Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien

Größe: px
Ab Seite anzeigen:

Download "Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien"

Transkript

1 Wir unternehmen IT. Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Karlsruhe,

2 $id thgreiner Thorsten Greiner Teamleiter Software Development ConSol* Software GmbH, Düsseldorf Physiker, Big Data, Hadoop, Gitarre, Röhrenverstärker

3 Analyse-Backend Messen Speichern Auswerten Präsentieren Workflow

4 Analyse-Backend Messen Speichern Auswerten Präsentieren Workflow

5 Messsysteme Sensoren z.b. für: GPS Netzwerk UI-Events Sensor 1 Sensor 2 Sensor 3 Online oder Offline Zeit Datenvolumen: > 100 GB / Tag

6 Kennzahlen - Visualisierung ca. 100 verschiedene Kennzahlen mit entsprechender Visualisierung

7 RDBMS-basierte Lösung Batch Load BI

8 Probleme fehlende Skalierbarkeit Berechnung nur auf transformierten Daten Batch hohe Lizenzkosten kein quelloffenes System Load BI

9 Warum Hadoop? Skalierbarkeit! ELT statt ETL Berechnungen auf den Originaldaten Batch geringere Lizenzkosten Load BI offenes System

10 Deployment Rechenzentrum Cloud VS Ramp-Up / Kontrolle

11 Cluster in der Cloud Platform as a Service Amazon Elastic MapReduce Google App Engine MapReduce Apache Spark für Azure HDInsight Infrastructure as a Service Cluster mit API aufsetzen (Cloudera Manager/Apache Ambari) Testen von verschiedenen Konfigurationen sehr einfach!

12 Infrastructure as a Service Testen mit verschiedenen Instanztypen, z.b. EC2: Cores Memory Disk Anzahl r3.4xlarge GiB 320 GB 20 r3.8xlarge GiB 2 x 320 GB 10 d2.4xlarge GiB 12 x 2000 SSD GB 10 c3.8xlarge GiB 2 x 320 GB HD 16 SSD Kosten jeweils ca. 30 / h

13 Lokaler Cluster Standard-Hardware heisst nicht billig! Hardware-Sizing CPU optimiert + Balanciert CPUs (2x x GHz) RAM ( GB) weniger CPU Disks mehr HDD (12-24x 1 TB) Geringer Energieverbrauch - Speicher optimiert Netzwerk 2x1 GBit/s Standard, 10 GBit/s Optimum

14 Architektur Compute Cluster Rohdaten Node 1 Node 2 Node 3 Node 4 Kennzahlen Kennzahlen Lokaler Cluster Node 1 Node 2 Cloud Rechenzentrum

15 Architektur Rohdaten Kennzahlen Lokaler Cluster Node 1 Node 2 Hive Impala Cloud Rechenzentrum

16 Data Ingestion - wie kommen Daten in den Cluster? Ziel: Rohdaten strukturiert und effizient ablegen geeignet partitioniert (Messsystem, Datum) Originaldaten in Containerformaten ablegen (Sequencefiles, AVRO) Komprimierung Apache Flume Events Container

17 Implementierung / Optionen Hadoop-Skriptsprachen Pig Hive Hive Pig MapReduce Spark Frameworks MapReduce Spark YARN HDFS

18 MapReduce fester Ausführungsplan Spill-to-Disk D A T A robust aber langsam Mapper Mapper Mapper Mapper Reducer Reducer Sprache: Java R R

19 Spark flexibler Ausführungsplan In-Memory-Verarbeitung D A T A schnell aber fragil map filter keyby keyby Sprachen: Scala join join Java Python join aggregate R

20 Kennzahl-Berechnung mit Spark - Erkenntnisse Skalierung fast proportional mit Anzahl der Knoten Overhead bei Input / Output Partitionierung zu viele Partitionen: sehr kleine / kurze Tasks zu große Partitionen: Stabilitätsprobleme Kaum Performance-Verbesserung durch Caching Speicher in Spill-to-Memory investieren

21 Herausforderungen mit Spark Ausführungsplan - Anwender hat keine direkte Kontrolle - kaum Werkzeuge für Debugging / Troubleshooting Programmiermodell - funktionale Programmierung stateful vs. stateless Stabilität - Container werden terminiert, wenn Memory-Limits überschritten

22 Spark-Tuning Ausführungsplan verstehen Spark UI RDD.toDebugString Memory-Footprint verringern primitive Typen statt Java-Objekte Custom Partitioner nutzen Shuffle über Netzwerk vermeiden Custom Serializer für Kryo nutzen

23 Warum MapReduce? Statemachines mit MapReduce und Secondary Sort Sensor 1 Sensor 2 Sensor 3 t

24 Warum MapReduce? Statemachines mit MapReduce und Secondary Sort Sensor 1 Sensor 2 Sensor 3 t Stabilität Parameter-Tuning bei Spark

25 Verarbeitungs-Pipeline Sensordaten Container MapReduce zeitabh. Daten Kennzahlen Impala

26 Ausblick Sensordaten Container MapReduce zeitabh. Daten Kennzahlen Dashboard Impala

27 Big-Data-Projekte = Software-Entwicklung! Tools Versionkontrolle Continuous Integration DevOps Vorgehensmodell Anforderungsmanagement Scrum, Kanban

28 Big-Data-Projekte = Software-Entwicklung! Umgebungen Testsystem lokal (VM) Testcluster Integrationscluster Produktionscluster Testdaten Unit-Tests / lokale Tests reale Daten

29 Hadoop - Herausforderung im Betrieb Sicherheit Authentifizierung: Kerberos RBAC: Ranger, Sentry Perimeter Security: Knox Backup Replication ersetzt kein Backup Proprietäre Lösungen HDFS Snapshots

30 Fazit Hadoop-Cluster sind skalierbare Alternative zu RDBMS Lokaler Cluster vs. Cloud-Lösung Flexibilität Kosten Datenschutz / -sicherheit MapReduce vs. Spark Spark ist flexibler und schneller noch Unzulänglichkeiten bei Spark MapReduce in bestimmten Anwendungsfällen weiterhin sinnvoll

31 Danke!

32 ConSol* Software GmbH Franziskanerstraße 38 D München Tel: Fax:

33 Attributions - Cloud Computing Icon: Author: 百 楽 兎, Creative Commons Attribution-Share Alike 3.0 Unported license - Hadoop Elephant Icon: Author: Intel Free Press, Creative Commons Attribution- Share Alike 2.0 Generic

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Stratosphere. Next-Generation Big Data Analytics Made in Germany

Stratosphere. Next-Generation Big Data Analytics Made in Germany Stratosphere Next-Generation Big Data Analytics Made in Germany Robert Metzger Stratosphere Core Developer Technische Universität Berlin Ronald Fromm Head of Big Data Science Telekom Innovation Laboratories

Mehr

Der Cloud-Dienst Windows Azure

Der Cloud-Dienst Windows Azure Der Cloud-Dienst Windows Azure Master-Seminar Cloud Computing Wintersemester 2013/2014 Sven Friedrichs 07.02.2014 Sven Friedrichs Der Cloud-Dienst Windows Azure 2 Gliederung Einleitung Aufbau und Angebot

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

Hadoop-as-a-Service (HDaaS)

Hadoop-as-a-Service (HDaaS) Hadoop-as-a-Service (HDaaS) Flexible und skalierbare Referenzarchitektur Arnold Müller freier IT Mitarbeiter und Geschäftsführer Lena Frank Systems Engineer @ EMC Marius Lohr Systems Engineer @ EMC Fallbeispiel:

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de Big Data in a Nutshell Dr. Olaf Flebbe of ät oflebbe.de Zu mir Bigdata Projekt, benutzt Apache Bigtop Linux seit Anfang vor Minix/ATARI Linuxtag 2001? Promoviert in Computational Physics in Tü Seit Jan

Mehr

DduP - Towards a Deduplication Framework utilising Apache Spark

DduP - Towards a Deduplication Framework utilising Apache Spark - Towards a Deduplication Framework utilising Apache Spark utilising Apache Spark Universität Hamburg, Fachbereich Informatik Gliederung 1 Duplikaterkennung 2 Apache Spark 3 - Interactive Big Data Deduplication

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:

Mehr

Oracle EngineeredSystems

Oracle EngineeredSystems Oracle EngineeredSystems Überblick was es alles gibt Themenübersicht Überblick über die Engineered Systems von Oracle Was gibt es und was ist der Einsatzzweck? Wann machen diese Systeme Sinn? Limitationen

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center PROFI UND NUTANIX Portfolioerweiterung im Software Defined Data Center IDC geht davon aus, dass Software-basierter Speicher letztendlich eine wichtige Rolle in jedem Data Center spielen wird entweder als

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE

Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Institut für Kartographie und Geoinformatik Leibniz Universität Hannover Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Frank Thiemann, Thomas Globig Frank.Thiemann@ikg.uni-hannover.de

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

PRODATIS CONSULTING AG. Folie 1

PRODATIS CONSULTING AG. Folie 1 Folie 1 Führend im Gartner Magic Quadranten für verteilte, interagierende SOA Projekte Oracle ist weltweit auf Rang 1 auf dem Markt der Enterprise Service Bus Suiten (ESB) für SOA Software 2010 26,3 %

Mehr

MICROSOFT WINDOWS AZURE

MICROSOFT WINDOWS AZURE Cloud Computing à la Microsoft MICROSOFT WINDOWS AZURE Karim El Jed netcreate OHG Agenda Was ist Cloud Computing? Anwendungsszenarien Windows Azure Platform Alternativen Was ist Cloud Computing? Was ist

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

Cloud Computing mit mathematischen Anwendungen

Cloud Computing mit mathematischen Anwendungen Cloud Computing mit mathematischen Anwendungen Vorlesung SoSe 2009 Dr. Marcel Kunze Karlsruhe Institute of Technology (KIT) Steinbuch Centre for Computing (SCC) KIT the cooperation of Forschungszentrum

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

DATENBANK LÖSUNGEN. mit Azure. Peter Schneider Trainer und Consultant. Lernen und Entwickeln. www.egos.co.at

DATENBANK LÖSUNGEN. mit Azure. Peter Schneider Trainer und Consultant. Lernen und Entwickeln. www.egos.co.at DATENBANK LÖSUNGEN mit Azure Peter Schneider Trainer und Consultant Agenda Cloud Services, Data Platform, Azure Portal Datenbanken in Virtuelle Maschinen Azure SQL Datenbanken und Elastic Database Pools

Mehr

Umsetzung von BI-Lösungen mit Unterstützung einer Suchmaschine. TDWI Stuttgart 15.04.2015 Tobias Kraft, exensio GmbH

Umsetzung von BI-Lösungen mit Unterstützung einer Suchmaschine. TDWI Stuttgart 15.04.2015 Tobias Kraft, exensio GmbH Umsetzung von BI-Lösungen mit Unterstützung einer Suchmaschine TDWI Stuttgart 15.04.2015 Tobias Kraft, exensio GmbH Suchmaschinen Elasticsearch BI-Stack mit Elasticsearch Use Cases Pharmabranche 2 Funktionen

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS. Carsten Herbe DOAG Konferenz November 2014

Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS. Carsten Herbe DOAG Konferenz November 2014 Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS Carsten Herbe DOAG Konferenz November 2014 Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und

Mehr

MATCHING VON PRODUKTDATEN IN DER CLOUD

MATCHING VON PRODUKTDATEN IN DER CLOUD MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

Das SCAPE Projekt: Langzeitarchivierung und Skalierbarkeit Teil 2: Anwendungsfälle an der Nationalbibliothek

Das SCAPE Projekt: Langzeitarchivierung und Skalierbarkeit Teil 2: Anwendungsfälle an der Nationalbibliothek Das SCAPE Projekt: Langzeitarchivierung und Skalierbarkeit Teil 2: Anwendungsfälle an der Nationalbibliothek Dr. Sven Schlarb Österreichische Nationalbibliothek SCAPE ½ Informationstag 05. Mai 2014, Österreichische

Mehr

Platform as a Service (PaaS) 15.01.2010 Prof. Dr. Ch. Reich

Platform as a Service (PaaS) 15.01.2010 Prof. Dr. Ch. Reich Platform as a Service (PaaS) 15.01.2010 Prof. Dr. Ch. Reich Cloud Computing Deployment Typen: Private cloud Besitzt das Unternehmen Community cloud Gemeinsame Nutzung durch Gemeinschaft Public cloud Öffentliche

Mehr

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011 High Performance Batches in der Cloud Folie 1 Alles geht in die Cloud Image: Chris Sharp / FreeDigitalPhotos.net Cloud und Batches passen zusammen Batches Cloud Pay-per-Use Nur zeitweise genutzt Hohe Rechenkapazitäten

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Azure und die Cloud. Proseminar Objektorientiertes Programmieren mit.net und C# Simon Pigat. Institut für Informatik Software & Systems Engineering

Azure und die Cloud. Proseminar Objektorientiertes Programmieren mit.net und C# Simon Pigat. Institut für Informatik Software & Systems Engineering Azure und die Cloud Proseminar Objektorientiertes Programmieren mit.net und C# Simon Pigat Institut für Informatik Software & Systems Engineering Agenda Was heißt Cloud? IaaS? PaaS? SaaS? Woraus besteht

Mehr

Mobile Backend in der

Mobile Backend in der Mobile Backend in der Cloud Azure Mobile Services / Websites / Active Directory / Kontext Auth Back-Office Mobile Users Push Data Website DevOps Social Networks Logic Others TFS online Windows Azure Mobile

Mehr

Cloud Data Management

Cloud Data Management Cloud Data Management Kapitel 2: Infrastruktur und Services Dr. Anika Groß Sommersemester 2015 Universität Leipzig http://dbs.uni-leipzig.de/ Inhaltsverzeichnis Hardware-Infrastruktur Grundideen performanter

Mehr

Persönlichkeiten bei bluehands

Persönlichkeiten bei bluehands Persönlichkeiten bei Technologien bei Skalierbare Anwendungen mit Windows Azure GmbH & co.mmunication KG am@.de; posts..de/am 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit

Mehr

openstack Die OpenSource Cloud Julian mino GPN15-05.06.2015

openstack Die OpenSource Cloud Julian mino GPN15-05.06.2015 openstack Die OpenSource Cloud Julian mino GPN15-05.06.2015 Julian mino! Interessen: Netzwerke # Karlsruhe Hardware $ gpn15@lab10.de Cocktails " twitter.com/julianklinck Hacking Musik- und Lichttechnik

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

SKILLCLUSTER Schwalbenrainweg 30a 63741 Aschaffenburg Tel.: +49 (0)700-SCLUSTER Fax: +49 (0)700-SKILLS4U Mail: ping@skillcluster.

SKILLCLUSTER Schwalbenrainweg 30a 63741 Aschaffenburg Tel.: +49 (0)700-SCLUSTER Fax: +49 (0)700-SKILLS4U Mail: ping@skillcluster. MEGATREND CLOUDCOMPUTING THE NETWORK IS THE COMPUTER Eine 25 Jahre alte Vision BANDBREITEN Grundlagen sind geschaffen DEFINITION Cloud Computing über andere gegenwärtig diskutierte Ansätze (Software as

Mehr

Cloud Computing für die Verarbeitung von Metadaten. Prof. Magnus Pfeffer pfeffer@hdm-stuttgart.de

Cloud Computing für die Verarbeitung von Metadaten. Prof. Magnus Pfeffer pfeffer@hdm-stuttgart.de Cloud Computing für die Verarbeitung von Metadaten Prof. Magnus Pfeffer pfeffer@hdm-stuttgart.de Überblick Herausforderung Metadatenmanagement Werkzeuge zum Metadatenmanagement Cloud-basierte Dienstleistungen

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Cloud-Computing Seminar Hochschule Mannheim WS0910 1/23 Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Fakultät für Informatik Hochschule Mannheim tobnee@gmail.com

Mehr

SaaS-Referenzarchitektur. iico-2013-berlin

SaaS-Referenzarchitektur. iico-2013-berlin SaaS-Referenzarchitektur iico-2013-berlin Referent Ertan Özdil Founder / CEO / Shareholder weclapp die Anforderungen 1.000.000 registrierte User 3.000 gleichzeitig aktive user Höchste Performance Hohe

Mehr

Hadoop aus IT-Operations Sicht Teil 2 Hardware- und Netzwerk-Grundlagen

Hadoop aus IT-Operations Sicht Teil 2 Hardware- und Netzwerk-Grundlagen Hadoop aus IT-Operations Sicht Teil 2 Hardware- und Netzwerk-Grundlagen Brownbag am Freitag, den 09.08.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich

Mehr

Microsoft Azure: Ein Überblick für Entwickler. Malte Lantin Technical Evangelist, Developer Experience & Evangelism (DX) Microsoft Deutschland GmbH

Microsoft Azure: Ein Überblick für Entwickler. Malte Lantin Technical Evangelist, Developer Experience & Evangelism (DX) Microsoft Deutschland GmbH Microsoft Azure: Ein Überblick für Entwickler Malte Lantin Technical Evangelist, Developer Experience & Evangelism (DX) Microsoft Deutschland GmbH Moderne Softwareentwicklung Microsoft Azure unterstützt

Mehr

MapReduce-Konzept. Thomas Findling, Thomas König

MapReduce-Konzept. Thomas Findling, Thomas König MapReduce - Konzept 1 Inhalt 1. Motivation 2. Einführung MapReduce Google Rechenzentren Vergleich MapReduce und Relationale DBS 3. Hadoop Funktionsweise Input / Output Fehlerbehandlung 4. Praxis-Beispiel

Mehr

Mobile Backend in. Cloud. Azure Mobile Services / Websites / Active Directory /

Mobile Backend in. Cloud. Azure Mobile Services / Websites / Active Directory / Mobile Backend in Cloud Azure Mobile Services / Websites / Active Directory / Einführung Wachstum / Marktanalyse Quelle: Gartner 2012 2500 Mobile Internet Benutzer Desktop Internet Benutzer Internet Benutzer

Mehr

Hybride Cloud Datacenter

Hybride Cloud Datacenter Hybride Cloud Datacenter Enterprise und KMU Kunden Daniel Jossen Geschäftsführer (CEO) dipl. Ing. Informatik FH, MAS IT Network Amanox Solutions Dynamisches IT-Startup Unternehmen mit Sitz in Bern Mittlerweile

Mehr

!"#$"%&'()*$+()',!-+.'/',

!#$%&'()*$+()',!-+.'/', Soziotechnische Informationssysteme 5. Facebook, Google+ u.ä. Inhalte Historisches Relevanz Relevante Technologien Anwendungsarchitekturen 4(5,12316,7'.'0,!.80/6,9*$:'0+$.;.,&0$'0, 3, Historisches Facebook

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Gliederung. Was ist Cloud Computing Charakteristiken Virtualisierung Cloud Service Modelle Sicherheit Amazon EC2 OnLive Vorteile und Kritik

Gliederung. Was ist Cloud Computing Charakteristiken Virtualisierung Cloud Service Modelle Sicherheit Amazon EC2 OnLive Vorteile und Kritik Cloud Computing Gliederung Was ist Cloud Computing Charakteristiken Virtualisierung Cloud Service Modelle Sicherheit Amazon EC2 OnLive Vorteile und Kritik 2 Bisher Programme und Daten sind lokal beim Anwender

Mehr

Big Data für die Internet Sicherheit

Big Data für die Internet Sicherheit Big Data für die Internet Sicherheit Ralph Kemperdick Hans Wieser Microsoft 1 Mobile-first Data-driven Cloud-first 2 2 3 Messenger Wi nd ow s Liv e 4 5 Anwendung: Das Microsoft Cybercrime Center 6 Betrug

Mehr

SimpliVity. Hyper Converged Infrastruktur. we do IT better

SimpliVity. Hyper Converged Infrastruktur. we do IT better SimpliVity Hyper Converged Infrastruktur we do IT better Agenda Wer ist SimpliVity Was ist SimpliVity Wie funktioniert SimpliVity Live-Demo Wer ist Simplivity Gegründet: 2009 Mission: Simplify IT Infrastructure

Mehr

Seminarvortrag. Cloud Computing. Christophe Sokol 26.01.2012

Seminarvortrag. Cloud Computing. Christophe Sokol <sokol@inf.fu-berlin.de> 26.01.2012 Seminarvortrag Cloud Computing Christophe Sokol 26.01.2012 Ablauf des Vortrags Hintergrund: Der Plat_Forms-Wettbewerb Was ist Cloud Computing? Aufgaben lösen in der Cloud 3 / 23

Mehr

Von heiter bis wolkig Hosting am RRZE Physikalisch Virtuell in der Cloud. 2.2.2010 Daniel Götz daniel.goetz@rrze.uni-erlangen.de

Von heiter bis wolkig Hosting am RRZE Physikalisch Virtuell in der Cloud. 2.2.2010 Daniel Götz daniel.goetz@rrze.uni-erlangen.de Von heiter bis wolkig Hosting am RRZE Physikalisch Virtuell in der Cloud 2.2.2010 Daniel Götz daniel.goetz@rrze.uni-erlangen.de Übersicht Entwicklungen im (Web-)Hosting Physikalisches Hosting Shared Hosting

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Simplivity Rechenzentrum in a Box

Simplivity Rechenzentrum in a Box 09-10.09 2 Tag Simplivity Rechenzentrum in a Box Markus Schmidt Consultant markus.schmidt@interface-systems.de Agenda 1.Motivation Warum ein neuer Ansatz 2.Technischer Überblick 3.Anwendungsszenarien 4.Performancebetrachtung

Mehr

Cloud Computing mit mathematischen Anwendungen

Cloud Computing mit mathematischen Anwendungen Cloud Computing mit mathematischen Anwendungen Vorlesung SoSe 2009 Dr. Marcel Kunze Karlsruhe Institute of Technology (KIT) Steinbuch Centre for Computing (SCC) KIT the cooperation of Forschungszentrum

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Leistungsmessungen zum Einsatz der J2EE Technologie für Feldbussimulationen

Leistungsmessungen zum Einsatz der J2EE Technologie für Feldbussimulationen en zum Einsatz der J2EE Technologie für Feldbussimulationen Thorsten Garrels Hendrik Jürgens Prof. Uwe Schmidtmann PEARL 2007 Workshop Mobilität und Echtzeit 06.-07. Dezember 2007, Boppard am Rhein Übersicht

Mehr

Die Bausteine der AWS Web Services

Die Bausteine der AWS Web Services Die Bausteine der AWS Web Chris Schlaeger Director, Kernel and Operating Systems Managing Director, Amazon Development Center Germany GmbH Amazon Development Center Germany Gegründet im März 2013 Niederlassungen

Mehr

Hadoop Eine Erweiterung für die Oracle DB?

Hadoop Eine Erweiterung für die Oracle DB? Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, 18.11.2015, Matthias Fuchs Sensitive Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems

Mehr

Windows Azure für Java Architekten. Holger Sirtl Microsoft Deutschland GmbH

Windows Azure für Java Architekten. Holger Sirtl Microsoft Deutschland GmbH Windows Azure für Java Architekten Holger Sirtl Microsoft Deutschland GmbH Agenda Schichten des Cloud Computings Überblick über die Windows Azure Platform Einsatzmöglichkeiten für Java-Architekten Ausführung

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Die Cloud, die alles anders macht. Die 6 Grundzüge der Swisscom Cloud

Die Cloud, die alles anders macht. Die 6 Grundzüge der Swisscom Cloud Die Cloud, die alles anders macht. Die 6 Grundzüge der Swisscom Cloud Viele Clouds, viele Trends, viele Technologien Kommunikation Private Apps Prozesse Austausch Speicher Big Data Business Virtual Datacenter

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

GIS in der Cloud: Beispiele von ESRI und con terra

GIS in der Cloud: Beispiele von ESRI und con terra GIS in der Cloud: Beispiele von ESRI und con terra Dr. Matthias Bluhm ESRI Deutschland GmbH 9. März 2011, Darmstadt 2 ESRI Deutschland GmbH, 2011 GmbH 2010 ESRI Unternehmensgruppe (in Deutschland und der

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

Tech Data Microsoft Microsoft Azure Webcasts. 25. März 2015 bis 20. April 2015

Tech Data Microsoft Microsoft Azure Webcasts. 25. März 2015 bis 20. April 2015 Tech Data Microsoft Microsoft Azure Webcasts 25. März 2015 bis 20. April 2015 Tech Data empfiehlt Microsoft Software Tech Data Microsoft Azure Webcast Serie Kontakt: Microsoft @ Tech Data Kistlerhofstr.

Mehr

Big Data Lösungen mit Apache Hadoop. Gunnar Schröder, T-Systems Multimedia Solutions GmbH

Big Data Lösungen mit Apache Hadoop. Gunnar Schröder, T-Systems Multimedia Solutions GmbH Big Data Lösungen mit Apache Hadoop Gunnar Schröder, T-Systems Multimedia Solutions GmbH Was ist Big Data? 2 Charakteristiken von Big Data Three Vs of Big Data VOLUME Terabytes Petabytes Exabytes Zettabytes

Mehr

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015 Hadoop & Spark Carsten Herbe 8. CC-Partner Fachtagung 2015 29.04.2015 Daten & Fakten 25 Jahre Erfahrung, Qualität & Serviceorientierung garantieren zufriedene Kunden & konstantes Wachstum 25 Jahre am Markt

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

Magento goes into the cloud Cloud Computing für Magento. Referent: Boris Lokschin, CEO

Magento goes into the cloud Cloud Computing für Magento. Referent: Boris Lokschin, CEO Magento goes into the cloud Cloud Computing für Magento Referent: Boris Lokschin, CEO Agenda Über symmetrics Unsere Schwerpunkte Cloud Computing Hype oder Realität? Warum Cloud Computing? Warum Cloud für

Mehr

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012 Wide Column Stores Felix Bruckner Mannheim, 15.06.2012 Agenda Einführung Motivation Grundlagen NoSQL Grundlagen Wide Column Stores Anwendungsfälle Datenmodell Technik Wide Column Stores & Cloud Computing

Mehr

Ist nur Appliance ODA schon Rechenzentrum in der Kiste?

Ist nur Appliance ODA schon Rechenzentrum in der Kiste? Best Systeme GmbH Datacenter Solutions Ist nur Appliance ODA schon Rechenzentrum in der Kiste? best Systeme GmbH BOSD 2016 Datenbank Virtualisierung Wieso virtualisieren? Ressourcen optimieren! CPU Auslastung

Mehr

Zend PHP Cloud Application Platform

Zend PHP Cloud Application Platform Zend PHP Cloud Application Platform Jan Burkl System Engineer All rights reserved. Zend Technologies, Inc. Zend PHP Cloud App Platform Ist das ein neues Produkt? Nein! Es ist eine neue(re) Art des Arbeitens.

Mehr

Vorbesprechung Hauptseminar "Cloud Computing"

Vorbesprechung Hauptseminar Cloud Computing Vorbesprechung Hauptseminar "Cloud Computing" Dimka Karastoyanova, Johannes Wettinger, Frank Leymann {karastoyanova, wettinger, leymann}@iaas.uni-stuttgart.de Institute of Architecture of Application Systems

Mehr

Think Big. Skalierbare Anwendungen mit Azure. Aydin Mir Mohammadi Bluehands GmbH & co.mmunication KG

Think Big. Skalierbare Anwendungen mit Azure. Aydin Mir Mohammadi Bluehands GmbH & co.mmunication KG Skalierbare Anwendungen mit Azure Bluehands GmbH & co.mmunication KG 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit Skalierung http://www.flickr.com/photos/39901968@n04/4864698533/

Mehr

Cluster, Grid und Cloud High Performance Computing am GFZ

Cluster, Grid und Cloud High Performance Computing am GFZ Cluster, Grid und Cloud High Performance Computing am GFZ Jan Thaler - GFZ Potsdam GeoInformatik-Kolloquium 3.11.2010 Übersicht momentane Situation am GFZ Grid Computing Cloud Computing Anwendungsszenarien

Mehr

Elasticsearch aus OPS-Sicht Teil1. Markus Rodi Karlsruhe, 22.05.2015

Elasticsearch aus OPS-Sicht Teil1. Markus Rodi Karlsruhe, 22.05.2015 Elasticsearch aus OPS-Sicht Teil1 Markus Rodi Karlsruhe, 22.05.2015 Agenda 1.Elasticsearch 2.VM & Storage 3.System 4.Konfigurationsparameter 5.Snapshot/Restore 2 Elasticsearch Cluster Mehrere Nodes Default

Mehr

ovirt 3.5 Einführung und Evaluierungsergebnisse Pascal Petsch Karlsruhe, 02.04.2015

ovirt 3.5 Einführung und Evaluierungsergebnisse Pascal Petsch Karlsruhe, 02.04.2015 ovirt 3.5 Einführung und Evaluierungsergebnisse Pascal Petsch Karlsruhe, 02.04.2015 Agenda 1. Einführung 2. ovirt Architektur 3. Features 4. Evaluierung 5. Demo 2 Einführung Managementsoftware für virtuelle

Mehr