. Januar 0 (in

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung http://www.fersch.de Klemens Fersch. September 8 Inhaltsverzeichnis 6 6. Vektorrechung in der Ebene.............................................. 6.. Vektor - Abstand - Steigung - Mittelpunkt.................................

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag

43911: Lineare Algebra/Geometrie Prüfungstermin Herbst 2015 Lösungsvorschlag Dr. Erwin Schörner 49: Lineare Algebra/Geometrie Prüfungstermin Herbst 5 Lösungsvorschlag I.. a Die in Abhängigkeit vom Parameter t R für t t A t t t R und b R t + t t + t zu betrachtende Menge F t { x

Mehr

Einführung in das Mathematikstudium und dessen Umfeld

Einführung in das Mathematikstudium und dessen Umfeld Einführung in das Mathematikstudium und dessen Umfeld (Unterrichtsfach LVA 457 C Fuchs, K Fuchs, C Karolus Wiederholung Schulstoff III WS 5/6 5 Vektorrechnung In diesem Kapitel sollen einige Grundlagen

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

1 Vektoren, Vektorielle analytische Geometrie der Ebene

1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 208. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.44 2018/05/17 14:11:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe Wir untersuchen gerade die Spiegelung an einer Hyperebene h R d. Ist ein

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II

FOS 1994, Ausbildungsrichtungen Technik und Agrarwirtschaft Analytische Geometrie, Aufgabengruppe B II FOS, Ausbildungsrichtungen Technik und Agrarwirtschaft Aufgabenstellung. In einem kartesischen Koordinatensystem ist die Gerade g gegeben mit der Gleichung g : x = + σ σ R (a) Die drei Punkte A( ), B(

Mehr

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

Übung (5) 4x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0 Übung (5). Lösen Sie folgendes lineare Gleichungssystem - sagen Sie zuvor, wie die Lösungsmenge aussehen sollte bzw. geometrisch zu interpretieren wäre: 4x y +u 3v = 3x u + v =0 x +3y u +v =0. Sagen Sie

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Lösungen zum Thema Kreis & Kugel

Lösungen zum Thema Kreis & Kugel Lösungen zur Aufg. : a r ; r 8 (,8 ; M M m m M M Dann gilt: r +r + 8 > M M und weiter: r r 8, < M M b Aus r r < M M

Mehr

Abitur 2010 Mathematik GK Geometrie VI

Abitur 2010 Mathematik GK Geometrie VI Seite http://www.abiturloesung.de/ Seite Abitur Mathematik GK Geometrie VI In einem kartesischen Koordinatensystem mit Ursprung O sind die Punkte A( ), B( ) und die Gerade g : x = O A + λ, λ R, gegeben.

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Koordinatengeometrie:

Koordinatengeometrie: Koordinatengeometrie: Gib jeweils den Vektor AB und seine Länge an! (a A( B(6 5 (b A( B( 4 (c A( B( (d A( B(4 (e A( B( (f A( B( Ermittle (i die Koordinaten des Endpunktes E der Wanderung (ii die Koordinaten

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

Analytische Geometrie I

Analytische Geometrie I Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3

b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 a b = a 1 b 1 + a 2 b 2 + a 3 b 3 1. Rechnen mit Vektoren Skalarprodukt a b = a b cosα = a 1 a 2 a 3 b 1 b 2 b 3 = a 1 b 1 + a 2 b 2 + a 3 b 3 b a 1. Betrag = Länge eines Vektors: a = a a = a 2 1 + a 2 2 + a 2 3 2. Winkel zwischen 2 Vektoren:

Mehr

Abitur 2010 Mathematik LK Geometrie V

Abitur 2010 Mathematik LK Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik LK Geometrie V Gegeben sind in einem kartesischen Koordinatensystem des R der Punkt A( ) und die Menge der Punkte B k ( k) mit k R. Die Punkte

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

A Vektorrechnung. B Geraden und Ebenen

A Vektorrechnung. B Geraden und Ebenen A Vektorrechnung Seite 1 Lineare Gleichungssysteme... 4 2 Gauß-Algorithmus... 6 3 Vektoren... 10 4 Vektorberechnungen und Vektorlängen... 12 5 Linearkombination und Einheitsvektor... 16 6 Lineare Abhängigkeit

Mehr

Einzelprüfungsnummer: Seite: 2. Thema Nr. 1 (Aufgabengruppe) Fi,n(f): {r e Ri : f (r): a}

Einzelprüfungsnummer: Seite: 2. Thema Nr. 1 (Aufgabengruppe) Fi,n(f): {r e Ri : f (r): a} Einzelprüfungsnummer: 439 1 Seite: 2 Thema Nr. 1 (Aufgabengruppe) Es sind alle Aufgaben dieser Aufgabengruppe zu bearbeiten! Aufgabe 1: Es sei b e IR' und A eine reelle n x n-matrix. Die affine Abbildung,f

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Seminar für LAGym/LAB: Analytische Geometrie

Seminar für LAGym/LAB: Analytische Geometrie Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme

Mehr

K2 ÜBUNGSBLATT 2 F. LEMMERMEYER

K2 ÜBUNGSBLATT 2 F. LEMMERMEYER K2 ÜBUNGSBLATT 2 F. LEMMERMEYER Aufgabe 1. Hier ein knappes Beispiel, wie man einen Punkt P an einer Geraden g spiegelt (Wer sich gerne was merkt: Lotfußpunkte auf Ebene mit Lotgerade, Lotfußpunkte auf

Mehr

Sammlung von umfassenden Aufgaben. Die meisten Aufgaben werden sowohl vektoriell als auch alternativ ohne Verwendung der Vektorrechnung gelöst

Sammlung von umfassenden Aufgaben. Die meisten Aufgaben werden sowohl vektoriell als auch alternativ ohne Verwendung der Vektorrechnung gelöst Analytische Geometrie Kreisaufgaben Sammlung von umfassenden Aufgaben Die meisten Aufgaben werden sowohl vektoriell als auch alternativ ohne Verwendung der Vektorrechnung gelöst Datei Nr. 676 Stand 4.

Mehr

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I

Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Michael Buhlmann Mathematik-Aufgabenpool > Grundaufgaben zur Vektorrechnung I Einleitung: Elemente der Vektorrechnung im dreidimensionalen reellen kartesischen x -x -x 3-Koordinatensystem sind Punkte P(p

Mehr

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg

Pflichtteilaufgaben zu Beschreiben und Begründen. Baden-Württemberg Pflichtteilaufgaben zu Beschreiben und Begründen Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 06 Abituraufgaben (Haupttermin) Aufgabe

Mehr

7.6. Prüfungsaufgaben zu Normalenformen

7.6. Prüfungsaufgaben zu Normalenformen 7.6. Prüfungsaufgaben zu Normalenformen Aufgabe () Gegeben sind die Gerade g: x a + r u mit r R und die Ebene E: ( x p ) n. a) Welche geometrische Bedeutung haben die Vektoren a und u bzw. p und n? Veranschaulichen

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

Übungen zur Geometrie

Übungen zur Geometrie Aufgabe 1.1. Beweisen Sie die folgende Aussage: Die Diagonalen eines Parallelogrammes schneiden sich in ihren Mittelpunkten. Aufgabe 1.2. Beweis von: rechter Winkel = stumpfer Winkel D A E M F B C AB beliebige

Mehr

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie II (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner SS 0 Blatt 9 9060 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie II (Unterrichtsfach Lösungsvorschlag a Die gegebene Matrix

Mehr

HTW MST Mathematik 1. Vektorrechnung. Zu Aufgabe 1. Zu Aufgabe Lösungen zu Übungsblatt 5. Lösung: Lösung: = 39

HTW MST Mathematik 1. Vektorrechnung. Zu Aufgabe 1. Zu Aufgabe Lösungen zu Übungsblatt 5. Lösung: Lösung: = 39 Vektorrechnung Zu Aufgabe 1 Berechnen Sie den Flächeninhalt des Dreiecks, das durch die Vektoren 1 a =, b =, 3 1 c = 6 1 aufgespannt wird! Zu Aufgabe Berechnen Sie das Volumen des durch folgende 3 Vektoren

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Abitur 2016 Mathematik Geometrie V

Abitur 2016 Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur Mathematik Geometrie V Betrachtet wird der abgebildete Würfel A B C D E F G H. Die Eckpunkte D, E, F und H dieses Würfels besitzen in einem kartesischen

Mehr

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben.

Vektorgeometrie. 1. Vektoren eingeben, Norm, Skalarprodukt. 2 In einem kartesischen Koordinatensystem sind die Vektoren. , v. und. gegeben. Vektorgeometrie 1. Vektoren eingeben, Norm, Skalarprodukt 2 In einem kartesischen Koordinatensystem sind die Vektoren u 14, 5 11 10 v 2 und w 5 gegeben. 10 10 a) Zeigen Sie, dass die Vektoren einen Würfel

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 4 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 26/7): Lineare Algebra und analytische Geometrie 4 4. (Frühjahr 27, Thema, Aufgabe ) Zeigen Sie, dass die beiden folgenden Unterräume des R 3 übereinstimmen:

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Algebra 2.

Algebra 2. Algebra 2 www.schulmathe.npage.de Aufgaben 1. In einem kartesischen Koordinatensystem sind die Punkte A(10 0 0), B(0 4 0) und C(0 0 6) sowie die Ebenenschar E t : 3y + tz 3t = 0 (t R) gegeben. Die Punkte

Mehr

Aufgaben zum Wochenende (1)

Aufgaben zum Wochenende (1) Aufgaben zum Wochenende (1) 1. Schreiben Sie das Polynom (x 1) 5 geordnet nach Potenzen von x auf. (Binomialkoeffizienten!). Welche Bedingung müssen a, b, c erfüllen, damit die Lösungsmenge der Bestimmungsgleichung

Mehr

1 + λ 0, die Geraden h : x =

1 + λ 0, die Geraden h : x = Amnalytische Geometrie. In einem kartesischen Koordinatensystem des R sind die Gerade g : x 7 + λ, die Geraden h : x 8 5 + µ, λ, µ, a R sowie die Ebene E durch die Punkte A 5, und gegeben. B 6 C 5 a) K

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Lektionen zur Vektorrechnung

Lektionen zur Vektorrechnung Die Homepage von Joachim Mohr Start Mathematik Lektionen zur Vektorrechnung in Aufgaben Diese Datei kann auch als PDF-Datei heruntergeladen werden. Download... Es handelt sich um " Basisaufgaben " der

Mehr

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf

Mehr

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Analytische Geometrie. Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG. Stand November F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Analytische Geometrie Dreiecke Vierecke GROSSE AUFGABENSAMMLUNG Wird erweitert Lösungen nur auf der Mathe CD Datei Nr. 0050 Stand November 005 F. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 0050 Dreiecke

Mehr

Lösungsvorschläge für die Geometrie-Klausur vom 28.7.

Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Lösungsvorschläge für die Geometrie-Klausur vom 28.7. Aufgabe 1: (a) Die beiden Punkte liegen offensichtlich auf der hyperbolischen Geraden g = {z H R(z) = 1}. Die beiden idealen Punkte sind a = 1, b =.

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $

Mathematische Probleme, SS 2018 Dienstag $Id: dreieck.tex,v /06/12 14:54:26 hk Exp $ $Id: dreieck.tex,v 1.47 018/06/1 14:54:6 hk Exp $ Dreiecke.3 Einige spezielle Punkte im Dreieck Am Ende der letzten Sitzung hatten wir eingesehen, dass sich die drei Winkelhalbierenden eines Dreiecks in

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 06 Lineare Algebra analytische Geometrie II Vorlesung 35 Winkeltreue Abbildungen Definition 35.. Eine lineare Abbildung ϕ: V W zwischen euklidischen Vektorräumen V W heißt

Mehr

Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene

Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene Aufgaben zu Lagebeziehungen Gerade-Ebene und Ebene-Ebene. Im sind die Punkte A(/-4/7), B(-/4/-), die Ebene E:x x +x 5 sowie die Geradenschar (Abitur BI) gegeben.. Die Gerade h AB schneidet die Ebene E

Mehr

Modulteilprüfung Geometrie (BaM-GS), Probeklausur

Modulteilprüfung Geometrie (BaM-GS), Probeklausur HRZ-Benutzername: Modulteilprüfung Geometrie (BaM-GS), Probeklausur Dr. Patrik Hubschmid // SoSe 2013, 4. Juli 2013 Kontrollieren Sie, ob Sie alle Blätter (8 einschlieÿlich zweier Deckblätter) erhalten

Mehr

Übung (5) 2x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0

Übung (5) 2x 2y +2u 3v =1 3x 2u + v =0 2x +3y u +2v =0 Übung (5) 1. Lösen Sie folgendes lineare Gleichungssystem - sagen Sie zuvor, wie die Lösungsmenge aussehen sollte bzw. geometrisch zu interpretieren wäre: x y +u v =1 x u + v =0 x +y u +v =0. Sagen Sie

Mehr