Part-Of-Speech-Tagging mit Viterbi Algorithmus

Größe: px
Ab Seite anzeigen:

Download "Part-Of-Speech-Tagging mit Viterbi Algorithmus"

Transkript

1 Part-Of-Speech-Tagging mit Viterbi Algorithmus HS Endliche Automaten Inna Nickel, Julia Konstantinova / 21

2 Gliederung 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus 3 Implementierung Datensuche Implementierung in Python Ergebnisse, Evalution 4 Literatur 2 / 21

3 Motivation Ziel des Projekts Aufbau und Implementierung Entwicklung eines Programms für POS-Tagging Praktischer Teil Anwendung des Programms auf das NEGRA-Corpus 3 / 21

4 Theoretische Grundlagen POS-Tagging mit HMM Basiert auf der Bayes sches Inferenz: Eine sequenzielle Klassifikationsaufgabe: Gegeben eine Wortsequenz Suche nach der besten Tag-Sequenz von allen möglichen für eine gegebene Wortsequenz Bestimme die wahrscheinlichste Tag-Sequenz von allen möglichen, gegeben eine Wortsequenz 4 / 21

5 HMM Theoretische Grundlagen Hidden Markov Model Ein auf dem HMM basierender Tagger kann als ein gewichteter endlicher Automat dargestellt werden Jeder Übergang des Automaten ist mit einer Wahrscheinlichkeit assoziiert Die Wahrscheinlichkeit aller ausgehenden Kanten des Übergangs müssen sich zu 1 summieren j =1...n a i j = 1 für alle i 5 / 21

6 Theoretische Grundlagen Hidden Markov Model HMM: Formal HMM ist definiert als 5-Tupel S, K, Π, A, B Für eine Abfolge von Zuständen q 1, q 2,..., q t und dazugehörigen Ausgaben O 1, O 2,..., O t S = {s 1, s 2,..., s n } K = {k 1, k 2,...k m } endliche Menge von Zuständen Ausgabealphabet Π = {π i } i S Startzustands-WS A = {a i j } i, j S Übergangs-WS B = {b i j k } i, j S, k K Emissions-WS 6 / 21

7 Theoretische Grundlagen HMM-Wahrscheinlichkeitsmatrix Hidden Markov Model Quelle: Haenelt, Karin 2010:9 7 / 21

8 Viterbi Algorithmus Theoretische Grundlagen Viterbi Algorithmus Ziel: Suche nach dem wahrscheinlichsten Pfad im HMM Eingabe: HMM Wortsequenz w 1...w n Ausgabe wahrscheinlichste Tag-Sequenz WS dieser Tag Sequenz 8 / 21

9 Theoretische Grundlagen Viterbi vs. Naive Methode Viterbi Algorithmus Abbildung: Zwischenergebnisse in einem Gitter gespeichert Quelle: Haenelt, Karin 2010:16 9 / 21

10 Theoretische Grundlagen Viterbi: Vorgehensweise Viterbi Algorithmus Abbildung: Suche nach dem wahrscheinlichsten Pfad im HMM Quelle: Haenelt, Karin 2010:17 10 / 21

11 Theoretische Grundlagen Viterbi Algorithmus: Formal Viterbi Algorithmus Quelle: Manning/Schuetze 2000:350, zitiert nach Haenelt, Karin 2010:20 11 / 21

12 Theoretische Grundlagen Viterbi Algorithmus Viterbi Algorithmus: Formal 2 Hauptfunktionen: δ i + 1(t j ) Funktion zur Berechnung von WS des wahrscheinlichsten Pfades zum Knoten t j ψ i + 1(t j ) Funktion zur Ermittlung des wahrscheinlichsten Vorgängerknotens, der zum aktuellen Knoten führt 12 / 21

13 Implementierung Datensuche NEGRA Corpus Deutschsprachiges Corpus, das von der Universität des Saarlandes frei zur Verfügung gestellt wird ca Sätze, die bereits getaggt sind ca. 55 Tags, ca Tokens 13 / 21

14 NEGRA Corpus Implementierung Datensuche 14 / 21

15 Programmaufbau Implementierung Implementierung in Python 1 NEGRA: Vorformatierung des Corpus für das implementierte Programmcode Development-Corpus: Sätze (10%) Training-Corpus: Sätze (80%) Test-Corpus: Sätze (10%) 2 Lernen eines HMM aus einem Teil des NEGRA-Corpus Anwendung des HMM auf einen anderen ungetaggten Teil des NEGRA-Corpus Vergleich der Ergebnisse des implementierten Tagger (Viterbi-Algorithmus) mit den NEGRA-Tags 15 / 21

16 Implementierung Implementierung in Python HMM-Wahrscheinlichkeitsmodel startprob.py = Berechnung der Sart-Wahrscheinlichkeiten {tag : startws} transprob.py = Berechnung der Übergangs-Wahrscheinlichkeiten {(tag1, tag2) : WS, (tag2, tag3) : WS} emissionprob.py = Berechnung der Emissions-Wahrscheinlichkeiten {tag : {wort 1 : WS, wort 2 : WS}} 16 / 21

17 Implementierung Implementierung in Python PoS-Tagging mit Viterbi Übernahme der HMM-Wahrscheinlichkeiten für die Anwendung in Viterbi Berechnung von Ω (Satzanfangszeichen) Berechnung von δ und ψ Ausgabe des wahrscheinlichsten Pfades 17 / 21

18 Ergebnisse Implementierung Ergebnisse, Evalution Schwierigkeiten: Anpassung von NEGRA an das Programm: Vorformatierung Laufzeitproblem bei großen Dokumenten (Training-Korpus: Sätze) Unbekanntes-Wort-Problem Satzkomplexitätsproblem: Problem beim Tagging von Nebensätzen Im Gegensatz zum NEGRA-Tagger: Schwierigkeiten bei Adjektiven Kein universales Programm 18 / 21

19 Gliederung Literatur 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus 3 Implementierung Datensuche Implementierung in Python Ergebnisse, Evalution 4 Literatur 19 / 21

20 Literatur Literatur Manning, Christopher D.; Schütze, Hinrich (1999) Foundations of Statistical Natural Language Processing. Cambridge, Mass., London: The MIT Press. PD Dr. Haenelt, Karin (2010) Kursfolien Prof. Dr. Frank, Anette (2009) Kursfolien 20 / 21

21 Literatur Vielen Dank für Ihre Aufmerksamkeit! 21 / 21

Der Viterbi-Algorithmus.

Der Viterbi-Algorithmus. Der Viterbi-Algorithmus. Eine Erläuterung der formalen Spezifikation am Beispiel des Part-of-Speech Tagging. Kursskript Karin Haenelt, 9..7 (.5.) Einleitung In diesem Skript wird der Viterbi-Algorithmus

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Hidden-Markov-Modelle Viterbi - Algorithmus Ulf Leser Wissensmanagement in der Bioinformatik Inhalt der Vorlesung Hidden Markov Modelle Baum, L. E. and Petrie, T. (1966). "Statistical

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

Part-of-Speech Tagging. Stephanie Schuldes

Part-of-Speech Tagging. Stephanie Schuldes Part-of-Speech Tagging Stephanie Schuldes 05.06.2003 PS Erschließen von großen Textmengen Geißler/Holler SoSe 2003 Motivation Ziel: vollständiges Parsing und Verstehen natürlicher Sprache Herantasten durch

Mehr

Christian Zietzsch / Norman Zänker. Text Mining. und dessen Implementierung. Diplomica Verlag

Christian Zietzsch / Norman Zänker. Text Mining. und dessen Implementierung. Diplomica Verlag Christian Zietzsch / Norman Zänker Text Mining und dessen Implementierung Diplomica Verlag Christian Zietzsch, Norman Zänker Text Mining und dessen Implementierung ISBN: 978-3-8428-0970-3 Herstellung:

Mehr

Prototypische Komponenten eines Information Retrieval Systems: Vektormodell

Prototypische Komponenten eines Information Retrieval Systems: Vektormodell Prototypische Komponenten eines Information Retrieval Systems: Vektormodell Implementierung & Präsentation: Stefan Schmidt (Uni Mannheim) Kontakt: powder@gmx.de Seminar: Information Retrieval WS2002/2003

Mehr

Patrick Simianer Visualisierung regulärer Ausdrücke

Patrick Simianer Visualisierung regulärer Ausdrücke Patrick Simianer Visualisierung regulärer Ausdrücke Patrick Simianer 2010-06-28 Endliche Automaten HS bei Dr. Karin Haenelt Universitiät Heidelberg im Sommersemester 2010 1 Einleitung Überlegungen Protoypisches

Mehr

Algorithmen und Berechnungskomplexität I

Algorithmen und Berechnungskomplexität I Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik

Mehr

Hidden Markov Models und DNA-Sequenzen

Hidden Markov Models und DNA-Sequenzen Hidden Markov Models und DNA-Sequenzen Joana Grah Seminar: Mathematische Biologie Sommersemester 2012 Betreuung: Prof. Dr. Matthias Löwe, Dr. Felipe Torres Institut für Mathematische Statistik 28. Juni

Mehr

Seminar Text- und Datamining Textmining-Grundlagen Erste Schritte mit NLTK

Seminar Text- und Datamining Textmining-Grundlagen Erste Schritte mit NLTK Seminar Text- und Datamining Textmining-Grundlagen Erste Schritte mit NLTK Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 16.05.2013 Gliederung 1 Vorverarbeitung

Mehr

Bachelorarbeit. Informatik. Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre

Bachelorarbeit. Informatik. Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre Bachelorarbeit Informatik Entwicklung einer Veranschaulichung von Hidden Markov Modellen zur Unterstützung der Lehre Eingereicht von Chris Jacobs Matrikel Nr.: 184239 Datum: 8. Mai 2012 Eidesstattliche

Mehr

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de

Maximaler Fluß und minimaler Schnitt. Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Von Sebastian Thurm sebastian.thurm@student.uni-magedburg.de Maximaler Fluß und minimaler Schnitt Wasist das? Maximaler Fluss Minimaler Schnitt Warumtut man das? Logistische

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

KI-Kolloquium am 23.10.2006. Part-of-Speech-Tagging für Deutsch. Referent: Stefan Bienk

KI-Kolloquium am 23.10.2006. Part-of-Speech-Tagging für Deutsch. Referent: Stefan Bienk Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Informatik 8 (KI) Prof. Dr. H. Stoyan KI-Kolloquium am 23.10.2006 Part-of-Speech-Tagging für Deutsch Referent: Stefan Bienk Übersicht Aufgabenstellung

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Textmining Information Extraction (probabilistisch)

Textmining Information Extraction (probabilistisch) Textmining Information Extraction (probabilistisch) Department Informatik / Künstliche Intelligenz Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU Dept. CS KI) Information Extraction (probabilistisch)

Mehr

Quelle: www.omekinteractive.com. Ganzkörper- Gestensteuerung. Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 21.05.

Quelle: www.omekinteractive.com. Ganzkörper- Gestensteuerung. Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 21.05. Quelle: www.omekinteractive.com Ganzkörper- 1 Gestensteuerung Mit 3-D Sensor (z.b. MS Kinect, ASUS Xtion) Zwischenpräsentation 2 Gliederung Motivation Wozu braucht man eine Gestensteuerung? Aktuelle Anwendungen

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Korpusvorverarbeitung. Hauptseminar: Einführung in die Korpuslinguistik. Kodierung/Annotationsmaximen. Vorverarbeitung: erste Schritte.

Korpusvorverarbeitung. Hauptseminar: Einführung in die Korpuslinguistik. Kodierung/Annotationsmaximen. Vorverarbeitung: erste Schritte. Hauptseminar: Einführung in die Korpuslinguistik Anke Lüdeling anke.luedeling@rz.hu-berlin.de Wintersemester 2002/2003 Korpusvorverarbeitung Beispiel: DIE ZEIT aufbereitet für journalistische Zwecke, mitgeliefertes

Mehr

Monte Carlo Methoden

Monte Carlo Methoden Monte Carlo Methoden im Verstärkungslernen [Spink] Bryan Spink 2003 Ketill Gunnarsson [ ketill@inf.fu-berlin.de ], Seminar zum Verstärkungslernen, Freie Universität Berlin [ www.inf.fu-berlin.de ] Einleitung

Mehr

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Gliederung Einleitung Problemstellungen Ansätze & Herangehensweisen Anwendungsbeispiele Zusammenfassung 2 Gliederung

Mehr

Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014

Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014 Text Mining Joachim Schole Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg Grundseminar, WS 2014 Joachim Schole (HAW Hamburg) Text Mining Grundseminar, WS 2014 1 / 26 Agenda

Mehr

Institut für Informatik und Angewandte Kognitionswissenschaft

Institut für Informatik und Angewandte Kognitionswissenschaft Veranstaltung: Dzent: Wissensrepräsentatin (»Grundlagen der KI«), SS08 Nin Simunic M.A., Cmputerlinguistik, Campus DU Übung (4), 09.06.2008-14.06.2008 Thema: Prbabilistisches Schließen / Statistische Verfahren

Mehr

P2P - Projekt. 1. Die gleiche Aufgabe zwei Herangehensweisen 2. Voraussetzungen. 3. Automatische Semantische Konvergenz

P2P - Projekt. 1. Die gleiche Aufgabe zwei Herangehensweisen 2. Voraussetzungen. 3. Automatische Semantische Konvergenz P2P - Projekt 1. Die gleiche Aufgabe zwei Herangehensweisen 2. Voraussetzungen 1. Natürlicher Suchalgorithmus 2. Small Worlds 3. Automatische Semantische Konvergenz 1. Netzwerkerstellung 2. Suche 1. Die

Mehr

LINQ to SQL. Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel. Institut für Informatik Software & Systems Engineering

LINQ to SQL. Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel. Institut für Informatik Software & Systems Engineering LINQ to SQL Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel Institut für Informatik Software & Systems Engineering Agenda 1. LINQ allgemein Vorteile Bausteine und Varianten

Mehr

1.3.5 Clinical Decision Support Systems

1.3.5 Clinical Decision Support Systems Arzneimitteltherapie Thieme Verlag 1.3.5 Clinical Decision Support Systems Marco Egbring, Stefan Russmann, Gerd A. Kullak-Ublick Im Allgemeinen wird unter dem Begriff Clinical Decision Support System (CDSS)

Mehr

Maschinelles Lernen in der Bioinformatik

Maschinelles Lernen in der Bioinformatik Maschinelles Lernen in der Bioinformatik Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) VL 2 HMM und (S)CFG Jana Hertel Professur für Bioinformatik Institut für Informatik

Mehr

Sprachsynthese: Part-of-Speech-Tagging

Sprachsynthese: Part-of-Speech-Tagging Sprachsynthese: Part-of-Speech-Tagging Institut für Phonetik und Sprachverarbeitung Ludwig-Maximilians-Universität München reichelu@phonetik.uni-muenchen.de 29. Oktober 2014 Inhalt POS- Markov- Transformationsbasiertes

Mehr

fsq Ein Abfragesystem für syntaktisch annotierte Baumbanken

fsq Ein Abfragesystem für syntaktisch annotierte Baumbanken fsq Ein Abfragesystem für syntaktisch annotierte Baumbanken SFB 441, Universität Tübingen Syntaktisch annotierte Baumbanken Ursprünglich: Morphosyntaktische Tags (POS) Anreicherung mit syntaktischen Informationen

Mehr

Bioinformatik I (Einführung)

Bioinformatik I (Einführung) Kay Diederichs, Sommersemester 2015 Bioinformatik I (Einführung) Algorithmen Sequenzen Strukturen PDFs unter http://strucbio.biologie.unikonstanz.de/~dikay/bioinformatik/ Klausur: Fr 17.7. 10:00-11:00

Mehr

Informatik I. Grundlagen der systematischen Programmierung. Peter Thiemann WS 2008/09. Universität Freiburg, Germany

Informatik I. Grundlagen der systematischen Programmierung. Peter Thiemann WS 2008/09. Universität Freiburg, Germany Informatik I Grundlagen der systematischen Programmierung Peter Thiemann Universität Freiburg, Germany WS 2008/09 Organisatorisches Vorlesung Di und Do, 11-13 Uhr, HS 101-00-036 Dozent Prof. Dr. Peter

Mehr

Programmierkurs Python I

Programmierkurs Python I Programmierkurs Python I Michaela Regneri 2009-10-30 (Folien basieren auf dem gemeinsamen Kurs mit Stefan Thater, der für diese Vorlesung auf Alexander Kollers Java-Kurs basierte) Organisatorisches Wöchentliche

Mehr

Rheinlandtreffen 7. November 2006

Rheinlandtreffen 7. November 2006 Dirk Thorleuchter No 1 Inhalt Einleitung Motivation Aufgabenstellung Methode / Vorgehensweise KDT-Prozess Beispiele Evoluation Zusammenfassung No 2 1 Einleitung Motivation Trend zur kontinuierlich ansteigende

Mehr

Topic-Klassifizierung für automatisierte Produktbewertungen mittels Hidden Markov Modellen

Topic-Klassifizierung für automatisierte Produktbewertungen mittels Hidden Markov Modellen Cornelia Ferner / Martin Schnöll / Arnold Keller / Werner Pomwenger / Stefan Wegenkittl Topic-Klassifizierung für automatisierte Produktbewertungen mittels Hidden Markov Modellen 109 - Data Science: Erfassung,

Mehr

Information Systems Engineering Seminar

Information Systems Engineering Seminar Information Systems Engineering Seminar Algorithmische Prüfung der Planarität eines Graphen Marcel Stüttgen, 22.10.2012 FH AACHEN UNIVERSITY OF APPLIED SCIENCES 1 Planarität - Definition Ein Graph heißt

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen NLP-Pipeline Tobias Scheffer Thomas Vanck NLP-Pipeline Folge von Verarbeitungsschritten für Informationsextraktion, Übersetzung,

Mehr

Maschinelle Sprachverarbeitung: KollokaKonen (Teil 2: Modelle von Wortsequenzen)

Maschinelle Sprachverarbeitung: KollokaKonen (Teil 2: Modelle von Wortsequenzen) basierend auf H Schmid snlp 4 KollokaKonen Maschinelle Sprachverarbeitung: KollokaKonen (Teil 2: Modelle von Wortsequenzen) Basierend auf Kap 3 McEnery & Wilson (2001) & H Schmid snlp Vorlesungsskript

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Vektormodelle Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Gliederung Vektormodelle Vector-Space-Model Suffix Tree Document Model

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Statistische Untersuchungen zu endlichen Funktionsgraphen

Statistische Untersuchungen zu endlichen Funktionsgraphen C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Architektur verteilter Anwendungen

Architektur verteilter Anwendungen Architektur verteilter Anwendungen Schwerpunkt: verteilte Algorithmen Algorithmus: endliche Folge von Zuständen Verteilt: unabhängige Prozessoren rechnen tauschen Informationen über Nachrichten aus Komplexität:

Mehr

Grundwissen Informatik Q11/12 Fragenkatalog

Grundwissen Informatik Q11/12 Fragenkatalog 12_Inf_GrundwissenInformatik_Opp.doc 1 Grundwissen Informatik Q11/12 Fragenkatalog 11/2 Aufgabengebiet 1: Graphen, Wege durch Graphen: 1. Durch welche Bestandteile wird ein Graph festgelegt? 2. Nenne verschiedene

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Statistische Verfahren:

Statistische Verfahren: Statistische Verfahren: Hidden-Markov-Modelle für Multiples Alignment Stochastic Context-Free Grammars (SCFGs) für RNA-Multiples Alignment Übersicht 1 1. Hidden-Markov-Models (HMM) für Multiples Alignment

Mehr

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3.

26.01.2009. Gliederung. Nebenläufigkeit und Fairness. 1. Nebenläufigkeit Lokalitätsprinzip. 2. Betrachtungsweisen von Nebenläufigkeit. 3. Gliederung Lokalitätsprinzip Nebenläufigkeit und Fairness Seminar Model lchecking WS 08/09 Interleaving Halbordnung. Fairness Jan Engelsberg engelsbe@informatik.hu berlin.de Was ist Nebenläufigkeit? In

Mehr

Optimization techniques for large-scale traceroute measurements

Optimization techniques for large-scale traceroute measurements Abschlussvortrag Master s Thesis Optimization techniques for large-scale traceroute measurements Benjamin Hof Lehrstuhl für Netzarchitekturen und Netzdienste Institut für Informatik Technische Universität

Mehr

Text-Mining und Metadaten-Anreicherung Eine Einführung. Die Automatisierung in der semantischen Anreicherung von Text-Dokumenten

Text-Mining und Metadaten-Anreicherung Eine Einführung. Die Automatisierung in der semantischen Anreicherung von Text-Dokumenten Text-Mining und Metadaten-Anreicherung Eine Einführung Die Automatisierung in der semantischen Anreicherung von Text-Dokumenten 26.05.2015 Inhalt Zeit ist Geld. Das gilt auch für die Recherche....3 Kann

Mehr

Property-Driven Product Development/Design

Property-Driven Product Development/Design Seminar Virtual Engineering Property-Driven Product Development/Design Christoph Semkat Gliederung 1. Grundlagen Rechnerunterstützung Prozess der Produktentwicklung 2. Konzept Property-Driven

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Parsing mit NLTK. Parsing mit NLTK. Parsing mit NLTK. Parsing mit NLTK. Beispiel: eine kleine kontextfreie Grammatik (cf. [BKL09], Ch. 8.

Parsing mit NLTK. Parsing mit NLTK. Parsing mit NLTK. Parsing mit NLTK. Beispiel: eine kleine kontextfreie Grammatik (cf. [BKL09], Ch. 8. Gliederung Natürlichsprachliche Systeme I D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 WS 2011/12, 26. Oktober 2011, c 2010-2012

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

Part-of-Speech- Tagging

Part-of-Speech- Tagging Part-of-Speech- Tagging In: Einführung in die Computerlinguistik Institut für Computerlinguistik Heinrich-Heine-Universität Düsseldorf WS 2004/05 Dozentin: Wiebke Petersen Tagging Was ist das? Tag (engl.):

Mehr

Mit der Entwicklung des Internets sind endliche Automaten noch weiter in den Fokus gerückt. Dafür sind mehrere Gründe ausschlaggebend:

Mit der Entwicklung des Internets sind endliche Automaten noch weiter in den Fokus gerückt. Dafür sind mehrere Gründe ausschlaggebend: Einleitung Endliche Automaten sind das Ergebnis der Entwicklung mathematischer Modelle für verschiedene mathematische, technische und naturwissenschaftliche Anwendungsbereiche. Als Pionierarbeiten gelten

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Kompositionen von Baumreihen-Transformationen

Kompositionen von Baumreihen-Transformationen Kompositionen von Baumreihen-Transformationen Andreas Maletti 1 Lehrstuhl: Grundlagen der Programmierung Institut für Theoretische Informatik Technische Universität Dresden 4. November 2005 1 Finanziell

Mehr

Unterscheidung: Workflowsystem vs. Informationssystem

Unterscheidung: Workflowsystem vs. Informationssystem 1. Vorwort 1.1. Gemeinsamkeiten Unterscheidung: Workflowsystem vs. Die Überschneidungsfläche zwischen Workflowsystem und ist die Domäne, also dass es darum geht, Varianten eines Dokuments schrittweise

Mehr

Schritt 1. Schritt 1. Schritt 3. - Analysieren des Problems und Spezifizierung einer Lösung.

Schritt 1. Schritt 1. Schritt 3. - Analysieren des Problems und Spezifizierung einer Lösung. I. Programmierung ================================================================== Programmierung ist die Planung einer Abfolge von Schritten (Instruktionen), nach denen ein Computer handeln soll. Schritt

Mehr

Einführung in die Computerlinguistik Überblick

Einführung in die Computerlinguistik Überblick Einführung in die Computerlinguistik Überblick Hinrich Schütze & Robert Zangenfeind Centrum für Informations- und Sprachverarbeitung, LMU München 2015-10-12 1 / 19 Was ist Computerlinguistik? Definition

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini TEXTKLASSIFIKATION WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini GLIEDERUNG 1. Allgemeines Was ist Textklassifikation? 2. Aufbau eines Textklassifikationssystems 3. Arten von Textklassifikationssystemen

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Brauchen ältere Menschen eine gesunde Ernährung? Tipps für die Umsetzung in einer Betreuungseinrichtung

Brauchen ältere Menschen eine gesunde Ernährung? Tipps für die Umsetzung in einer Betreuungseinrichtung Brauchen ältere Menschen eine gesunde Ernährung? Tipps für die Umsetzung in einer Betreuungseinrichtung Susanne Bayer Diätologin Kuratorium Wiener Pensionisten-Wohnhäuser susanne.bayer@kwp.at Ja, weil

Mehr

Konsolidierung von Software-Varianten in Software-Produktlinien ein Forschungsprogramm

Konsolidierung von Software-Varianten in Software-Produktlinien ein Forschungsprogramm Konsolidierung von Software-Varianten in Software-Produktlinien ein Forschungsprogramm Rainer Koschke Universität Bremen Workshop Software-Reengineering Bad Honnef 5. Mai 2005 Bauhaus Forschungskooperation

Mehr

Tarifentgelte für die chemische Industrie. in den einzelnen Bundesländern

Tarifentgelte für die chemische Industrie. in den einzelnen Bundesländern Tarifentgelte für die chemische Industrie in den einzelnen Bundesländern 2003 1 Entgelttabellen für Baden-Württemberg Seite 3 Bayern Seite 4 Berlin West Seite 5 Bremen Seite 6 Hamburg Seite 7 Hessen Seite

Mehr

Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer

Seminar Werkzeuggestütze. tze Softwareprüfung. fung. Slicing. Sebastian Meyer Seminar Werkzeuggestütze tze Softwareprüfung fung Slicing Sebastian Meyer Überblick Einführung und Begriffe Static Slicing Dynamic Slicing Erweiterte Slicing-Techniken Fazit 2 Was ist Slicing?? (I) Program

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

Einführung. Das Tor Netzwerk. Fazit. Eine Einführung. Michael Gröning. Hochschule für Angewandte Wissenschaften Hamburg

Einführung. Das Tor Netzwerk. Fazit. Eine Einführung. Michael Gröning. Hochschule für Angewandte Wissenschaften Hamburg Eine Einführung Hochschule für Angewandte Wissenschaften Hamburg Wahlpflichtfach Peer-to-Peer Netzwerke, WS 2008 Gliederung Einführung 1 Einführung 2 Möglichkeiten Risiken Gliederung Einführung 1 Einführung

Mehr

Konzepte der Informatik

Konzepte der Informatik Konzepte der Informatik Vorkurs Informatik zum WS 2011/2012 26.09. - 30.09.2011 17.10. - 21.10.2011 Dr. Werner Struckmann / Christoph Peltz Stark angelehnt an Kapitel 1 aus "Abenteuer Informatik" von Jens

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.de Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009

Felix-Nicolai Müller. Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Cohen s Kappa Felix-Nicolai Müller Seminar Fragebogenmethodik - WS2009/2010 - Universität Trier Dr. Dirk Kranz 24.11.2009 Felix-Nicolai Müller Cohen s Kappa 24.11.2009 1 / 21 Inhaltsverzeichnis 1 2 3 4

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Java und XML 2. Java und XML

Java und XML 2. Java und XML Technische Universität Ilmenau Fakultät für Informatik und Automatisierung Institut für Praktische Informatik und Medieninformatik Fachgebiet Telematik Java und XML Hauptseminar Telematik WS 2002/2003

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Verteilte Systeme SS 2015. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 7.

Verteilte Systeme SS 2015. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404. Stand: 7. Verteilte Systeme SS 2015 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 7. Juli 2015 Betriebssysteme / verteilte Systeme Verteilte Systeme (1/13) i

Mehr

Strategien bei der Entwicklung und Modellierung von Poker-Agenten

Strategien bei der Entwicklung und Modellierung von Poker-Agenten Strategien bei der Entwicklung und Modellierung von Poker-Agenten Andreas Eismann TU Darmstadt Technische Universität Darmstadt Fachbereich Informatik Knowledge Engineering 31.3.2008 1 1. Einleitung /

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN T-SYSTEMS MULTIMEDIA SOLUTIONS GMBH, 16. FEBRUAR 2012 1. Schlüsselworte Semantic Web, Opinion Mining, Sentiment Analysis, Stimmungsanalyse,

Mehr

Algorithmen und Datenstrukturen Kapitel 10

Algorithmen und Datenstrukturen Kapitel 10 Algorithmen und Datenstrukturen Kapitel 10 Flüsse Frank Heitmann heitmann@informatik.uni-hamburg.de 6. Januar 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/8 Flüsse Graphen Grundlagen Definition

Mehr

Gliederung. Programmierparadigmen. Sprachmittel in SCHEME. Objekte: Motivation. Objekte in Scheme

Gliederung. Programmierparadigmen. Sprachmittel in SCHEME. Objekte: Motivation. Objekte in Scheme Gliederung Programmierparadigmen D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg 1 Einführung Sprachmittel Sommer 2011, 20. Juni 2011,

Mehr

A First Course on Time Series Analysis with SAS - Ein Open-Source Projekt

A First Course on Time Series Analysis with SAS - Ein Open-Source Projekt Lehre A First Course on Time Series Analysis with SAS - Ein Open-Source Projekt Michael Falk Frank Marohn Lehrstuhl für Statistik, Universität Würzburg Lehrstuhl für Statistik, Universität Würzburg Am

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Eine molekulare Lösung des Hamiltonkreisproblems mit DNA

Eine molekulare Lösung des Hamiltonkreisproblems mit DNA Eine molekulare Lösung des Hamiltonkreisproblems mit DNA Seminar Molecular Computing Bild: http://creatia2013.files.wordpress.com/2013/03/dna.gif Andreas Fehn 11. Juli 2013 Gliederung 1. Problemstellung

Mehr

PROSEMINAR SPAM SEMINAR MASCHINELLES LERNEN IN DER IT SICHERHEIT. Organisation, Überblick, Themen. Niels Landwehr/Tobias Scheffer

PROSEMINAR SPAM SEMINAR MASCHINELLES LERNEN IN DER IT SICHERHEIT. Organisation, Überblick, Themen. Niels Landwehr/Tobias Scheffer PROSEMINAR SPAM SEMINAR MASCHINELLES LERNEN IN DER IT SICHERHEIT Organisation, Überblick, Themen Überblick heutige Veranstaltung 1. Organisatorisches 2. Überblick über beide Seminare 3. Kurzvorstellung

Mehr

OBERSEMINAR MASCHINELLES LERNEN UND IT-SICHERHEIT

OBERSEMINAR MASCHINELLES LERNEN UND IT-SICHERHEIT SEMINAR SPAM OBERSEMINAR MASCHINELLES LERNEN UND IT-SICHERHEIT Organisation, Überblick, Themen Überblick heutige Veranstaltung 1. Organisatorisches 2. Überblick über beide Seminare 3. Kurzvorstellung der

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr