Zusammenfassung der 8. Vorlesung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Zusammenfassung der 8. Vorlesung"

Transkript

1 Zusammenfassung der 8. Vorlesung Beschreibung und und Analyse dynamischer Systeme im im Zustandsraum Steuerbarkeit eines dynamischen Systems Unterscheidung: Zustandssteuerbarkeit, Zustandserreichbarkeit Unterscheidung: Steuerbarkeit und und vollständige Steuerbarkeit -- Beispiel: Parallelschaltung zweier identischer Systeme Steuerbarkeitskriterien Kalman-Kriterium Kriterium (Anzahl der der steuerbaren Zustandsgrößen) Hautus-Kriterium (Ermittlung, welche Eigenwerte nicht nicht steuerbar sind) Beobachtbarkeit eines dynamischen Systems

2 Zusammenfassung der 8. Vorlesung Beobachtbarkeitskriterien Kalman-Kriterium Kriterium (Anzahl der der beobachtbaren Zustandsgrößen) Hautus-Kriterium (Überprüfung der der einzelnen Eigenwerte) Duales System (A (A T T,, c T T,, b T T )) des des Systems (A, (A, b, b, c) c) und und Dualität von von Steuer- und und Beobachtbarkeit Numerische Überprüfung der der Steuerbarkeit Kalman-Zerlegung des des Zustandsraummodells. Numerisch stabile Methode zur zur Überprüfung der der Steuer- und und Beobachtbarkeit. Nicht vollständig steuer- und/oder beobachtbare Systeme haben weniger Pole Pole als als Eigenwerte.

3 Bei der Art der Rückkopplung R kann zwischen a) a) Ausgangsrückführung b) b) Zustandsrückführung unterschieden werden. Zustandsrückf ckführung Rückf Rückführung aller aller Zustandsgröß Zustandsgrößen Statischer Statischer Regler: Regler: u(t) u(t) = -k -k T T x(t) x(t) Beliebige Beliebige Platzierung Platzierungaller aller Eigen- Eigenwerte des des geschlossenen geschlossenen Regel- Regel- werte kreises, kreises,, wenn wenn (A,b( (A,b) ) vollständig vollständig steuerbar steuerbar ist. ist. Strecke Ausgangsrückf Ausgangsrückführung Zustandsrückf Zustandsrückführung

4 Zustandsrückf ckführung (2) Eine Eine Zustandsrückführung verändert die die Eigendynamik. Ist Ist (A,b) vollständig steuerbar, so so kann die die Eigendynamik beliebig eingestellt werden. Kein Soll-Ist-Vergleich (w(t)-y(t)). Stätionäre tionäre Genauigkeit kann über ein ein Vorfilter eingestellt werden.

5 Zustandsrückf ckführung (3) Modell der Regelstrecke: Durch Einsetzen des des Regelgesetzes erhält man man das das Zustandsmodell des des geschlossenen Kreises: Systemmatrix Systemmatrix A G des G des geschlossenen geschlossenen Kreises Kreises

6 Polvorgabe für f r Eingrößensysteme Zustandsrückf ckführung (4) Nach Vorgabe des charakteristischen Polynoms des geschlossenen Regelkreises gibt es es eine eindeutige Lösung für f r die die Elemente des RRückführvektors k. k. Anhand der derregelungsnormalform können diese Elemente mit mit Hilfe eines Koeffizientenvergleichs sofort angegeben werden.

7 Regelungsnormalform Sytemmatrix SytemmatrixA R in R in Frobenius-Form: Frobenius-Form: Form: Die Die letzte letzte Zeile Zeile enthält enthält die die Koeffizienten Koeffizienten des des charakteristischen charakteristischen Polynoms Polynoms oder abgekürzt T ɺx (t) = A x(t) + b u(t), y(t) = c x(t) R R R

8 Eigenschaften der Regelungsnormalform Regelungsnormalform Die Die Regelungsnormalform läß läßt t sich sich sofort angeben, wenn die die Übertragungsfunktion G(s) G(s) eines dynamischen Systems bekannt ist. ist. Die Die Regelungsnormalform existiert dann und und nur nur dann, wenn das das System (A,b) vollständig steuerbar ist. ist. Die Regelungsnormalform erhält man durch eine Zustandstrans- formation mit der Transformationsmatrix letzte letzte Zeile Zeile der der inversen inversensteuerbarkeitsmatrix

9 Zustandsrückführung und Regelungsnormalform Zustandsrückf ckführung (5) Eingangsvektor b R Systemmatrix A R b kɶ 0 = k k 0 ɶ ɶ 1 T R 1 n 0 0 = 0 0 kɶ 1 kɶ n Koeffizienten des charakteristischen Polynoms des geschlossenen Kreises können k durch Wahl der RückfR ckführverstärkung rkung k,k ɶ ɶ 1 2,...,k ɶ n beliebig eingestellt werden!!!! AG = AR brk ɶ T

10 Beobachterentwurf Probleme bei der Realisierung eines Zustandsreglers: Alle Zustandsgrößen müssen m meßbar sein! Man braucht also n Sensoren. Aufwendig, teuer, evtl. unzuverlässig. Manche Zustandsgröß ößen können k evtl. gar nicht gemessen werden, weil z.b.: Meßort ist räumlich r nicht zugänglich. Umgebungsbedingungen (Temperatur, Druck, Vibrationen, Schmutz, usw.) zu "feindlich". Sensoren zu teuer.

11 Beobachterentwurf (2) Lösung des Problems Beobachtung (Schätzung) der der Zustandsgrößen. Rückführung der der beobachteten Zustandsgrößen anstatt der der gemessenen Zustandsgrößen. Beobachter = virtueller Sensor!! Die Die beobachteten Signale werden wie Meßwerte verwendet, obwohl sie sie aus anderen Meßsignalen berechnete Größen sind. Voraussetzungen Ein Ein gutes Modell der der Regelstrecke!!!!!! Vollständige Beobachtbarkeit des Models!!!!!!

12 Beobachterentwurf (3) Strecke mit mit Zustandsrückführung Zustandsrückführung mit mit Beobachter Dynamischer Dynamischer Regler Regler

13 Beobachterentwurf (4) Grundidee des Beobachters Simulation der der Regelstrecke mit mit Hilfe eines Modells. x 0 Nur Nur Regelgröße e wird wird gemessen. xˆ0 ˆx Störungen sind sind nicht nicht bekannt!! ˆx entfernt sich immer weiter von x Verlauf der der Zustandsgrößen kann kann mit mit Hilfe Hilfe des des Modells berechnet werden. Anfangswerte müssen m aus aus den den Meßwerten rekonstruiert werden. Strecke muß vollständig beobachtbar sein!!!

14 Beobachterentwurf (5) Grundidee des Beobachters (2) (2) Gemessene Regelgröße y(t) y(t) wird bisher nur zur zur Rekonstruktion des Anfangswertes verwendet. Idee von Luenberger 1964: x 0 Kontinuierliche Berechnung der der Differenz zwischen gemessenerund simulierter Regel- Regel- sener größ größe. xˆ0 ˆx - e(t) Rückf Rückführung dieser dieser Differenz auf auf den den Eingang des des Modells.

15 Beobachterentwurf (6) Luenberger-Beobachter Regelstrecke ẋ(t) = Ax(t)+bu(t) y(t) = c T x(t) ˆx(t) = Aˆx(t)+bu(t) l Modell Rückführung des Beobachtungsfehlers Beobachter Regler u(t) = k Tˆx(t) +lc T (x(t) ˆx(t)) ŷ(t) = c Tˆx(t) Rückführung spielt keine Rolle, wenn x 0 bekannt ist, das Modell exakt ist und keine Störungen auftreten!!!!

16 Konvergenz des Luenberger-Beobachters Beobachtungsfehler: Bilden der zeitlichen Ableitung liefert: ẽ(t) = ẋ(t) ˆx(t) ẽ(t) = x(t) ˆx(t) Beobachterentwurf (7) = Ax(t)+bu(t) [Aˆx(t)+bu(t)+lc T (x(t) ˆx(t))] = [A lc T ][x(t) ˆx(t)] = [A lc T ]ẽ(t)

17 Berechnung der Beobachterrückführung ckführung Die Matrix [A - lc T ] hat dieselben Eigenwerte wie die transponierte Matrix [A lc T ] T = A T cl T. Beobachterentwurf (8) Die Matrix [A T - cl T ] ist die Systemmatrix des dualen Systems x = A T x(t)+cũ(t) mit der Zustandsrückf ckführung ũ(t) = l T x(t) Festlegung der der Beobachtereigenwerte mit mit Hilfe Hilfe der der Berechnungeiner Zustandsrückführung l T l T für für r das das System (A (A T T,c). nung,c).

18 Beobachterentwurf (9) Konsequenz der Dualität Die Die Dualität t zwischen dem Entwurf eines Zustands- reglers und eines Beobachters bedeutet, daß jedes Entwurfsverfahren für f r Zustandsregler auch für f r den Entwurf von Beobachtern verwendet werden kann. Die Die Eigenwerte der der Matrix [A [A--lc lc T ]],, die die Beobachter- eigenwerte,, können k nur dann beliebig festgelegt werden, wenn das System (A, (A, c) c) vollständig beobachtbar ist. ist.

19 Beobachterentwurf (10) Beobachtungsnormalform Besonders einfach kann die die Beobachterrückführung ckführung l l dann berechnet werden, wenn die die Regelstrecke in in Beobachtungsnormalform vorliegt. Der Vektor l B = [ l 1 l 2... l n ] T l B = [ a B0 a B1... a Bn 1 ] T [ a 0 a 1... a n 1 ] T muß dann so gewählt werden, daß die Matrix die gewünschten Beobachtereigenwerte besitzt.

20 Beobachterentwurf (11) Frage: Werden die die Eigenwerte des Regelkreises durch den Beobachter beeinflußt t? Antwort: Nein!!!!!! Es Es gilt gilt das Separationstheorem. Satz 4.2

21 Beweis des Separationstheorems: Zustandsgleichung des Gesamtsystems: Mit ẋ = Ax bk Tˆx ˆx=x ẽ erhält man ẋ = Ax bk T x+bk T ẽ. Beobachterentwurf (12) Zusammen mit der Differentialgleichung des Beobachtungsfehlers ẽ(t)=[a lc T ]ẽ(t) erhält man [ ẋ(t) ẽ(t) ] = [ A bk T bk T 0 A lc T Eigenwerte des des Regelkreises ][ x(t) ẽ(t) ] Eigenwerte des des Beobachters

22 Anmerkungen zum Beobachterentwurf Beobachterentwurf (13) Im Im geschlossenen Regelkreis können k die die Dynamik der der Regelstrecke und und des des Beobachters unabhängig ngig voneinander mit mit Hilfe der der Vektoren k und und lleingestellt werden. Die Die Eigenwerte des des Beobachters sollten in in der der linken komplexen Ebene deutlich links von von den den dominierenden Eigenwerten des des Regelkreises liegen. Mit Mit einer solchen Wahl ist ist sichergestellt, daß daßder der Beobachterfehler deutlich schneller abklingt als als die die Eigendynamik des des Systems. Damit wird wird auch gewährleistet, daß daßder der Beobachter die die Regelgüte nur nur wenig verschlechtert im im Vergleich zu zu einem Zustandsregler mit mit gemessenen Zustandsgrößen.

23 Anmerkungen zum Beobachterentwurf (2) (2) Beobachterentwurf (14) Im Im Gegensatz zur zur realen Regelstrecke ist ist der der Beobachter eine eine reine Simulation. Daher muß mußman man bei bei der der Wahl der der Eigenwerte des des Beobachters nicht auf auf Stellgrößenbeschränkungen enbeschränkungen nkungen achten. Die Die Beobachterdynamik darf darf in in der der Praxis nicht beliebig schnell gemacht werden!! Es Es muß mußein Kompromiß zwischen schneller Beobachter- dynamik und und Rauschempfindlichkeit gefunden werden. Je Je stärker die die Meßgröße y(t) y(t) verrauscht ist, ist, desto langsamer sollte der der Beobachter eingestellt werden.

24 Beobachterentwurf (15)

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Entwurf durch Polvorgabe

Entwurf durch Polvorgabe Grundidee der Zustandsregelung Entwurf durch Polvorgabe Zustandsgröß ößen, innere Informationen aus dem Prozeß,, werden zurückgef ckgeführt. Vorteile: Bei Bei vollständiger Steuerbarkeit ist ist eine eine

Mehr

Entwurf robuster Regelungen

Entwurf robuster Regelungen Entwurf robuster Regelungen Kai Müller Hochschule Bremerhaven Institut für Automatisierungs- und Elektrotechnik z P v K Juni 25 76 5 OPTIMALE ZUSTANDSREGELUNG 5 Optimale Zustandsregelung Ein optimaler

Mehr

Zusammenfassung der 6. Vorlesung

Zusammenfassung der 6. Vorlesung Zusammenfassung der 6. Vorlesung w-transformation Die w-transformationbildet das Innere des Einheitskreises der z-ebene in die linke w-ebene ab. z 1 w= z+1, bzw. z= 1+w 1 w Nach Anwendung der w-transformationist

Mehr

Moderne Methoden der Regelungstechnik. Moderne Methoden der Regelungstechnik

Moderne Methoden der Regelungstechnik. Moderne Methoden der Regelungstechnik Vorlesung: Dozenten: Professor Ferdinand Svaricek,, PD PD Gunther Reißig ig Ort: Ort: 33/2301 Zeit: Zeit: Di Di 9.45 9.45 11.15 11.15 Uhr Uhr Seminarübungen: Dozent: PD PD Gunther Reißig ig Ort: Ort: 036

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

Mehrgrößenregelung. Aufgabensammlung

Mehrgrößenregelung. Aufgabensammlung Fakultät für Elektrotechnik und Informationstechnik Professur Regelungstechnik und Systemdynamik Prof. Dr.-Ing. Stefan Streif Mehrgrößenregelung Aufgabensammlung Dr.-Ing. Arne-Jens Hempel M.Sc. Thomas

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Steuer- und Erreichbarkeit zeitdiskreter Systeme Bei zeitdiskreten Systemen sind Steuer-und Erreichbarkeit keine äquivalente Eigenschaften. Die Erfüllung des Kalmankriteriums

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am..9 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4 erreichbare

Mehr

Regelungstechnik I (WS 12/13) Klausur ( )

Regelungstechnik I (WS 12/13) Klausur ( ) Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Klausur: Regelungs- und Systemtechnik 2

Klausur: Regelungs- und Systemtechnik 2 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Klausur: Regelungs- und Systemtechnik 2 Kirchhoff-Hörsaal 1 Donnerstag, den 19. 09. 2013 Beginn: 09.30 Uhr Bearbeitungszeit: 120 Minuten

Mehr

Zusammenfassung der 7. Vorlesung

Zusammenfassung der 7. Vorlesung Zusammenfassung der 7. Vorlesung Beschreibung und Analyse dynamischer Systeme im Zustandsraum Methoden zur Berechnung der Transitionsmatrix Φ(t) = e At Numerische Integration Reihenentwicklung Mit Hilfe

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Birgit Steffenhagen. Formelsammlung. Regelungstechnik. Mit 300 Bildern. Fachbuchverlag Leipzig im Carl Hanser Verlag

Birgit Steffenhagen. Formelsammlung. Regelungstechnik. Mit 300 Bildern. Fachbuchverlag Leipzig im Carl Hanser Verlag Birgit Steffenhagen Formelsammlung Regelungstechnik Mit 300 Bildern Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Grundbegriffe 11 1.1 Systeme und Signale 11 1.2 Steuerung und Regelung

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Regelungstechnik 2. 4y Springer. Jan Lunze. Mehrgrößensysteme Digitale Regelung. 4., neu bearbeitete Auflage

Regelungstechnik 2. 4y Springer. Jan Lunze. Mehrgrößensysteme Digitale Regelung. 4., neu bearbeitete Auflage Jan Lunze Regelungstechnik 2 Mehrgrößensysteme Digitale Regelung 4., neu bearbeitete Auflage Mit 257 Abbildungen, 53 Beispielen, 91 Übungsaufgaben sowie einer Einführung in das Programmsystem MATLAB 4y

Mehr

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12.

Einführung in die Robotik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. Einführung in die Robotik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 04. 12. 2012 The human is perhaps the most intelligent control system

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

120 Minuten Seite 1. Einlesezeit

120 Minuten Seite 1. Einlesezeit 120 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT TECHNISCHE UNIVERSITÄT ILMENAU Institut für Automatisierungs- und Systemtechnik Fachgebiet Simulation und Optimale Prozesse Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge

Mehr

Theorie der Regelungstechnik

Theorie der Regelungstechnik 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. H. Gassmann Theorie der Regelungstechnik Eine Einführung Verlag Harri

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Flachheit Eine nützliche Methodik auch für lineare Systeme

Flachheit Eine nützliche Methodik auch für lineare Systeme Flachheit Eine nützliche Methodik auch für lineare Systeme Michael Zeitz Institut für Systemdynamik Universität Stuttgart Flachheits-Methodik [FLIESS et al. 92ff] Lineare SISO und MIMO Systeme M. Zeitz

Mehr

14 Übungen zu Regelung im Zustandsraum Teil 2

14 Übungen zu Regelung im Zustandsraum Teil 2 Zoltán Zomotor Versionsstand: 9. März 25, :32 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3./de/

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Entwurf von Reglern reduzierter Ordnung und Entwicklung einer Workbench

Entwurf von Reglern reduzierter Ordnung und Entwicklung einer Workbench Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Meß- und Automatisierungstechnik Professur für Regelungstechnik Entwurf von Reglern reduzierter Ordnung

Mehr

Kybernetik Intelligent Agents- Action Selection

Kybernetik Intelligent Agents- Action Selection Kybernetik Intelligent Agents- Action Selection Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 26. 06. 2012 Intelligent Agents Intelligent Agents Environment

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

Zusammenfassung der 4. Vorlesung. ensysteme. Mehrgrößensysteme

Zusammenfassung der 4. Vorlesung. ensysteme. Mehrgrößensysteme Mehrgrößensysteme ensysteme Zusammenfassung der 4. Vorlesung Standardform für ffür r nicht steuerbare Systeme Pole Pole und und Nullstellen von von MIMO-Systemen Pole Pole der der Übertragungsmatrix? Smith-McMillan-Form

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Regelungs- und Systemtechnik 1. Kapitel 1: Einführung

Regelungs- und Systemtechnik 1. Kapitel 1: Einführung Regelungs- und Systemtechnik 1 Kapitel 1: Einführung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Luft- und Raumfahrtindustrie Zu regelnde Größen: Position Geschwindigkeit Beschleunigung

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Übungsskript Regelungstechnik 2

Übungsskript Regelungstechnik 2 Seite 1 von 11 Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik Prof. Dr.-Ing. Klaus Dietmayer / Seite 2 von 11 Aufgabe 1 : In dieser Aufgabe sollen zeitdiskrete Systeme untersucht werden.

Mehr

Erreichbarkeit und Zustandsregler

Erreichbarkeit und Zustandsregler Übung 5 Erreichbarkeit und Zustandsregler 5. Kriterium für die Erreichbarkeit Betrachtet wird wieder ein zeitkontinuierliches, lineares und zeitinvariantes System (LZI bzw. LTI : Linear Time Invariant)

Mehr

Inhaltsverzeichnis. Birgit Steffenhagen. Kleine Formelsammlung Regelungstechnik ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Birgit Steffenhagen. Kleine Formelsammlung Regelungstechnik ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Birgit Steffenhagen Kleine Formelsammlung Regelungstechnik ISBN: 978-3-446-41467-9 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41467-9 sowie im Buchhandel.

Mehr

Springer-Lehrbuch. Regelungstechnik 2. Mehrgrößensysteme, Digitale Regelung. von Jan Lunze. Neuausgabe

Springer-Lehrbuch. Regelungstechnik 2. Mehrgrößensysteme, Digitale Regelung. von Jan Lunze. Neuausgabe Springer-Lehrbuch Regelungstechnik 2 Mehrgrößensysteme, Digitale Regelung von Jan Lunze Neuausgabe Regelungstechnik 2 Lunze schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Zustandsregelung. Prof. Dr. Thomas Holzhüter. Fachhochschule Hamburg Fachbereich Elektrotechnik und Informatik

Zustandsregelung. Prof. Dr. Thomas Holzhüter. Fachhochschule Hamburg Fachbereich Elektrotechnik und Informatik Prof. Dr. Thomas Holzhüter Fachhochschule Hamburg Fachbereich Elektrotechnik und Informatik 2009 i Inhaltsverzeichnis Literaturverzeichnis ii Zustands-Regelung. Zustandsraum-Darstellung........................2

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Regelungstechnik 1 Praktikum Versuch 1.1 1 nterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Die Aufgabe der Regelungstechnik besteht im weitesten Sinne darin, einen bestimmten

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 9.4.23 Arbeitszeit: 2 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit

Lösung zum Übungsblatt - Steuerbarkeit und Beobachtbarkeit Prof. Dr.-Ing. Jörg Raisch Dr.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Veranstaltung Mehrgrößenregelsysteme Aufgabe

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich

Regelsysteme Tutorial: Stabilitätskriterien. George X. Zhang HS Institut für Automatik ETH Zürich Regelsysteme 1 5. Tutorial: Stabilitätskriterien George X. Zhang Institut für Automatik ETH Zürich HS 2015 George X. Zhang Regelsysteme 1 HS 2015 5. Tutorial: Stabilitätskriterien Gliederung 5.1. Stabilität

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 19. 06.

Kybernetik Regelung. Mohamed Oubbati Institut für Neuroinformatik. Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 19. 06. Kybernetik Regelung Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 50 2453 mohamed.oubbati@uni-ulm.de 9. 06. 202 Was ist Regelung? Regelung ist eine gezielte Beeinflussung dynamischer Systeme,

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K

Band I: Analyse und Synthese. lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K J. Ackermann Abtastregelung Zweite Auflage Band I: Analyse und Synthese Mit 71 Abbildungen lechnischs? Hochschule Oarmstadfl.FACHBEREICH INFORMATIK B 1 B L I O T H E K laventa r- h' r O o JJj Sadigebiefei

Mehr

Zusammenfassung der 9. Vorlesung

Zusammenfassung der 9. Vorlesung Zusammenfassung der 9. Vorlesung Analyse des Regelkreises Stationäres Verhalten des des Regelkreises Bleibende Regelabweichung für ffür r FFührungs- und und Störverhalten Bleibende Regelabweichung für

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME

AUFGABENSAMMLUNG ZUM LEHRGEBIET. AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME Dr.-Ing. Tatjana Lange Fachhochschle für Technik nd Wirtschaft Fachbereich Elektrotechnik AUFGABENSAMMLUNG ZUM LEHRGEBIET AUTOMATISIERUNGSTECHNIK bzw. KONTINUIERLICHE SYSTEME. Differentialgleichngen Afgabe.:

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 10.12.2010 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer:

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik

Formelsammlung. für den Teilbereich Zustandsraumdarstellung der Vorlesung. Einführung in die Regelungstechnik Formelsammlung für den Teilbereich Zustandsraumdarstellung der Vorlesung Einführung in die Regelungstechnik Diese Formelsammlung ist ein Auszug aus der Formelsammlung zur Systemtheorie-Vorlesung von Matthias

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Entwicklung eines hybriden Algorithmus für adaptive Regler im geschlossenen Regelkreis

Entwicklung eines hybriden Algorithmus für adaptive Regler im geschlossenen Regelkreis Entwicklung eines hybriden Algorithmus für adaptive Regler im geschlossenen Regelkreis Ensio Hokka Problemstellung In vielen industriellen Regelapplikationen besteht die Notwendigkeit die Parametrisierung

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Zustandsraum: Historische Einordnung

Zustandsraum: Historische Einordnung Zustandsraum: Historische Einordnung Die Grundlagen der Zustandsraummethoden wurden im Zeitraum 1955 1965 von Kalman und seinen Kollegen in dem Research Institute for Advanced Studies in Baltimore entwickelt.

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen

Versuchsanleitung Zweipunktregelung. Versuch. Zweipunktregelung. Kennenlernen typischer Eigenschaften und Berechnungsmethoden von Zweipunktregelungen Otto-von-Guericke Universität Magdeburg Fakultät für Elektrotechnik Institut für Automatisierungstechnik Versuch Zweipunktregelung Versuchsziel: Kennenlernen typischer Eigenschaften und Berechnungsmethoden

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr