~n - f =- (R' - r/)2,

Größe: px
Ab Seite anzeigen:

Download "~n - f =- (R' - r/)2,"

Transkript

1 44 7. By fitting the submatrices Y n m together we can now obtn a solution to the matrix equation Bs Y= YBT where Bs and BT are the rational canonical forms of the matrices S and T respectively. Suppose then that W - S W = Bs and that Z- T Z=BT. t follows that X = W Y Z - is a solution to the matrix equation SX=XT. The solution to the problem has now been given. Mathematics. - Eine obere Grenze für das isoperimetrische Defizit einer ebenen Kurve. Von O. BOTTEMA. (Communicated by Prof. W. VAN DER WOUDE.) (Communicated at the meeting of April 9, 1933). st p der Umfang, (der Flächeninhalt einer ebenen Kurve, 50 besteht die Ungleichung ~ - f =:'::: O 4n - -, wobei das Gleichheitszeichen nur für den Kreis gilt. Schon vor längerer Zeit hat F. BERNSTEN ) eine Verschärfung dieser isoperimetrischen Ungleichung gegeben, wobei im rechten Glied statt der Null eine Zahl steht, welche positiv ausfällt für jede Kurve, welche kein Kreis ist. Eine weitere Verschärfung ist das Ziel einer Reihe von Arbeiten von BONNESEN ) gewesen. Sein Hauptresultat ist dabei die Ungleichung P4- - ;;z { =- (R - r), wo R den Radius des kleinsten die Kurve enthaltenden Kreises, r den Radius des grössten der Kurve einschreibbaren Kreises bedeutet. Darüber hinaus hat BONNESEN gezeigt ~n - f =- (R' - r/), ) F. BERNSTEN, Math. Ann. 60 (1905), S ) Vgl. i. B. : Math. Ann, 8. (191), S. 16 ; Math. Ann. 9\ (19.), S. 5 ; Acta Math 8 (196), p. 13.

2 443 WO R' und r' die Radien des kleinsten konzentrischen Kreisringes sind. welcher die Kurve in sieh schliesst. Das Gleichheitszeiehen gilt dab ei immer nur für den Kreis. Daneben hat man auch gewisse obere Grenzen für den Ausdruck ~n - f (welchen wir mit BONNESEN als isoperimetrisches Defizit der Kurve be~ zeiehnen) ableiten können. So bewies KUBOTA ) für Eikurven die Ungleichung: l?~ - f -= ~ d 'n - n. wo d den Durchmesser der Kurve bedeudet. während F AV ARD ) Beziehung ~n - f -==- n R' (R' - r'j die abgeleitet hat. Wir beweisen den folgenden Satz : Hat eine Eikurve mit dem Umfang p und dem Flächeninhalt f in jedem Punkt einen Krümmungsradius und sind el und e dessen obere. bzw. untere Grenze, so ist wobei das Gleichheitszeichen nur gilt für den Kreis. Wir betrachten zwei ebene konvexe Polygone. A A An und B B Bn wo die Seiten A A i+ und Bi Bi+ gleiehsinnig parallel sind. Der durch A A An festgelegte Umlaufsinn sei der positive. Mit den zwei konvexen Bereiehen A und B können wir die lineare Schar C (1) = (1-1) A + 1 B bilden. Dabei verstehen wir unter C (1) ein Polygon Cl C C n wo C ein auf der Geraden A Bi liegender Punkt ist. soda ss C Ai : C Bi = (1-1) : 1. Die Seite C C + liegt offenbar auf einer Geraden. welche mit Ai Ai+ und Bi Bi + parellel ist. Hat Ai die Koordinaten Xi' Y i Bi die Koordinaten x;. y;. dann hat Ci die Koordinaten ~ ' = (1-1) X + 1 x; ) KUBOTA. Science Rep. of the Töhoku mp. Univ. 13 (193); The T6hoku Matb. J. Vol. H (195). pg. 60. ) FAVARD. Matematisk Tidsskrift B (199). pg. 6.

3 444 Die Flächeninhalte der Polygone A und B sind bzw.: n F =t (Xi Yi+-X+ Yi) Für den lnhalt von C erhält man wo den von BRUNN und MNKOWSKl) herrührenden gemischten Flächeninhalt der beiden Bereiche bedeutet. Für diesen letzteren gilt bekanntlich die fundamentale Ungleichung wo das Gleichheitszeichen nur gilt, wenn die zwei Bereiche homothptisch sind. Diese Ungleichung sàgt aus, dass der lnhalt F (À) nicht für jeden Wert von À positiv ist. Wenn man mit der hier angewandten Methode ei ne untere Grenze für das isoperimetrische Defizit herleiten will. so hat man wie es von BLASCHKE ) und im wesentlichen auch von BONNESEN getan ist, verschiedene Werte von À anzugeben, wobei F (À) == 0 ist. Wir suchen dagegen nach solchen Werten von J" wobei F (l) =- ausfällt. Es ist klar, dass für 0 :::; À::S; 1 der Wert F (À) positiv ist; C (À) ist dann nämlich ein konvexes Polygon dessen Seiten mit den übereinstimmenden von A und B gleiehsinnig parallel sind. Wenn die Längel" der Seiten A Ai+ und Bi Bi+ mit und a'i bezeichnet werden, so findet man für die Länge von Cl C i+ : wenn man für die Verbindungsgerade von C und C i+ die Richtung Ai Ai+ als die positive wählt. Es gibt also immer solche Werte von À, wobei a;' == 0 ist; er geht daraus eb en die Möglichkeit hervor, dass F (J.) negativ wird. Anderseits ist aber gewiss F (À) :=:: 0, wenn für jeden Wert von i a;' =- 0 ist. Wählt man aber J, so, dass für jeden Wert von i die Zahl a;' negativ ausfällt, dann ist das Polygon C (À) ein solches, dessen Seiten sämtlich mit denen von A und B ungleichsinnig parallel sind. C (l) ist dann aber wieder ein konvexes Polygon, wobei der Umlaufsinn Cl C C n der positive ist, d.h. wir haben abermals F (l) =- O. ) MNKOWSK. Volumen und Oberfläche, Ges. Abh. 11, S. 30. ) BLASCHKE, Hamb. Abh. (19), S. 06.

4 445 also wo Wir setzen À- t l. F(.l.) =). f(t). Mit Ausnahme des Wertes Je = O. wo F()') den positiven Wert F hat. sind Fund f gleichzeitig > O. = 0 und < o. Wenn 0 < ). ::s; 1 dann ist t ::S; O. Die Form f(t) ist also positiv für negative Werte von t. Weiter ist f(t) =- O. wenn (i = n) also wenn und wenn t ~ 1 und gleichzeitig t -=::: ~ - :-:>-- al t =- 1 un d 91 eic h zei tig t -- ~ f (t) ist aber auch =- O. wenn also wenn und auch wenn 1 =- t =- a 'i - - (i = n) Wir haben also d.h. f(t) ~ 0 l-=:::t ~ ~, wenn t -= a-, - al, f(t) =- 0 wenn t =- ~ (i = n) - al (i = n) f (t) =- 0 wenn t -= min. ~ B, 1 f(t) =- 0 wenn t - max. ~.

5 446 Die Differenz der Nullstellen von f(t) ist ~ die folgende Ungleichung erhalten haben: F [,, l -= 1 at. a, F 1 - P P = - max. - - mm. - 4 a, a, J V F; - P F sodass wir Dabei sind und a; übereinstimmende Seiten der Polygone A und B. Diese Seiten verhalten sich aber wie die Radien ei und e; der Kreise. welche bzw. die Seiten Ai- Ai. Ai Ai+. Ai+ Ai+ und Bi- Bi. Bi Bi+. Bi+ Bi+ an der nnenseite des Polygons berühren. Wir haben also p [,, J ~ 1 (!i. P ei - P P =- max. - -mm.- 4 ei ei WO (!i und e; die Radien übereinstimmender Berührungskreise der Poly~ gone sind. Wenn in den Ungleichungen das Gleichheitszeichen gilt. so ist dabei notwendig f (max. ~ ') =0 d.h. also dass das Polygon C (J,) den Flächeninhalt Null hat. wenn À so gewählt wird. dass eine Seite null ist. und die anderen nicht negativ sind. Für diesen Wert von À. sind also die Seiten sämtlich nul!. Für jeden andren Wert von À sind sie also entweder sämtlich positiv oder negativ. Die Funktion f(t) hat also nur eine Nullstelle. d.h. P~ - P P = 0 und die Polygone sind homothetisch. Wir können nun die abgeleitete Ungleichung auf beliebige konvexe Kurven übertragen. indem wir sie anwenden auf eine Reihe den Kurven umschriebener Polygone mit wachsender Seitenzah!. Die Werte ei und e; nähern sich dabei den Radien der Krümmungskreise in übereinstimmenden Punkten der Kurven. d.h. in Punkten mit gleichsinnig parallellen Tangenten. Wenden wir die Ungleichung an in dem Fall. dass die Kurve A der Einheitskreis ist. dann wird P bekanntlich gleich t p wo p der Umfang von Bist. P wird n. die Zahlen e werden sämtlich 1. Schreiben wir f statt P und deuten wir max. r/ mit el. min. e' mit e an. so er~ halten wir wobei das Gleichheitszeichen nur gilt. wenn die Kurve ein Kreis ist.

Aufkleber der Gruppe:

Aufkleber der Gruppe: Praxis 9 Theorie Bewertung.doc Situation: Theorie A e m e F g e ng nom ne ol n: A nm e r k ung : D i e g e s t e l l t e n A u f g a be n w e r d e n n a c h d e n a k t u e l l g ü l t i g e n L e h r

Mehr

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n 4. Bayes Spiele Definition eines Bayes Spiels G B (n, S 1,..., S n, T 1,..., T n, p, u 1,..., u n ) n Spieler 1,..., n S i Strategiemenge für Spieler i, S S 1... S n T i Typmenge für Spieler i, T T 1...

Mehr

Mathematics. - Ueber die Difterentialkovariante erster Ordnung der binären kubischen Difterentialform. Von P. G. MOLENAAR.

Mathematics. - Ueber die Difterentialkovariante erster Ordnung der binären kubischen Difterentialform. Von P. G. MOLENAAR. Mathematics. - Ueber die Difterentialkovariante erster Ordnung der binären kubischen Difterentialform. Von P. G. MOLENAAR. (Communicated by Prof. R. WEITZENBÖCK.) (Communicated at the meeting of December

Mehr

The English Tenses Die englischen Zeitformen

The English Tenses Die englischen Zeitformen The English Tenses Die englischen Zeitformen Simple Present (Präsens einfache Gegenwart) Handlungen in der Gegenwart die sich regelmäßig wiederholen oder einmalig geschehen I go you go he goes she goes

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine

ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine 24 ab (a wird gefunden als die Abcisse des Minimums). so erhält man eine gerade Linie. Die (:~). Kurve (verg I. Fig. 5) ist ein Parabel. Wenn nun d gröszer als a wird. wird die Kurve wieder steigen. Die

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Copyright by Hildegard Heilmann IAG 13.03.2004. Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung.

Copyright by Hildegard Heilmann IAG 13.03.2004. Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung. MTEquationSection;Flächenintegrale mit Derive Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung. Einige Anleitungen zum Arbeiten mit Derive: Befehle: VECTOR, ITERATES,

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Geometrie und Bedeutung: Kap 5

Geometrie und Bedeutung: Kap 5 : Kap 5 21. November 2011 Übersicht Der Begriff des Vektors Ähnlichkeits Distanzfunktionen für Vektoren Skalarprodukt Eukidische Distanz im R n What are vectors I Domininic: Maryl: Dollar Po Euro Yen 6

Mehr

Oberflächenberechnung bei Prisma und Pyramide

Oberflächenberechnung bei Prisma und Pyramide Lösungscoach Oberflächenberechnung bei Prisma und Pyramide Aufgabe Ein Schokoladenhersteller bekommt zwei Vorschläge für eine neue Verpackung: 5,9 cm 3 cm 2 cm 3 cm 3 cm Das linke Modell ist ein gerades

Mehr

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich?

KURZANLEITUNG. Firmware-Upgrade: Wie geht das eigentlich? KURZANLEITUNG Firmware-Upgrade: Wie geht das eigentlich? Die Firmware ist eine Software, die auf der IP-Kamera installiert ist und alle Funktionen des Gerätes steuert. Nach dem Firmware-Update stehen Ihnen

Mehr

Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007

Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007 Workshops zur VO Einfu hrung in das mathematische Arbeiten im SS 2007 Kegelschnitte Evelina Erlacher 13. & 14. M arz 2007 Denken wir uns einen Drehkegel, der nach oben als auch nach unten unbegrenzt ist.

Mehr

Schriftliche Abiturprüfung Leistungskursfach Mathematik

Schriftliche Abiturprüfung Leistungskursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Leistungskursfach

Mehr

Gymnasium Liestal Maturitätsprüfungen 2006

Gymnasium Liestal Maturitätsprüfungen 2006 Bemerkungen: - Die Prüfungsdauer beträgt 4 Stunden - Beginnen Sie jede Aufgabe mit einem neuen Blatt - Die Arbeit mit dem Taschenrechner muss dokumentiert sein Hilfsmittel: - CAS-Taschenrechner mit Anleitung

Mehr

Testsequenz "Cloud-User Unmount volume" (ID 243) Testprotokoll. Testsequenz Projekt > System Test > Cloud-User Unmount volume (ID 243)

Testsequenz Cloud-User Unmount volume (ID 243) Testprotokoll. Testsequenz Projekt > System Test > Cloud-User Unmount volume (ID 243) Testprotokoll Testsequenz Projekt > System Test > Cloud-User Unmount volume (ID 243) Beschreibung Bemerkung Tester SUT Mindestpriorität Testzeit Dauer The test cases for the use-case "Unmount volume".

Mehr

Preisliste w a r e A u f t r a g 8. V e r t r b 8. P C K a s s e 8. _ D a t a n o r m 8. _ F I B U 8. O P O S 8. _ K a s s a b u c h 8. L o h n 8. L e t u n g 8. _ w a r e D n s t l e t u n g e n S c h

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Schweißfittings. RO-FI Ihr starker Partner in Sachen Edelstahl. Zuverlässig durch Qualitätsmanagement - ISO 9001 STAINLESS STEEL

Schweißfittings. RO-FI Ihr starker Partner in Sachen Edelstahl. Zuverlässig durch Qualitätsmanagement - ISO 9001 STAINLESS STEEL STAINLESS STEEL Schweißfittings Zuverlässigkeit durch Qualitätsmanagement Reliability by quality management Zuverlässig durch Qualitätsmanagement - ISO 9001 Maße in mm 1 Anwendungsbereich Diese Norm ist

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

St.Anton am Arlberg London St. Pancras International

St.Anton am Arlberg London St. Pancras International Mein Fahrplanheft gültig vom 15.12.2014 bis 28.08.2015 St.Anton am Arlberg London St. Pancras International 2:10 Bus 4243 2:51 Landeck-Zams Bahnhof (Vorplatz) 2:51 Fußweg (1 Min.) nicht täglich a 2:52

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass V. Geradengleichungen in Parameterform 5. Definition ---------------------------------------------------------------------------------------------------------------- x 3 v a x x x Definition und Satz :

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

5/7/09. 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche

5/7/09. 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1. Didak(k der Zahlbereichserweiterungen 1.3 Größenbereiche und Skalenbereiche 1.31 Größenbereiche 1. Didak(k der Zahlbereichserweiterungen

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Europäisches Patentamt 1 1 1 1 European Patent Office Office europeen des brevets (11) EP 0 943 581 A2

Europäisches Patentamt 1 1 1 1 European Patent Office Office europeen des brevets (11) EP 0 943 581 A2 (19) (12) Europäisches Patentamt 1 1 1 1 European Patent Office Office europeen des brevets (11) EP 0 943 581 A2 EUROPÄISCHE PATENTANMELDUNG (43) Veröffentlichungstag: igstag: (51) int. Cl.6: B66F 3/00

Mehr

Listening Comprehension: Talking about language learning

Listening Comprehension: Talking about language learning Talking about language learning Two Swiss teenagers, Ralf and Bettina, are both studying English at a language school in Bristo and are talking about language learning. Remember that Swiss German is quite

Mehr

ASKUMA-Newsletter. 7. Jahrgang. Juni 2008 bis April 2009

ASKUMA-Newsletter. 7. Jahrgang. Juni 2008 bis April 2009 ASKUMA-Newsletter Juni 2008 bis April 2009 ASKUMA Newsletter - 1 - INHALTSVERZEICHNIS INHALTSVERZEICHNIS...2 AUSGABE JUNI 2008...3 Inhaltsverzeichnis... 3 Artikel... 4 AUSGABE AUGUST 2008...11 Inhaltsverzeichnis...

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

2. Linsen und Linsensysteme

2. Linsen und Linsensysteme 2. Linsen und Linsensysteme 2.1. Sphärische Einzellinsen 2.1.1. Konvexlinsen Konvexlinsen sind Sammellinsen mit einer positiven Brennweite. Ein paralleles Lichtbündel konvergiert nach dem Durchgang durch

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

Berufsmaturitätsprüfung 2013 Mathematik

Berufsmaturitätsprüfung 2013 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium

Geogebra im Geometrieunterricht. Peter Scholl Albert-Einstein-Gymnasium Geogebra im Geometrieunterricht Bertrand Russel in LOGICOMIX Geometrie im Lehrplan Klasse 5 Klasse 6 Klasse 7 Klasse 8 Klasse 9 Oberstufe Parallele und senkrechte Geraden Kreise Winkel benennen, messen

Mehr

Erweiterung: Flächeninhalt mit Vorzeichen. a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn

Erweiterung: Flächeninhalt mit Vorzeichen. a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn Flächeninhalte Flächeninhalt eines Dreiecks: R A(PQR)= 1 2 = 1 2 a b sin α a b P b α a c Q Erweiterung: Flächeninhalt mit Vorzeichen A(PQR)= 1 2 1 2 a b, P, Q, R gegen Uhrzeigersinn a b, P, Q, R im Uhrzeigersinn.

Mehr

Tafelbild zum Einstieg

Tafelbild zum Einstieg Tafelbild zum Einstieg 69 Name: Symbol: Stammgruppenfarbe: Definition: Kissing Number Das Kissing Number Problem Figur / Körper Kreise Quadrate gleichseitige Dreiecke Kugeln Kissing Number Skizze der Anordnung

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Dear Colleague, Please give us a call and let us know how we can assist you. We look forward to talking to you soon. Thank you.

Dear Colleague, Please give us a call and let us know how we can assist you. We look forward to talking to you soon. Thank you. Dear Colleague, Thank you for visiting our website and downloading a product catalog from the R.M. Hoffman Company. We hope this information will be useful to you in solving the application you are working

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Mathematik für Bauingenieure

Mathematik für Bauingenieure Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )

DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH ) Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon

Mehr

Dynamische Mathematik mit GeoGebra 30. März 1. April 2009

Dynamische Mathematik mit GeoGebra 30. März 1. April 2009 Dynamische Mathematik mit GeoGebra 30. März 1. April 2009 Angebote für Fortgeschrittene Thema 1 Gegeben ist ein beliebiges Dreieck. Über die Seiten des Dreiecks werden Quadrate errichtet. In zwei Ecken

Mehr

MINT-Circle-Schülerakademie

MINT-Circle-Schülerakademie 1 Einführung MINT-Circle-Schülerakademie Kurze Einführung, was Maple ist, wozu es dienen kann, wo es verwendet wird. Zur Einführung die folgenden Aufgaben bearbeiten lassen. Aufgabe 1. Gib unter Maple

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt

Mehr

Zwei Aufgaben, die auf windschiefe Regelflächen führen,

Zwei Aufgaben, die auf windschiefe Regelflächen führen, Zwei Aufgaben, die auf windschiefe Regelflächen führen, von À. KIEFER (Zürich). (Als Manuskript eingegangen am 25. Januar 1926.) I. Gesucht im Raum der Ort des Punktes, von dem aus die Zentralprojektionen

Mehr

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung

Teil I: Einführung Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie. Einführung c by Rolf Haenni (2006) Seite 170 Teil I: Motivation Einführendes Beispiel Merkmale eines Spiels Teil II: Mathematische Spieltheorie Neutrale Spiele Die Conway-Theorie Teil III: Spielalgorithmen in der

Mehr

\"UBER DIE BIVEKTOR\"UBERTRAGUNG

\UBER DIE BIVEKTOR\UBERTRAGUNG TitleÜBER DIE BIVEKTORÜBERTRAGUNG Author(s) Hokari Shisanji Journal of the Faculty of Science Citation University Ser 1 Mathematics = 北 要 02(1-2): 103-117 Issue Date 1934 DOI Doc URLhttp://hdlhandlenet/2115/55900

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

Algorithms & Datastructures Midterm Test 1

Algorithms & Datastructures Midterm Test 1 Algorithms & Datastructures Midterm Test 1 Wolfgang Pausch Heiko Studt René Thiemann Tomas Vitvar

Mehr

Exkurs: Polnische Räume

Exkurs: Polnische Räume Ein normaler Hausdorff-Raum mit abzählbarer Basis kann auf viele Weisen metrisiert werden; man kann insbesondere eine einmal gewonnene Metrik in vielerlei Weise abändern, ohne die von ihr erzeugte Topologie

Mehr

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007

Wirtschaftsstatistik. Konzentrations- und Disparitätsmessung 16.10.2007 Wirtschaftsstatistik Konzentrations- und Disparitätsmessung 16.10.2007 Begriffe Konzentration und Disparität Laut Oxford Advanced Learner s Dictionary by OUP, bzw. WordNet by Princeton University concentration:

Mehr

Welche Informationen N e w s K o mpa s s G mb H s a m melt und wie wir die D aten verwenden

Welche Informationen N e w s K o mpa s s G mb H s a m melt und wie wir die D aten verwenden Daten s chutzinformation V i el e n D a n k f ür I hr I nt e r e s s e a n u n s e r e r W e b s it e u n d u n s e r e A n g e b o t e s o w i e I hr V e rtr a u e n i n u n - s e r U n t e r n e h m

Mehr

Trigonometrie und Planimetrie

Trigonometrie und Planimetrie Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben

Mehr

TOOLS FOR PROFESSIONALS WERKZEUGE FÜR PROFIS THE SPECIALISTS IN THE JAEGER 10 FAMILY DIE SPEZIALISTEN DER JAEGER 10-FAMILIE

TOOLS FOR PROFESSIONALS WERKZEUGE FÜR PROFIS THE SPECIALISTS IN THE JAEGER 10 FAMILY DIE SPEZIALISTEN DER JAEGER 10-FAMILIE JAEGER 10 PRO WERKZEUGE FÜR PROFIS TOOLS FOR PROFESSIONALS DIE SPEZIALISTEN DER JAEGER 10-FAMILIE THE SPECIALISTS IN THE JAEGER 10 FAMILY Kann man ein Jagdgewehr verbessern, das auf der Drückjagd eine

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Raumgeometrie WORTSCHATZ 1

Raumgeometrie WORTSCHATZ 1 Raumgeometrie WORTSCHATZ 1 Video zur Raumgeometrie : http://www.youtube.com/watch?v=qbqbd0b3vzu VOKABEL : eine Angabe ; angeben ; was angegeben ist : ce qui est donné (les données) eine Annahme ; annehmen

Mehr

ssionspapiere der zeppelin university u schnitt diskussionspapiere der zepp

ssionspapiere der zeppelin university u schnitt diskussionspapiere der zepp zeppelin university Hochschule zwischen Wirtschaft, Kultur und Politik ussionspapiere der zeppelin university zu schnitt diskussionspapiere der zepp lin university zu schnitt diskussionspa iere der zeppelin

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Semantic Web. RDF, RDFS, OWL, and Ontology Engineering. F. Abel, N. Henze, and D. Krause 17.12.2009. IVS Semantic Web Group

Semantic Web. RDF, RDFS, OWL, and Ontology Engineering. F. Abel, N. Henze, and D. Krause 17.12.2009. IVS Semantic Web Group Semantic Web RDF, RDFS, OWL, and Ontology Engineering F. Abel, N. Henze, and D. Krause IVS Semantic Web Group 17.12.2009 Exercise 1: RDFS OWL Erstellen Sie mit Hilfe von RDF Schema und OWL eine Ontologie

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil):

Die Laufzeit muss nun ebenfalls in Monaten gerechnet werden und beträgt 25 12 = 300 Monate. Damit liefert die Sparkassenformel (zweiter Teil): Lösungen zur Mathematikklausur WS 2004/2005 (Versuch 1) 1.1. Hier ist die Rentenformel für gemischte Verzinsung (nachschüssig) zu verwenden: K n = r(12 + 5, 5i p ) qn 1 q 1 = 100(12 + 5, 5 0, 03)1, 0325

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

1. Pflicht-Übung Num. Mathematik 2 SFT (SS02)

1. Pflicht-Übung Num. Mathematik 2 SFT (SS02) 1. Pflicht-Übung Num. Mathematik 2 SFT (SS02) von Roland Steffen SFT1 "!$#$&%&')(* +-,.*0/123 45#0/6 47 89 00 : $; < Quellcode: /* Löst ein spezielles lineares GLS (A*x=b; tridiagonale Koeffizientenmatrix

Mehr

Veröffentlichung einer Mitteilung nach 27a Abs. 1 WpHG

Veröffentlichung einer Mitteilung nach 27a Abs. 1 WpHG Veröffentlichung einer Mitteilung nach 27a Abs. 1 WpHG First Sensor AG Peter-Behrens-Str. 15 12459 Berlin First Sensor-Aktie ISIN DE0007201907 Ι WKN 720190 25. November 2011 Veröffentlichung gemäß 26 Abs.

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

ROOMS AND SUITES A place for dreaming. ZIMMER UND SUITEN Ein Platz zum Träumen

ROOMS AND SUITES A place for dreaming. ZIMMER UND SUITEN Ein Platz zum Träumen BERLIN ZIMMER UND SUITEN Ein Platz zum Träumen Wünschen Sie, dass Ihre Träume weiter reisen? Unsere Zimmer und Suiten sind der perfekte Ort, um den Alltag hinter sich zu lassen und die kleinen Details

Mehr

Personalpronomen und das Verb to be

Personalpronomen und das Verb to be Personalpronomen und das Verb to be Das kann ich hier üben! Das kann ich jetzt! Was Personalpronomen sind und wie man sie verwendet Wie das Verb to be gebildet wird Die Lang- und Kurzformen von to be Verneinung

Mehr

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen

Abitur in Mathematik Operatoren. 2 Operatoren Anforderungen und Arbeitsaufträge in den Abiturprüfungen 2 Anforderungen und Arbeitsaufträge in den Abiturprüfungen Durch die in den Abituraufgaben verwendeten Arbeitsaufträge und Handlungsanweisungen oder auch genannt wie z. B. begründen, herleiten oder skizzieren

Mehr

Grundwissen Mathematik 7.Klasse Gymnasium SOB

Grundwissen Mathematik 7.Klasse Gymnasium SOB 1 Grundwissen Mathematik 7.Klasse Gymnasium SOB 1.Figurengeometrie 1.1.Achsensymmetrie Sind zwei Punkte P und P achsensymmetrisch bezüglich der Achse a, dann gilt [PP ] a und a halbiert [PP ]. a Jeder

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Berufsmaturitätsprüfung 2009 Mathematik

Berufsmaturitätsprüfung 2009 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2009 Mathematik Zeit: 180 Minuten Hilfsmittel: Formel- und Tabellensammlung ohne gelöste Beispiele, Taschenrechner

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

If you have any issue logging in, please Contact us Haben Sie Probleme bei der Anmeldung, kontaktieren Sie uns bitte 1

If you have any issue logging in, please Contact us Haben Sie Probleme bei der Anmeldung, kontaktieren Sie uns bitte 1 Existing Members Log-in Anmeldung bestehender Mitglieder Enter Email address: E-Mail-Adresse eingeben: Submit Abschicken Enter password: Kennwort eingeben: Remember me on this computer Meine Daten auf

Mehr

Mathematics (M4) (English version) ORIENTIERUNGSARBEIT (OA 11) Gymnasium. Code-Nr.:

Mathematics (M4) (English version) ORIENTIERUNGSARBEIT (OA 11) Gymnasium. Code-Nr.: Gymnasium 2. Klassen MAR Code-Nr.: Schuljahr 2005/2006 Datum der Durchführung Donnerstag, 6.4.2006 ORIENTIERUNGSARBEIT (OA 11) Gymnasium Mathematics (M4) (English version) Lesen Sie zuerst Anleitung und

Mehr