A/D- und D/A- Wandler

Größe: px
Ab Seite anzeigen:

Download "A/D- und D/A- Wandler"

Transkript

1 Elektronik2 A/D- und D/A- Wandler Einführung Die Wandlung von Signalen unserer Umgebung in die digitale Zahlenwelt und umgekehrt wird immer wichtiger. Viele Prozesse werden mit Computern überwacht, analoge Funktion auf Signalprozessoren ausgeführt, Messgeräte arbeiten digital und Sprach- und Bildsignale werden mit modernen digitalen Verfahren übermittelt. Die Domäne der A/D- und D/A- Wandler hat deshalb in den letzten Jahren eine steile Entwicklungszeit hinter sich. Die Zeit da Preise für präzise Wandler unter 10 Fr. Realität sind ist längst angebrochen. Dies widerspiegelt sich auch in der Tatsache, dass Messinstrumente mit digital erzeugten Signalen (Bsp. Waveform Synthesizer) und Signalauswertung mit eigentlichen Rechnern (Bsp. FFT Analyzer) heute billiger sind, als entsprechende analoge Geräte. Hilfreich sind zudem die Vorteile von Signalprozessor Lösungen, nämlich garantierte Reproduzierbarkeit ohne teure Abgleiche und Widerverwendbarkeit der Hardware für andere Produktetypen. Durch die grossen Preiseinbrüche bei den Wandlerbausteinen baut man heute nur noch in speziellen Fällen eigene Wandler von Grund auf selber. So ist zum Beispiel im Hörgeräte-Bereich für die Ära der digitalen Hilfen ein 16- Bit Wandler mit Verlustleistung unter 500 MicroWatt notwendig und im Radarbereich werden 8- Bit Wandler mit 2 GHz Abtastrate benötigt. Das Feld dazwischen ist bestens durch käufliche Produkte mit den unterschiedlichsten Wandlungsverfahren abgedeckt. Dieses Kapitel soll daher im Wesentlichen die verschiedenen Wandlertechniken behandeln und weniger die Fähigkeit, selber einen Wandler von Grund auf zu entwickeln. Für den Systemingenieur ist es wichtig, Wandler spezifizieren, auswählen und ausmessen zu können. Die Wandler sind der Schlüssel zum Tor der DSP Technik, was im Wandler an Signalen verloren geht oder ungewollt dazukommt ist nicht mehr zu korrigieren. A/D- und D/A- Wandler muss sowohl den Analog- wie den Digitaltechniker interessieren, es ist die Schnittstelle 'Where Digital Meets Analog'. Digital - Analog Wandler Zur Umwandlung von digitalen Signalworten in analoge Signale gibt es mehrere populäre Möglichkeiten, die im Folgenden kurz erläutert werden. Die einfachste Möglichkeit leitet sich aus dem Opamp Summierer ab. In der invertierenden Verstärkerschaltung lassen sich ja sehr schön Ströme summieren, die dann über dem Rückkopplungswiderstand eine entsprechende Summenspannung bilden. Wählt man nun die Summierwiderstände in Zweierpotenzschritten, so werden alle Bits, die auf logisch 1 gesetzt sind entsprechend ihrem Gewicht einen proportionalen Strom an den Summenpunkt liefern. Je feiner die Auflösung und Genauigkeit sein soll, desto genauere Widerstände müssen eingesetzt werden. Kleinere Widerstände haben mehr Gewicht und müssen präziser ausgewählt sein. Die dem logischen Zustand 1 entsprechenden Signalspannungen müssen für alle Bits identisch sein. Dies kann einfach mit einer Referenzquelle und niederohmigen FET als Schalter (z.b. transmission gates) realisiert werden. Eine mögliche Lösung zeigt die Figur ad.4. welche eine 6 Bit Grösse in eine Spannung zwischen -10 * (63/64) V und 0 V umwandelt. Eine Pegelverschiebung ist leicht mit einem weiteren Opamp zu realisieren. Auch BCD- codierte Signalworte lassen sich auf diese Weise direkt umsetzen. Roland Küng 1

2 Fig. ad.4: D/A Wandlung durch Summieren mit skalierten Widerständen Die Methode der gewichteten Widerstände wird aber unhandlich, wenn mehr als 10 Bit zu wandeln sind, da das Widerstandsverhältnis dann über einen Faktor 1000 beträgt. Eine elegante Umgehung dieses Problems liefert die R - 2R Ladder (Sprossenleiter). Dieses Netzwerk braucht nur zwei Widerstandswerte um die skalierten Ströme zu erzeugen. Fig. ad.5 stellt einen 4 Bit Wandler mit R-2R Ladder vor. Fig. ad.5: D/A Wandler mit R-2R Ladder Die Wahl des absoluten Widerstandswertes ist frei, die relative Genauigkeit zueinander muss aber genügend gross sein. Roland Küng 2

3 Die monolithisch integrierte Produktion eines R-2R Ladder ist wesentlich einfacher als die eines binär abgestuften Widerstandsnetzwerkes. Ausser dem Ladder Netzwerk werden lediglich noch Schalter und ein OpAmp benötigt. Die Belastung der Referenzspannung ist zudem wenig Codeabhängig. Da die absolute Genauigkeit des Widerstandwertes R keine Rolle spielt, kann die relative Genauigkeit aller Widerstandsverhältnisse (Paarungstoleranz) durch Laser-Wafer-Trimming beim Herstellprozess einfach abgeglichen werden. Meist ist der Summierwiderstand R F über dem OpAmp mit integriert und sollte auch verwendet werden, da er ebenfalls abgeglichen ist und die gleichen Driftwerte besitzt, wie die Ladder- Widerstände. Der Widerstandswert liegt typisch im Bereich 10 k k. Dass dieses Netzwerk tatsächlich funktioniert ist mit Hilfe der Figur leicht zu sehen. Man beginnt beim 100 k Widerstand rechts oben. Die übrigen 100 k Widerstände liegen alle an Masse oder virtueller Masse. Durch die Kette findet nun von Stufe zu Stufe eine Spannungsverdoppelung statt, bis man links bei V ref angelangt ist. Entsprechend werden die Ströme, in Zweierpotenz gewichtet, dem negativen Eingang des OpAmp zugeführt und addiert. RF v OUT = RF i K = (8S3 + 4 S2 + 2S1 + S0 ) 16R Es ist zu beachten, dass mit steigender Auflösung die Anforderungen an das jeweilige Glied im Ladder Netzwerk proportional ansteigen. Für einen 16 Bit DA-Wandler mit monotonem Verhalten darf beim Übergang 7FFF H auf 8000 H (MSB Ladder Glied wird zugeschaltet) der Fehler nur 1 LSB betragen. Daraus ergibt sich für das 16. Bit eine Widerstandstoleranz von 1/65536*100%, also %. Solch hohe Genauigkeiten können nur durch Wafer Trimmen erreicht werden und ein Gleichlauf der Driften bei Temperaturänderungen ist unbedingt notwendig. Entsprechend kosten solche extremen Genauigkeiten einiges mehr, so dass in der Praxis nur die für die Applikation notwendige Wortbreite eingesetzt werden sollte. Eine eng verwandte Ausführungsart ist der aus der SC-Technik bekannte DA-Wandler, welcher mit einem PCA (programmable capacitor array) aufgebaut ist. Current switched DAC Der oben betrachtete DA-Wandler besitzt einen Spannungsausgang. Die Geschwindigkeit des Wandlers ist begrenzt durch den Operationsverstärker. Schnelle und präzise OpAmp sind teuer. Deshalb sind auch DA-Wandler mit Stromausgang im Angebot zu finden. In Fig. ad.6 ist die grundlegende Idee zu erkennen. Binär gewichtete Ströme werden in einem Transistor-Array generiert. Die Referenzspannung V REF, R 0 und der statisch arbeitende OpAmp bilden eine präzise Referenzstromquelle. Dieser Strom wird durch skalierte Emitterwiderstände in den Stufen Q 4... Q 0 jeweils um den Faktor 2 geteilt. Um die Spannungsabfälle an den BE-Strecken der Transistoren exakt gleich gross zu bekommen, müssen alle Emitter vom gleich grossen Strom durchflossen sein. Dies wird für Mehrfache des kleinsten Stromes durch Parallelschalten der entsprechenden Anzahl Transistoren erreicht (Q4 entspricht somit 4 Q1 parallel). Je nach Wertigkeit des anliegenden Bit wird dieser Strom auf die Ausgangsleitung oder Masse geschaltet. Der Strom I out ist nun proportional zum Binärwert. Die skalierten Widerstände lassen sich vorteilhaft wieder durch ein Ladder Netzwerk R-2R realisieren. Typischer full-scale Ausgangsstrom (Summe aller Ströme) ist meist I FS = 1 ma. Roland Küng 3

4 ad.6: Current-Switched DAC Da sehr oft aber letztlich eine Spannung zur Weiterverarbeitung benötigt wird, muss I out nun noch zu V out gewandelt werden. In schnellen Schaltungen, wie zum Beispiel bei der direkten digitalen Synthese DDS von HF-Signalen, begnügt man sich mit einem ohnehin notwendigen Abschlusswiderstand von beispielsweise 50 Ohm gegen Masse. Stand der Technik ist hier 12 Bit monoton, 100 MHz. Zu beachten ist bei der Wahl des Abschlusswiderstandes, welche maximale Ausgangsspannung am DAC selber auftreten darf. Einige Typen erlauben nur 0.5 V, meist sind einige Volt zulässig. Beim System Design und Layout ist darauf zu achten, dass für schnelle Anwendungen die Einschwingzeit der analogen Spannung an der Last kürzer ist, als die geforderte Wandlerzeit. Eine grosse kapazitive Belastung (Ausgangskapazität des DAC, Leiterbahn, Kabel, Eingangskapazität der Folgestufe) ergibt eine grosse Zeitkonstante. Beispiel: 100 Ohm Abschlusswiderstand und 100 pf Kabelkapazität ergeben eine Einschwingzeit von etwa 100 ns, also max. 10 MHz Wandlerrate. Man beachte, dass die genaue Einschwingzeit abhängig ist, von der Anzahl Bit, welche zu wandeln sind. Um einen 10 Bit Konverter auf ein halbes LSB einschwingen zu lassen (1 Teil auf 2048) braucht es T settle = 7.6*RC. Benötigt man grössere Ausgangsspannungen als einige 100 mv, so wird ein schneller Operationsverstärker eingesetzt. Der DAC wird wie in Fig. ad.7 gezeichnet wiederum mit einem Widerstand abgeschlossen und auf einen nichtinvertierenden OpAmp geschaltet. Hohe Geschwindigkeiten lassen sich nur mit Breitband-OpAmps erreichen, sogenannten Video Verstärkern. Dank den breitbandigen Applikationen in der Datenübertragung und im Natelbereich sind OpAmps mit Transitfrequenzen bis über ein GHz für wenige Franken erhältlich (z.b. Analog Devices, Texas Instruments). Damit lässt sich die hohe Geschwindigkeit der scaled current DAC bei sorgfältigem Layout beibehalten. Produkte Bsp. AD9764, 14 Bit, 125 Msps (Preis 9 $). Roland Küng 4

5 Fig. ad.7: Spannungswandler für current-switched DAC Averaging DAC - Frequency to Voltage Converter Eine spezielle Art der Wandlung ergibt sich, wenn das digitale Eingangssignal aus einer Folge von Pulsen oder Signalen mit bestimmter Frequenz besteht. Anstelle des Zählens innerhalb einer bestimmten Zeit und anschliessender D/A-Wandlung gibt es eine Methode zur direkten Frequenz - Spannungswandlung. Von jeder Periode des Eingangssignals wird ein Standardimpuls generiert. Ein RC-Tiefpass oder besser ein Integrator mittelt diese Impulsfolge. Dadurch entsteht am Ausgang eine Spannung, die proportional zum Mittelwert der Eingangsfrequenz ist. Natürlich entsteht dabei etwas Welligkeit (Ripple) in der Ausgangsspannung. Die Zeitkonstante RC ist so zu wählen, dass die gewünschte D/A Genauigkeit (z.b. +- 1/2 LSB) eingehalten wird. Dies bewirkt leider eine langsame Antwortzeit am Ausgang des Wandlers. Um weniger als ein halbes LSB ripple zu bekommen muss die Zeitkonstante eines RC-Tiefpasses mindestens zu RC = τ = 0.69(n +1)T o gewählt werden, wobei n die Auflösung angibt und T o die Periodendauer für die maximale Eingangsfrequenz ist. Man kann zeigen, dass das RC-Glied nach 0.69*(n+1) Filterzeitkonstanten auf 1/2 LSB eingeschwungen ist, so dass für die settling time gilt: t settle 2 0.5(n +1 ) T o Für einen 12 Bit Wandler mit maximaler Eingangsfrequenz von 100 khz ergibt sich somit eine Zeitkonstante von ca. 90 µs und eine Einschwingzeit von 0.85 ms. Mit etwas aufwendigeren, steileren Filtern kann diese Zeit noch reduziert werden. Es ist aber festzuhalten, dass diese Wandlerart nur für der settling time entsprechenden Änderungsgeschwindigkeiten in der Frequenz des Eingangssignals eingesetzt werden kann. Es handelt sich also um ein System mit tiefer Grenzfrequenz. Fig. ad.8 zeigt ein Blockschaltbild des F-V Wandler AD 650. Über den Eingang F in gelangt das Eingangssignal auf den Komparator Comp, der bei jeder negativen Flanke die monostabile Kippstufe (One Shot) aktiviert. Das Monoflop steuert den Schalter S1 über den ein Konstantstrom von 1 ma in den Eingang des verlustbehafteten Integrators fliesst. Der Kondensator C os bestimmt dabei die Monoflop Impulsdauer und somit die Integrationszeit. Roland Küng 5

6 Bei Veränderung der Eingangsfrequenz ändert das Gleichgewicht zwischen Aufladen mit 1 ma und Entladen über R 1 und R 3. Die mittlere Ausgangsspannung ist proportional zur Eingangsfrequenz. Der ripple und die settling time kann näherungsweise so berechnet werden wie vorhin für den einfachen RC-Tiefpass dargelegt. C os dient zur Einstellung des Monoflop Impulses und ist abhängig von der maximalen Eingangsfrequenz. R 1 +R 3 sind so zu wählen, dass die gewünschte OpAmp Aussteuerung resultiert, während dann C int aus der Zeitkonstante erhalten wird (Dimensionierung im Datenblatt). Fig. ad.8: Frequenz-Spannungsumsetzer von Analog Device Anwendungsfelder dieser averaging D/A Wandler sind beispielsweise bei der Umsetzung von Umdrehungszahlen rotierender Teile in eine Spannung zu finden, z.b. zwecks Regelung. Andere Anwendungen betreffen die einfache quasi-digitale Übertragung über eine Infrarotstrecke oder in der Telemetrie. Dabei wird ein zu übertragendes Signal mit Hilfe eines VCO in eine Frequenz umgesetzt. Die resultierende Rechteckfolge ist nichts anderes als ein digitales Signal und entsprechend leicht zu übertragen. Das empfangene Frequenzsignal wird dann in eine Spannung zurückgewandelt. Besonders geeignet ist die Umsetzung V-F F-V auch zur galvanischen Trennung von Systemeinheiten, zwischen denen Analogsignale ausgetauscht werden müssen. Digitale Optokoppler sind einfacher zu handhaben als ihre analogen Gegenstücke, da nicht auf die Linerarität und Aussteuerung geachtet werden muss. Ein verwandter averaging DAC ist der Pulsbreiten-zu-Spannung Wandler. In seiner direkten Implementation findet man diesen Wandler in vielen DC-DC Convertern angewendet. Interessant als DAC ist aber die Umsetzung eines digitalen Wortes in eine analoge Spannung über die Pulsbreitenmodulation. Man benötigt dazu eine hohe Taktfrequenz, einen Zähler und einen digitalen Magnitude Komparator. Am Komparator liegt einerseits das zu wandelnde Digitalwort an und andrerseits der Zählerausgang. Der Takt inkrementiert nun den Counter bis dieser denselben Roland Küng 6

7 Stand erreicht, wie das Digitalwort. Nun wechselt der Magnitude Komparator seinen Zustand. Nach N Takten wird die Schaltung zurückgesetzt. Die Impulsdauer des Ausgangssignals ist somit proportional zum Digitalwort. Bei genügend hohem Takt ist die Abstufung bei vorgegebener settling time entsprechend gross genug. Das in der Pulsbreite modulierte Digitalsignal mit fester Frequenz kann nun in genau gleicher Art und Weise wie beim F-V Wandler mit einem Tiefpass in eine analoge Spannung gewandelt werden, die dem Mittelwert der in der Pulsbreite modulierten Folge entspricht. Multiplizierender DAC Viele DA-Wandler können als sogenannte multiplying DAC eingesetzt werden, deren Ausgang dem Produkt aus Eingangsspannung und einem digitalen Code entspricht. Verwendet man an Stelle der internen Referenzspannung bzw. Referenzstrom ein externes analoges Signal, so wird dieses ja funktionsgemäss mit dem digitalen Datenwort multipliziert. Anwendungen ergeben sich zum Beispiel in Verstärkungsregelungen, welche direkt von einem Mikroprozessor digital angesteuert werden (AGC) oder bei der Gewichtung von Signalen in Rechenschaltungen oder analog realisierten FIR und IIR Filtern. DAC mit guten Eigenschaften für multiplizierende Anwendungen sind im Datenblatt als solche speziell gekennzeichnet. Ein grosser Analog-Eingangsbereich (d.h. ext. Referenzbereich) und hohe Geschwindigkeit sind wichtige Grössen. Produkt-Bsp. AD7541, 10 Bit 2 Msps. Messtechnik bei DAC Bei der Geschwindigkeitsmessung wird die Einschwingzeit des Systems, die settling time bestimmt. Die Definition ist im Datenblatt des Herstellers genau nachzulesen, da zur optimalen Darstellung der Performance nicht immer die ganze Wahrheit offenbart wird. Korrekt ist die Angabe für den extremsten Fall, nämlich die Zeit zwischen 0 Volt und Vollausschlag (Full Scale, FS) gemessen ab Umschaltung des Codes (50% Schwelle) bis ein definiertes Restfehlerband um den FS-Wert nicht mehr verlassen wird. Fig. ad.11 zeigt eine sinnvolle Spezifikationsmöglichkeit für die settling time. Fig. ad.11: D/A-Wandler settling time Roland Küng 7

8 Analog - Digital Wandler Es gibt sehr viele Arten von A/D-Wandlern und mindestens ein halbes Dutzend verschiedene Wandlerverfahren. Der Grund für diese Vielfalt sind die unterschiedlichen Applikationen mit ihren verschiedenen Anforderungen an Geschwindigkeit, Dynamikbereich, Stromverbrauch, Genauigkeit und Preis. Diese Vielfalt lässt sich aber vielleicht in 3 Kategorien unterteilen. 1. DC oder langsam variierende Analogsignale. Diese Signale bleiben während des Digitalisierungsprozesses konstant oder ändern nur unwesentlich. Typische Anwendungen finden sich in vielen Regelsystemen für physikalische Parameter. Die hauptsächlich benutzten Techniken sind slope converter, voltage to frequency converter, ramp counter converter und delta sigma converter. 2. Kontinuierlich ändernde Wechselsignale und AC- Einzelereignisse. Diese Signale belegen eine bestimmte Bandbreite und die Wellenform muss exakt erfasst und digital abgebildet werden. Ändert sich das Signal während der Wandlungszeit (audio, video), so muss eine Sample and Hold (S&H) oder eine Track and Hold (T&H) Schaltung den zu wandelnden Wert vorgängig einfrieren. Für diese Signale werden successive approximation converter, multistep converter und full parallel converter eingesetzt, meist mit integriertem S&H oder T&H Glied. Delta sigma converter haben sich Teile dieser Kategorie erobert. 3. Pulse-Amplituden Signale begrenzter Dauer. Bei diesen Signalen besteht zu meist keine Beziehung zwischen aufeinander folgenden Pulsen des Analogsignals. Das zu wandelnde Signal ist die Amplitude eines jeden Pulses, nachdem dieser eingeschwungen vorliegt. Eine weit verbreitete Applikation betrifft z.b. CCD-Signale, multiplexed Analogsignale (analoge Abtastwerte), oder Echogramme von Radar- und Sonargeräten, (von einem Peak Detektor). Fast successive approximation converter, multistep converter, full parallel converter und pipelined converter kommen zum Einsatz. Fig. ad.13 zeigt die Charakteristik der Signale zu den Kategorien 1 bis 3. Eine genauere Betrachtung dieser Kategorien und ihrer Anwendungen zeigt, dass offenbar die Wandlungsrate (conversion rate) eine der wesentlichsten Grössen ist. Für die erste Kategorie ist die Wandlungszeit fast unerheblich, nicht so für die anderen beiden Kategorien. A/D-Wandler für kontinuierliche Wechselsignale Diese Signale mit begrenzter Bandbreite (wenn dies nicht sicher ist, ist ein Filter vorzuschalten) werden sehr oft höher abgetastet als die berühmten 2*höchste Frequenz, welche für die digitale Signalverarbeitung genügen würde. Gründe sind ein begrenzter Aufwand beim Tiefpass Filter und Grenzen in den Algorithmen der digitalen Signalverarbeitung. Dieser sogenannte oversampling Faktor beträgt meist 2 bis 5. Für die hochwertige Wiedergabe eines Einzelereignisses sind sogar eine grosse Anzahl Abtastwerte pro Periode der höchsten beteiligten Frequenz notwendig. Roland Küng 8

9 Fig. ad.13: Signaltypen zur Klassierung der A/D-Wandler Generell genügt es nicht sich nur nach der höchsten interessierenden Frequenz zu richten, sondern wegen des durch das Abtasten entstehenden Aliasing Effektes ist stets die höchste vorkommende Frequenz im Signal ausschlaggebend also auch Störsignalanteile. Die notwendige Abtastrate ist aber nicht allein massgebend. Die Zeit selbst, welche eine Wandlung braucht ist ebenso wichtig, um die gewünschte Genauigkeit zu erhalten. Sie wird aperture time genannt. Während dieser Zeit verändert sich das Eingangssignal auch leicht, so dass je nach Frequenz des Eingangssignals unterschiedlich grosse Fehler gemacht werden. Typischerweise sollte die Abweichung im Eingangssignal bei der grössten Steigung (= Nulldurchgang höchste Frequenz bei maximaler Amplitude) nur +- 1/4 LSB betragen. Die maximale Frequenz, welche noch in dieser Toleranz gewandelt werden kann beträgt somit: wobei für?v gilt: f max V 1 = [ ] [ t 2π V peak ] 1 V V = LSB = N 4 2 peak 1 4 Roland Küng 9

10 Mit der Auflösung N und der Vollausteuerung (FullScale) FS = V peak kann also beispielsweise ein N = 12 Bit Wandler mit einer Wandlungszeit von 10 µs und Vollausschlag V peak = 10 V gerade mal f max = 1 Hz für einen maximalen Fehler von 1/4 LSB wandeln. Die conversion rate beträgt aber an und für sich 100 khz. Um die Situation zu verbessern empfiehlt sich daher bei schnelleren Signalen der Einsatz eines Abtast-Haltegliedes (sample-and-hold, S&H) entsprechend der Fig. ad.14. Fig. ad.14: Sample und Hold Schaltung Die Kapazität C H speichert nach deren Aufladen auf V in den analogen Wert während der Wandlung. Ein schneller Ladeverstärker A1 und ein niederohmiger Schalter S erlauben eine rasche Aufladezeit von C H auf einen Wert, der auf ein 1/4 LSB genau ist und ein hochohmiger Eingang von A2 verhindert ein Entladen um mehr als Bruchteile eines LSB während der Wandlung. A/D Wandler, die ein S&H-Glied enthalten heissen oft auch sampling A/D converter. Betrachten wir den 12 Bit Wandler nun mit vorgeschaltetem S&H und wollen diesen für Frequenzen von 10 khz einsetzen, so erhalten wir mit obigen Formeln?V = 0.6 mv und?t = 2 ns. Die Zeit?t, bei S&H Schaltungen aperture uncertainity time genannt, wird also anspruchsvoll klein. Die aperture uncertainity time setzt sich zusammen aus der Unsicherheit des Abtastzeitpunktes in Folge des jitter des Abtasttaktes und in Variationen der Ausschaltzeit des Schalter S. Beide Effekte bewirken immer noch Abtastfehler. Fig. ad.15 zeigt in einem Diagramm, welche maximale Frequenz mit 1/4 LSB Fehler für N Bit Auflösung und gegebene aperture uncertainity time erreicht werden kann. Das Diagramm gilt auch für A/D Wandler ohne S&H und gibt dann die aperture time an. Als aperture delay time bezeichnet man die Verzögerungszeit zwischen dem Ausschaltbefehl (Hold) für S und dem tatsächlichen Auftrennen von S. Da diese delay time eine konstante Verzögerung ist, deren Variation ja in der aperture uncertainity time berücksicht worden sein sollte, spielt sie i.a. keine Rolle auf die Genauigkeit, da ja alle Abtastzeitpunkt um den gleichen Betrag verzögert wirken (Abtasttheorem). Einzig, wenn mit dem Wandlungsprozess bereits innerhalb dieser delay time begonnen wird, so ist diese Zeit ebenfalls zur aperture time zu rechnen. Dies ist eine Frage des interen Ablaufs von S&H- und Wandlungsvorgang. Roland Küng 10

11 Fig. ad.15: A/D aperture time und S&H uncertainity time Diagramm Die hold time muss 10 µs betragen, das heisst der Spannungswert über C H darf in dieser Zeit nur max. 1/4 LSB absinken. Die acquisition time ist diejenige Zeit, die das S&H Glied benötigt, um bis auf einen tolerierbaren Restfehler dem Eingangsignal zu folgen (Fig. ad16). Sie kann aus der RC- Zeitkonstante und der Fehlergrösse unter Annahme einer Sprungfunktion am RC Glied berechnet werden. Die min. Wandlungszeit besteht somit aus der Summe der Akquisitionszeit des S&H-Gliedes (Aufladevorgang) und der Umwandlungszeit des A/D-Teils (Abwägen). Roland Küng 11

12 Fig. ad.16: S&H Timing So genannte subsampling ADC, vor allem in Multimetern und Oszilloskopen eingesetzt, schaffen es trotz Abtasten unterhalb der Nyquistfrequenz, ein repetitives Signal korrekt zu erfassen. Dies wird durch inkrementales Verzögern jedes Abtastzeitpunktes um einen genau definierten Wert erreicht, so dass nach genügender Periodenzahl des Eingangssignale alle Abtastwerte einmal genommen wurden, welche nach Nyquist sonst innerhalb einer Periode erforderlich wären. Auf Kosten der Messgeschwindigkeit und nur bei wirklich repetitiven Signalen funktioniert diese Methode bis hin zu hohen Frequenzen sehr gut. Es wird aber eine sehr stabile Zeitbasis vorausgesetzt, da sich jitter und aperture uncertainity hier viel stärker auswirken, wenn die Abtastung auf mehrere Perioden verteilt wird. Zwischen Track-and-Hold und Sample-and-Hold wird oft kein eigentlicher Unterschied gemacht. Während T&H-Glieder die meiste Zeit im Folgen des Eingangssignales verbringen, sind S&H- Glieder die meiste Zeit im Haltemodus. Für schnelle A/D-Wandler ist dieser Begriffsunterschied immer schwerer zu sehen. A/D Wandler für Puls-Amplituden Signale In dieser Kategorie ist die kritische Spezifikation für den Wandler die Angabe der Zeit, die verbleibt um die Wandlung nach genügend genauer Akquisitionszeit zu vollenden, bevor der nächste Impuls beginnt. Die Wandlung muss in diesem Fall synchron mit dem Eingangssignal ablaufen In Fällen wo der Impuls während der Wandlung nicht auf einem genügend genauen Wert bleibt muss ein S&H-Glied eingesetzt werden. Die wichtigste Grösse ist die Summe von acquisition time plus die aperture delay time plus die A/D conversion time. Die aperture uncertainity time (aperture jitter) ist sehr oft nicht kritisch, da sich das Signal zum Zeitpunkt der S&H-Operation und der Wandlung nur wenig in der Amplitude verändert. Siehe gestrichelte Linie in Fig. ad.17. Roland Küng 12

13 Fig. ad.17: Zeitliche Verhältnisse für Puls-Amplituden-Signal. Wandlerfehler Es gibt eine ganze Reihe von Fehlern in Wandlern und die Interpretation der Datenblätter ist manchmal eine Detektivarbeit, da der Hersteller seinen Baustein möglichst gut darstellen will. Perfekte Wandler gibt es nicht und für viele Anwendungen sind auch nicht alle Genauigkeitsangaben relevant. Die vier wichtigsten Fehler in der Terminologie der Datenblätter sind: - Offset Error - Scale Error - Nonlinearity - Nonmonotonic (Missing Code) Fig. ad.2 zeigt die Fehler offset und scale. Zur näheren Erläuterung mittelt man die digitalisierte Treppenfunktion mittels einer Kurve (ausgezogen in der Fig. ad.2). Diese Kurve vergleicht man mit der idealen Gerade des theoretischen Konverters (gestrichelte Linie). Liegt die Wandler Linie im Nullpunkt neben der idealen Linie, so ermittelt man, wieviele Bruchteile der Wertigkeit des LSB diese Verschiebung ausmacht. In der Figur beträgt der offset error etwa 1 LSB. Das Offsetvorzeichen ist nicht spezifiziert, d.h. der Fehler kann bei einem Wandler auf beide Seiten auftreten. Der scale error zeigt sich in einer zur idealen Kennlinie verschiedenen Steilheit. Der Vollaussteuerbereich (Full Scale FS) kann dann nicht erreicht oder übertroffen werden. Grosse Signale werden dann u.u. in der Amplitude begrenzt. In Fig. ad.2 beträgt der scale error 1,5 LSB. Sowohl der offset error wie der gain error sind entweder vom Hersteller sehr gut abgeglichen oder lassen sich mit externen Widerständen exakt trimmen (OpAmp-Schaltung). Roland Küng 13

14 Fig. ad.2: Wandlerfehler: offset error und scale (gain) error Nicht abgleichbar sind die beiden andern Fehler, nonlinearity and nonmonotonic. Bei der Nichtlinearität weicht die reale Wandlerlinie von einer Geraden ab und führt zu integralen und differentiellen Fehlern. Der differentielle Fehler entspricht der maximalen Abweichung von Stufe zu Stufe. Der integrale Fehler entspricht der maximalen Abweichung in Bruchteilen des LSB von der idealen Gerade, wenn offset und gain abgeglichen sind. Diese Nichtlinearität bewirkt letztlich Verzerrung des Signals in der digitalen Darstellung. Je nach Anwendung spielt dies eine Rolle und es muss dann für einen guten Wandler mehr bezahlt werden. Die schwierigsten Fehler sind die nonmonotonic errors, also lokale Abweichungen in der Treppe, wie sie in Fig. ad.3 dargestellt sind. Dies führt unter Umständen zu fehlenden Codewörtern, das heisst bestimmte digitale Worte werden gar nie erreicht. Oder der digitale Ausgang bleibt über einen zu grossen Analogbereich konstant, der Quantisierungsschritt ist lokal zu gross. Sogenannte 'monotonic' oder 'non-missing code' Wandler sind heute Standard und haben die Eigenschaft, dass nur mit den drei ersten Fehlern zu rechnen ist, von denen nach Abgleich nur der integrale Linearitätsfehler übrig bleibt. Fig. ad.3: Wandlerfehler: nonlinearity und non-monotonic error Roland Küng 14

15 Die Datenblätter sind genau zu studieren. Die Angabe über Auflösung und Genauigkeit sind richtig zu verstehen. Die Auflösung gibt lediglich das Potential des Wandlers an, wie fein er in der Lage ist, ein analoges Signal zu quantisieren. Die Genauigkeit ist die Angabe der Summe aller Wandlerfehler entweder mit Abgleich oder ohne. Angaben über die Einzelfehler lassen sich aus diesem Parameter nicht herauslesen. Moderne Wandler sind derart genau, dass oft der Fehler im Abtastglied vor der Wandlung eine ebenso grosse Rolle spielt (hold leakage, time jitter). A/D Wandler Dynamikbereich Der Dynamikbereich eines A/D-Wandler ist neben der Konversionszeit der zweite Parameter, der für die Auswahl wichtig ist. Analoge Signale weisen sicher in den meisten Anwendungen eine viel zu hohe Auflösung auf. Andrerseits lässt sich das Signal im digitalen Bereich nicht beliebig in der Amplitude quantisieren. es stellt sich also die Frage, wieviele Bits der A/D-Wandler nun braucht, um einen gewissen Dynamikumfang sicherzustellen, das heisst in wieviele Stufen der Wandler seinen Full Scale (FS) Bereich einteilt, oder wieviele Prozent Quantisierungsfehler denn entstehen. Die Tabelle in Fig. ad.18 gibt Antwort auf diese Frage. Soll beispielsweise ein Messsignal, das einem 45 db stärkeren Störsignal überlagert ist, noch mit etwa 4 Bit Auflösung wiedergegeben werden (Annahme: Amplitude des Störsignal = Vollaussteuerung), so sieht man in der Tabelle, dass mit N=8 das Nutzsignal nur gerade noch als LSB darstellbar wäre. Es sind also insgesamt 12 Bit notwendig. Für das Nutzsignal beträgt der prozentuale Fehler etwa 3,12%, der Wiedergabeverlust ist also bereits mit einem KO zu messen. Fig. ad.18: Dynamik Bereich von A/D-Wandlern Verwenden wir 1 V Full Scale so entspricht das LSB einer Spannung von nur 240 µv. Beim Layout muss deshalb auf kapazitive Einkopplung und induktive Einstreuung geachtet werden, um nicht die Wiedergabequalität noch weiter zu verfälschen. Roland Küng 15

16 A/D Wandler Verfahren Full parallel (flash) converter Die schnellsten A/D Umsetzer sind die parallel converter, auch flash converter genannt. Allerdings ist es auch das Verfahren mit den höchsten Kosten pro Bit. der Grund für die hohen erzielbaren Umsetzgeschwindigkeiten ist schnell zu erkennen, denn für jeden möglichen digitalen Code ist ein Komparator vorhanden. Fig. ad.19 zeigt dies am Beispiel eines 3 Bit Wandlers. Die Schaltgeschwindigkeit der Komparatoren und der nachfolgenden Encoderlogik bestimmt die conversion time. Der Stand der Technik liegt bei 8-bit bis 10-bit Wandlern. Höhere Auflösungen bräuchten über 1024 Komparatoren und ergäben extrem kleine Vergleichsspannungen. Beides ist bei hohen Taktraten unwirtschaftlich und störanfällig. Die Geschwindigkeiten liegen im Bereich 100 MS/s (MegaSample pro s) bis 1 GS/s und Preisen von bis zu 100 $). Parallelwandler haben zufällige Linearitätsfehler. Die Abweichung von der idealen Übertragungsfunktion für einen bestimmten Code schwankt von Exemplar zu Exemplar. Fig. ad.19: Flash Wandler für 3 Bit Sie wird hauptsächlich von den Offsetspannungen der Komparatoren und der Genauigkeit des Widerstandsteilers bestimmt. Haben zwei aufeinander folgende Komparatoren entgegengesetzte Offsetspannungen entsprechender Grösse, so kann ohne weiteres ein fehlender Code auftreten (missing codes). Die Hersteller Garantie 'no missing code' bescheinigt entsprechend kleine Toleranzen und haben ihren Preis. Der Eingang, der auf alle Komparatoren führt, hat eine relativ grosse Eingangskapazität. Um diesen Roland Küng 16

17 Eingang bei hoher Geschwindigkeit auch treiben zu können, ist ein schneller Operationsverstärker notwendig, welcher auch bei grossen kapazitiven Lasten stabil bleibt. Fig. ad.20: Half-flash ADC Flash Konverter werden sehr oft ohne S&H-Stufe eingesetzt, weil ihre Wandlungszeit und damit die aperture time vom Prinzip her sehr klein sind, so klein, dass bei der kleinen bis mittleren Auflösung dieser Wandler kein zu grosser Fehler entsteht. Zur Senkung der Kosten oder Erhöhung der Bitzahl wird die half-flash Technik angewendet. Dies ist ein Zweischritt Prozess, in dem zuerst das Eingangssignal mit der halben Auflösung gewandelt wird. Ein interner DAC setzt das Resultat wieder in eine analoge Spannung um, worauf die verstärkte Differenz zwischen ihr und der Eingangsspannung nochmals gewandelt wird, um die unteren Bits zu erhalten. Ein Blockschaltbild des Verfahrens ist in Fig. ad.20 zu sehen. Man erhält 2n Bit mit zwei n-bit Flashwandlern, für N=8 braucht man also lediglich 31 statt 255 Komparatoren. Die Technik des Schachtelns der Wandlung lässt sich noch weiter fortführen, man spricht dann von multistep convertern. Durch die mehrstufige Verarbeitung wird aber die Anforderung an die Wandlungszeit jeder Stufe bei sehr hohen Geschwindigkeiten immer höher. Hier hilft das sogenannte pipelining. Jede Stufe erhält hierin die volle Abtastperiode zur Verfügung um S&H und partielle Konversion durchzuführen. Der Hardwareaufwand steigt dadurch, aber die Geschwindigkeit innerhalb der Stufen wird um die Anzahl pipeline Stufen reduziert. Vor jeder pipeline Stufe wird nun eine S&H-Stufe benötigt. Pipelined ADC benötigen in der Regel mehr Strom als solche ohne pipelining. Stand der Technik sind 16 Bit Auflösung bei 100 MS/s. Solche Wandler erlauben die Digitalisierung von ZF-Signalen bei 4.5 MHz oder 10.7 MHz mit einer Dynamik in der Praxis von über 60 db. In den modernen drahtlosen Telefonen (Natel D, DECT, D-AMPS, PCS) ist dies eine Voraussetzung für die kostengünstige Produktion und die Verminderung der Alterung und Drift der Elektronik. Fig. ad.21 zeigt ein Blockdiagramm eines dreistufigen pipelined parallel converters. Drei 4-bit Wandler, zwei Speicherregister und zwei 4-bit DAC bilden die eigentliche Wandlung. Durch die Dreistufigkeit werden für die 4 MSB's zwei weitere Speicher für die Resultate benötigt und für die 4 mid-bits ein weiterer Speicher, weil ja bis zur Ausgabe des gesamten Digitalwertes bereits zwei neue Abtastwerte in der pipeline sind. Die Verzögerung des gewandelten Wertes um drei Abtastintervalle ist in den allermeisten Anwendungen belanglos. Roland Küng 17

18 Fig. ad.21: three-stage pipelined parallel conversion Einzig bei der alternierenden Wandlung mehrerer Signale kann der Verlust der Gleichzeitigkeit in der Signalverarbeitung Auswirkungen (Phasenverschiebung) zeigen. Im nachfolgenden Prozessor muss daher dann eine Interpolation von zwei Abtastwerten durchgeführt werden, so dass die Verzögerung eliminiert wird. Meist genügt dazu eine simple Mittelwertbildung von zwei Abtastwerten und ein Verzögerungsglied um die Hälfte der Abtastperiode. Roland Küng 18

19 Successive approximation converter Bei dieser populären Wandlerart werden verschiedene Ausgangscodes ausprobiert, indem man sie über einen D/A-Wandler zum Vergleich mit dem analogen Eingangssignal auf einen Komparator gibt. Normalerweise werden zuerst alle Bits 0 gesetzt. Dann wird das MSB provisorisch auf 1 gesetzt und vom DAC in eine analoge Vergleichsspannung gewandelt. Ist das analoge Eingangssignal grösser als diese Vergleichsspannung, so wird das MSB definitiv auf 1 gesetzt, andernfalls definitiv auf 0. Dasselbe Verfahren wird nun sukzessive für das zweithöchst-wertige und die übrigen Bits durchgeführt. Für einen N Bit ADC werden also N Wägeschritte benötigt. Im Prinzip führt man eine binäre Suche durch, beginnend in der Bereichsmitte des ADC. Successive approximation converter verfügen über einen begin conversion Eingang zum Starten der Wandlung und einen conversion done Ausgang, der das Ende des Suchprozesses anzeigt. Nach dem conversion done Signal kann das digitale Resultat parallel oder sehr oft seriell aus einem Register ausgelesen werden. Vielfach ist die digitale Schnittstelle auf bestimmte Microcontroller angepasst um ein einfaches Interface zu ermöglichen. Fig. ad.22 zeigt ein simples Übersichtsbild eines solchen Wandlers. Die Geschwindigkeit dieser Wandler liegt im mittleren Bereich. Typisch werden conversion rates im Bereich 20 khz bis 5 MHz erreicht mit Auflösungen zwischen 8 Bit und 16 Bit, dies vergleichsweise mit der parallel conversion Technik zu tiefen Preisen. Ein Problem bei diesen ADC kann das Auftreten merkwürdiger Nichtlinearitäten und missing codes sein. Diese kommen durch die sukzessive Rückführung und die Nichtidealitäten des D/A-Wandlers zustande, meist wenn Spikes auf Speise- oder Signalleitungen vorhanden sind. Eine zweite Fehlerquelle ist wie bereits besprochen, die aperture time, wenn ohne S&H-Glied gearbeitet wird. Successive approximation converter mit dem Prädikat 'no missing code' benutzen neuerdings anstelle des R-2R DAC eine Kette von 2 N identischen Widerständen. Eine symmetrisch gestaltete, analoge Schaltermatrix erlaubt es, jede Vergleichsspannung als Teilspannung einer Spannungsreferenz monoton einstellen zu können, wie dies beim flash converter gemacht wird. Mit den heutigen IC-Technologien ist es möglich, die Referenzspannung mit hoher Genauigkeit und Temperaturstabilität mit auf den Wandler zu bringen. Ist auch eine µp kompatible Schnittstelle vorhanden, so spricht man in diesem Fall von einem data acquisition System. Die successive approximation Technik lässt sich sehr gut weitgehend in CMOS Technik integrieren. Dadurch wird im Vergleich zur parallel conversion Technik bei gleicher Geschwindigkeit ein deutlich geringerer Stromverbrauch erreicht. Typischerweise kann mit einem Verbrauch von 100 mw mw gerechnet werden. Roland Küng 19

20 Fig. ad.22: Successive approximation ADC Noch drastischere Stromeinsparungen sind möglich, wenn die Switched Capacitor (SC) -Technik zu Hilfe genommen wird. Diese auch als charge redistribution converter oder SC-converter bezeichneten Wandler benutzen exakte Kapazitätsverhältnisse anstelle von Widerständen. Mit nur N + 1 binär gestuften Kapazitäten, einem Komparator und einer Steuerung lässt sich das analoge Eingangssignal digitalisieren. Da zu Beginn der Wandlung alle Kapazitäten parallel geschaltet auf den analogen Wert aufgeladen werden und danach lediglich eine praktisch verlustfreie Ladungsumverteilung unter den C's stattfindet, sinkt die gesamte Verbrauchsleistung auf typisch 1 mw...10 mw. Es werden heute 16 Bit Auflösung erreicht und Wandlungsraten bis zu 1 MHz (Maxim, Linear Technology, Texas Instruments). Diese Wandler sind besonders für batteriebetriebene Geräte interessant und begnügen sich zum Teil mit einer einzigen 5 V Spannungsversorgung. Bsp. LT1864, 16 Bit, 250 ksps, (Preis 7$). Die Wandlung erfolgt in 6 Schritten (Fig. ad.23): 1) Alle C's parallel aufladen auf V in mit S c geschlossen und S i auf V in 2) Gemeinsame Platte aller C's mit S c von Masse trennen, S1...S N auf Masse legen, S i auf V REF schalten -> -V in am Komparator 3) MSB Anschluss mit S 1 auf V REF legen -> Umladeprozess -V in +V REF /2 4) Vergleich mit Masse als Schwelle, falls kleiner MSB = 1, sonst MSB = 0 5) S 1 im Fall MSB = 1 auf Position V REF belassen, sonst auf Masse legen 6) Repeat für alle N Bit's Roland Küng 20

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart Tontechnik 2 DA-Wandlung Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik DA-Wandlung (Übersicht) Hold-Schaltung 1 DA-Wandlung Rückgewinnung analoger Spannungswerte

Mehr

Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes 29. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Einführung in die Signalverarbeitung

Mehr

Prozess-rechner. auch im Büro. Automation und Prozessrechentechnik. Prozessrechner. Sommersemester 2011. Prozess I/O. zu und von anderen Rechnern

Prozess-rechner. auch im Büro. Automation und Prozessrechentechnik. Prozessrechner. Sommersemester 2011. Prozess I/O. zu und von anderen Rechnern Automation und Prozessrechentechnik Sommersemester 20 Prozess I/O Prozessrechner Selbstüberwachung zu und von anderen Rechnern Prozessrechner speziell Prozessrechner auch im Büro D A D A binäre I/O (Kontakte,

Mehr

Spannungsstabilisierung

Spannungsstabilisierung Spannungsstabilisierung 28. Januar 2007 Oliver Sieber siebero@phys.ethz.ch 1 Inhaltsverzeichnis 1 Zusammenfassung 4 2 Einführung 4 3 Bau der DC-Spannungsquelle 5 3.1 Halbwellengleichrichter........................

Mehr

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 1.1 analoge Messgeräte Fließt durch einen Leiter, welcher sich in einem Magnetfeld B befindet ein Strom I, so wirkt auf diesen eine

Mehr

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung 1 Bipolartransistor. 1.1 Dimensionierung 3.Transistor Christoph Mahnke 7.4.006 Für den Transistor (Nr.4) stand ein Kennlinienfeld zu Verfügung, auf dem ein Arbeitspunkt gewählt werden sollte. Abbildung

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

1 Digital Oszilloskop

1 Digital Oszilloskop 1 Digital Oszilloskop Beim digitalen Oszilloskop wird das Signal im Erfassungssystem durch den Analog-Digital- Umsetzer an zeitdiskreten Punkten abgetastet und wandelt die Signalspannung an diesen Punkten

Mehr

Laborübung: Oszilloskop

Laborübung: Oszilloskop Laborübung: Oszilloskop Die folgenden Laborübungen sind für Studenten gedacht, welche wenig Erfahrung im Umgang mit dem Oszilloskop haben. Für diese Laborübung wurde eine Schaltung entwickelt, die verschiedene

Mehr

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing.

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing. TFH Berlin Messtechnik Labor Seite 1 von 5 Das Oszilloskop Ort: TFH Berlin Datum: 05.01.04 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00h bis 11.30 Uhr Prof. Dr.-Ing. Klaus Metzger Mirko Grimberg, Udo Frethke,

Mehr

Aufgabenbeschreibung Oszilloskop und Schaltkreise

Aufgabenbeschreibung Oszilloskop und Schaltkreise Aufgabenbeschreibung Oszilloskop und Schaltkreise Vorbereitung: Lesen Sie den ersten Teil der Versuchsbeschreibung Oszillograph des Anfängerpraktikums, in dem die Funktionsweise und die wichtigsten Bedienungselemente

Mehr

Die einfachste Art, piezokeramischen Druckmesszellen zu kalibrieren

Die einfachste Art, piezokeramischen Druckmesszellen zu kalibrieren Problemstellung: Aufbau einer einfachen und kostengünstigen Schaltung zur Signalverstärkung und Kalibrierung von keramischen Druckmesszellen mittels eines geeigneten ICs [1] und weniger diskreter Bauelemente

Mehr

Einführung in die Robotik Analog-Digital und Digital-Analog Wandler

Einführung in die Robotik Analog-Digital und Digital-Analog Wandler Einführung in die Robotik Analog-Digital und Digital-Analog Wandler Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 5 2453 mohamed.oubbati@uni-ulm.de 3.. 22 Analog-Digital (A/D) Wandler Digital

Mehr

FET Switch & Power. Roland Küng, 2010

FET Switch & Power. Roland Küng, 2010 FET Switch & Power Roland Küng, 2010 1 without quad. term ohmic resistor 2 Review Bias Verstärker Datenblatt: K 2.5 ma/v 2, V t 2 V, Wahl I D 10 ma, V DS 4 V, V DD 12 V R S 300 Ω, R 1 500 kω, V GS > V

Mehr

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Bei diesem Versuch sollen Sie mit den grundlegenden Eigenschaften und Anwendungen von Operationsverstärkern

Mehr

Grundlagen der Elektro-Proportionaltechnik

Grundlagen der Elektro-Proportionaltechnik Grundlagen der Elektro-Proportionaltechnik Totband Ventilverstärkung Hysterese Linearität Wiederholbarkeit Auflösung Sprungantwort Frequenzantwort - Bode Analyse Der Arbeitsbereich, in dem innerhalb von

Mehr

Hochschule für Technik und Architektur Bern 4-1

Hochschule für Technik und Architektur Bern 4-1 Hochschule für Technik und Architektur Bern 4-4 Analoge Daten werden vielfach in digitaler Form benötigt wenn sie gespeichert, übertragen, verarbeitet oder angezeigt werden müssen. Sensoren und andere

Mehr

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5 Operationsverstärker Versuchsdatum: 22.11.2005 Teilnehmer: 1. Vorbereitung 1.1. Geräte zum Versuchsaufbau 1.1.1 Lawinendiode 1.1.2 Photomultiplier

Mehr

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ Praktikum Elektrotechnik SS 2006 Protokoll Übung 1 : Oszilloskop Gruppe: Protokollführer / Protokollführerin: Unterschrift: Mitarbeiter / Mitarbeiterin:

Mehr

Der Avalanche-Generator. Funktionsprinzip und Versuche

Der Avalanche-Generator. Funktionsprinzip und Versuche Der Avalanche-Generator Funktionsprinzip und Versuche ACHTUNG: In der hier beschrieben Schaltung treten Spannungen über 50V auf!!! 1(7) Das Avalanche-Prinzip Der Avalanche-Effekt ( avalanche = Lawine )

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Grundlagenpraktikum 2.Teil. Versuch : Transistorschaltungen. A: Vorbereitung Siehe hierzu auch die Laborordnung. (s. Anhang)

Grundlagenpraktikum 2.Teil. Versuch : Transistorschaltungen. A: Vorbereitung Siehe hierzu auch die Laborordnung. (s. Anhang) Grundlagenpraktikum 2.Teil Versuch : Transistorschaltungen Fassung vom 14.07.2005 A: Vorbereitung Siehe hierzu auch die Laborordnung. (s. Anhang) Informieren Sie sich ausführlich über o Wirkungsweise des

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

Laborübung Gegentaktendstufe Teil 1

Laborübung Gegentaktendstufe Teil 1 Inhaltsverzeichnis 1.0 Zielsetzung...2 2.0 Grundlegendes zu Gegentaktverstärkern...2 3.0 Aufgabenstellung...3 Gegeben:...3 3.1.0 Gegentaktverstärker bei B-Betrieb...3 3.1.1 Dimensionierung des Gegentaktverstärkers

Mehr

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche

Mehr

Spectrumanalyzer bis 100 MHz

Spectrumanalyzer bis 100 MHz . DL2JWL Wolfgang Lässig Sonnenstrasse 45 09337 Hohenstein-Ernstthal Tel. 0179 533 77 49 Spectrumanalyzer bis 100 MHz.......... Vorwort Jeder der sich mit Selbstbau von Sendern und Empfängern beschäftigt,

Mehr

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Entwicklung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Entwicklung einer digitalen mit Einplatinencomputern zur Signalanalyse Philipp Urban Jacobs p.1 Inhalt 1 Motivation 2 Grundlagen 3 Umsetzung 4 Verifizierung 5 Fazit p.2 Motivation Signalgenerator ADC Gertboard

Mehr

Oszilloskop HP 54600A

Oszilloskop HP 54600A Oszilloskop HP 54600A Grundeinstellungen Einstellen eines Eingangsignals: Schliessen Sie den Osziloskopkabel an die BNC Buchse des Osziloskops an, beachten Sie dabei, dass die Masse des Osziloskopkabels

Mehr

Studienskript AD-/DA-Umsetzer

Studienskript AD-/DA-Umsetzer Studienskript AD-/DA-msetzer 1 Studienskript AD-/DA-msetzer 1 Analoge und digitale Messwerte Die Messung elektrischer oder nichtelektrischer Größen mit Sensoren führt in der Regel zu einer Spannung, die

Mehr

Seminar zum Studentenexperiment. Teil 3: Elektronik und Datenerfassung

Seminar zum Studentenexperiment. Teil 3: Elektronik und Datenerfassung Seminar zum Studentenexperiment Teil 3: Elektronik und Datenerfassung Seminar zum Studentenexperiment Überblick: 0) Wiederholung / Ergänzung, Erläuterung wichtiger Begriffe 1) Analoge Pulsformung 2) Digitalisierung

Mehr

Inhaltsverzeichnis. Teil I. Grundlagen

Inhaltsverzeichnis. Teil I. Grundlagen Inhaltsverzeichnis Teil I. Grundlagen 1 Erklärung der verwendeten Größen 2 Passive RC- und LRC-Netzwerke 2.1 Der Tiefpaß 2.2 Der Hochpaß 2.3 Kompensierter Spannungsteiler.... 2.4 Passiver KC-Bandpaß 2.5

Mehr

MB-Diplom (4. Sem.) / MB-Bachelor (Schwerpunkt Mechatronik, 5. Sem.) Seite 1 von 8. Wintersemester 2014/15 Elektronik

MB-Diplom (4. Sem.) / MB-Bachelor (Schwerpunkt Mechatronik, 5. Sem.) Seite 1 von 8. Wintersemester 2014/15 Elektronik MB-Diplom (4. Sem.) / MB-Bachelor (Schwerpunkt Mechatronik, 5. Sem.) Seite 1 von 8 Hochschule München Fakultät 03 Zugelassene Hilfsmittel: alle eigenen, Taschenrechner Matr.-Nr.: Hörsaal: Wintersemester

Mehr

Select & Preprocessing Cluster. SPP Server #1. SPP Server #2. Cluster InterConnection. SPP Server #n

Select & Preprocessing Cluster. SPP Server #1. SPP Server #2. Cluster InterConnection. SPP Server #n C5000 High Performance Acquisition System Das C5000 System wurde für Messerfassungs- und Auswertungssystem mit sehr hohem Datenaufkommen konzipiert. Typische Applikationen für das C5000 sind große Prüfstände,

Mehr

ECS-Laborarbeiten. Tobias Plüss

ECS-Laborarbeiten. Tobias Plüss ECS-Laborarbeiten Tobias Plüss 9. Juni 2012 Inhaltsverzeichnis 1 Strommonitor 3 1.1 Messchaltung....................................... 3 1.2 Funktionsbeschreibung.................................. 3 1.3

Mehr

TNF. Musterlösungen Übung Halbleiterschaltungstechnik WS 2012/13. Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel

TNF. Musterlösungen Übung Halbleiterschaltungstechnik WS 2012/13. Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel TNF Musterlösungen Übung Halbleiterschaltungstechnik WS 212/13 Übungsleiter: Christian Diskus Martin Heinisch Erwin Reichel Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69, 44 Linz, Internet:

Mehr

4 DIGITALE SCHALTUNGSTECHNIK

4 DIGITALE SCHALTUNGSTECHNIK Digitale Schaltungstechnik 59 4 DIGITALE SCHALTUNGSTECHNIK Um Daten zu verarbeiten, verwenden Computer als grundlegende Größen logische Variablen, die genau zwei Zustände annehmen können, nämlich den Wert

Mehr

aufeinander folgenden 1kHz-Pulse in gleichen Zeitabständen an die Eingänge des JK-FF gelangen.

aufeinander folgenden 1kHz-Pulse in gleichen Zeitabständen an die Eingänge des JK-FF gelangen. 1. Vorbereitung: 1.1 Zählerbaustein 74163 Bei den in der Schaltung verwendeten Zählerbausteinen handelt es sich um synchron programmierbare 4-bit-Binärzähler mit synchronem Clear. Die Zähler sind programmierbar,

Mehr

Übungsaufgaben zum 2. Versuch. Elektronik 1 - UT-Labor

Übungsaufgaben zum 2. Versuch. Elektronik 1 - UT-Labor Übungsaufgaben zum 2. Versuch Elektronik 1 - UT-Labor Bild 2: Bild 1: Bild 4: Bild 3: 1 Elektronik 1 - UT-Labor Übungsaufgaben zum 2. Versuch Bild 6: Bild 5: Bild 8: Bild 7: 2 Übungsaufgaben zum 2. Versuch

Mehr

16. Elektronik-Stammtisch: Logic Analyzer

16. Elektronik-Stammtisch: Logic Analyzer 16. Elektronik-Stammtisch: Logic Analyzer Axel Attraktor e.v. 6. Mai 2013 Axel (Attraktor e.v.) 16. Elektronik-Stammtisch 6. Mai 2013 1 / 40 Was ist ein Logic Analyzer Messgerät für digitale Signale Spannungsverläufe

Mehr

Vervollständigen Sie das Schema mit Stromversorgung und Widerstandsmessgerät!

Vervollständigen Sie das Schema mit Stromversorgung und Widerstandsmessgerät! Übungen Elektronik Versuch 1 Elektronische Bauelemente In diesem Versuch werden die Eigenschaften und das Verhalten nichtlinearer Bauelemente analysiert. Dazu werden die Kennlinien aufgenommen. Für die

Mehr

WCDMA-3GPP-Applikationsfirmware R&S FS-K72/-K73

WCDMA-3GPP-Applikationsfirmware R&S FS-K72/-K73 WCDMA-3GPP-Applikationsfirmware R&S FS-K72/-K73 3GPP-Sendermessungen an Basisstationen und Modulen mit dem Signalanalysator R&S FSQ und den Spektrumanalysatoren R&S FSU und R&S FSP Erweiterung der Analysator-Familien

Mehr

Breitbandverstärker. Samuel Benz. Laborbericht an der Fachhochschule Zürich. vorgelegt von. Leiter der Arbeit: B. Obrist Fachhochschule Zürich

Breitbandverstärker. Samuel Benz. Laborbericht an der Fachhochschule Zürich. vorgelegt von. Leiter der Arbeit: B. Obrist Fachhochschule Zürich Breitbandverstärker Laborbericht an der Fachhochschule Zürich vorgelegt von Samuel Benz Leiter der Arbeit: B. Obrist Fachhochschule Zürich Zürich, 7. Juni 2003 Samuel Benz Inhaltsverzeichnis Vorgaben.

Mehr

Versuch 3: Kennlinienfeld eines Transistors der Transistor als Stromverstärker

Versuch 3: Kennlinienfeld eines Transistors der Transistor als Stromverstärker Bergische Universität Wuppertal Praktikum Fachbereich E Werkstoffe und Grundschaltungen Bachelor Electrical Engineering Univ.-Prof. Dr. T. Riedl WS 20... / 20... Hinweis: Zu Beginn des Praktikums muss

Mehr

Kapitel 4 Leitungscodierung

Kapitel 4 Leitungscodierung Kapitel 4 Leitungscodierung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Übersicht Quelle Senke Kompression Huffman-, Arithmetische-, Lempel-Ziv

Mehr

RATIOMETRISCHES INTERFACE IC PRINZIPIELLE FUNKTION

RATIOMETRISCHES INTERFACE IC PRINZIPIELLE FUNKTION PINZIPIELLE FUNKTION Verstärkung von differentiellen Sensorsignalen in eine der Versorgungsspannung ratiometrische Ausgangsspannung zwischen 0,5 und,5v V CC = 5V 5% differentielle Eingangsspannung V OUT

Mehr

AVR-Mikrocontroller in BASCOM programmieren, Teil 3

AVR-Mikrocontroller in BASCOM programmieren, Teil 3 jean-claude.feltes@education.lu 1/8 AVR-Mikrocontroller in BASCOM programmieren, Teil 3 Alle Beispiele in diesem Kapitel beziehen sich auf den Mega8. Andere Controller können unterschiedliche Timer haben.

Mehr

Der Transistor als Verstärker

Der Transistor als Verstärker 6 Der Transistor als Verstärker 6.1 Verstärker mit n-kanal MOSFET Aufgabenstellung Gegeben sei die in Abb. 6.1 (links) dargestellte Verstärkerschaltung mit der Betriebsspannung U B = 15 V und dem Drainwiderstand

Mehr

Synthesis for Low Power Design

Synthesis for Low Power Design Synthesis for Low Power Design Prof. Thomas Troxler Hochschule Rapperswil Abstract Power optimization at high levels of abstraction has a significant impact on reduction of power in the final gate-level

Mehr

Übungsaufgaben zum 5. Versuch 13. Mai 2012

Übungsaufgaben zum 5. Versuch 13. Mai 2012 Übungsaufgaben zum 5. Versuch 13. Mai 2012 1. In der folgenden Schaltung wird ein Transistor als Schalter betrieben (Kennlinien s.o.). R b I b U b = 15V R c U e U be Damit der Transistor möglichst schnell

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

BAUELEMENTE UND SCHALTUNGSTECHNIK EMV-GERECHTER SCHNITTSTELLEN

BAUELEMENTE UND SCHALTUNGSTECHNIK EMV-GERECHTER SCHNITTSTELLEN BAUELEMENTE UND SCHALTUNGSTECHNIK EMV-GERECHTER SCHNITTSTELLEN H. Leopold und G.Winkler 4.6.97, Institut für Elektronik der TU-Graz Die als Beispiel betrachteten digitalen Schnittstellen RS 232, die 20mA

Mehr

High-Speed Optical Transmission Systems Grundlagen der numerischen Simulation

High-Speed Optical Transmission Systems Grundlagen der numerischen Simulation High-Speed Optical Transmission Systems Grundlagen der numerischen Simulation 8. Februar 2 In dieser Übung sollen einige Grundlagen der numerischen Simulation mit dem Programm VPItransmissionMaker behandelt

Mehr

Optimierung des Energieverbrauchs eingebetteter Software

Optimierung des Energieverbrauchs eingebetteter Software Optimierung des Energieverbrauchs eingebetteter Software Welchen Einfluss hat eine Programmänderung auf den Energiebedarf einer Applikation? Welcher Programmteil verursacht den größten Energieverbrauch?

Mehr

SICONN light basic Sync H-Sync

SICONN light basic Sync H-Sync USB Messtechn USB-Messtechn SICONN light basic Sync H-Sync USB Messtechn Inhaltsverzeichnis SICONN-USB2 basic light Seite -1 - - 8 analoge Eingangskanäle, SE 150 khz Summenabtastrate 16 Bit A/D-Wandler

Mehr

Viele physikalische Grössen können einfach direkt gemessen werden. Die Messinstrumente sind dafür ausgestattet:

Viele physikalische Grössen können einfach direkt gemessen werden. Die Messinstrumente sind dafür ausgestattet: Verbesserung von Prozessen durch Beherrschung mit Messtechnik. Die Beurteilung von Prozesswerten ist mehr als nur die Integrierung des Sensors und das Ablesen von Messwerten. Um gut und effizient messen

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Versuch 14: Transistor

Versuch 14: Transistor Versuch 14: Transistor Transistoren werden sowohl als Schalter (in der Digitaltechnik) als auch als Verstärker betrieben. Hier sollen die Grundlagen des Transistors als Verstärkerelement erlernt werden,

Mehr

Wie man sich mit einem kleinen Kästchen ( 35x 55 mm) 6 Wochen beschäftigen kann!

Wie man sich mit einem kleinen Kästchen ( 35x 55 mm) 6 Wochen beschäftigen kann! Wie man sich mit einem kleinen Kästchen ( 35x 55 mm) 6 Wochen beschäftigen kann! Nach mehreren Aufbauten von Vorverstärkern für 2m und 70 cm sollten nun auch die Parameter dieser Verstärker gemessen werden.

Mehr

Störströme führen über Impedanzen zur Funkstörspannung. Abbildung 1 zeigt den prinzipiellen Stromfluss von Störströmen in einem Schaltnetzteil.

Störströme führen über Impedanzen zur Funkstörspannung. Abbildung 1 zeigt den prinzipiellen Stromfluss von Störströmen in einem Schaltnetzteil. Von Stefan Klein 1. Motivation zum Netzfilter Schaltnetzteile führen zu leitungsgebundenen Störungen, weil sie auf der Netzseite eine Funkstörspannung erzeugen. Dadurch können andere am Netz versorgte

Mehr

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1

9 Codes. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 9-1 9 Codes 9.1 Charakterisierung und Klassifizierung Definition: Das Ergebnis einer eindeutigen Zuordnung zweier Zeichen- bzw. Zahlenmengen wird Code genannt. Die Zuordnung erfolgt über eine arithmetische

Mehr

Broadband EMI Noise Measurement in Time Domain

Broadband EMI Noise Measurement in Time Domain Broadband EMI Noise Measurement in Time Domain Florian Krug, Peter Russer Institute for High-Frequency Engineering Technische Universität München fkrug@ieee.org 1 Inhalt Einführung Time-Domain Electromagnetic

Mehr

Fachbereich Elektrotechnik u. Informatik Praktikum ElektronikI

Fachbereich Elektrotechnik u. Informatik Praktikum ElektronikI Fachbereich Elektrotechnik u. Informatik Praktikum ElektronikI Fachhochschule Münster University of Applied Sciences Versuch: 3 Gruppe: Datum: Antestat: Teilnehmer: Abtestat: (Name) (Vorname) Versuch 3:

Mehr

Studienvertiefungsrichtung Informationstechnik

Studienvertiefungsrichtung Informationstechnik Studienvertiefungsrichtung Informationstechnik Prof.Dr.-Ing. Ulrich Sauvagerd Lehrgebiet Informationstechnik Nov. 2006, Seite 1 www.etech.haw-hamburg.de/~sauvagerd Lehrgebiet Informationstechnik Nov. 2006,

Mehr

1 Übung mit Universalmessgeräten

1 Übung mit Universalmessgeräten Elektronikkurs Übungen Übung mit Universalmessgeräten 1 Übung mit Universalmessgeräten Bauen Sie folgende Schaltung auf: 1 R1 2 R1: 100 kω D1: 1 N4004 D1 Messen Sie den Widerstand gemäss den untenstehenden

Mehr

EDV-Anwendungen im Archivwesen II

EDV-Anwendungen im Archivwesen II EDV-Anwendungen im Archivwesen II 070472 UE WS08/09 Grundlagen der Digitalisierung Überblick Allgemeine Grundlagen der Digitalisierung anhand der Ton-Digitalisierung Abtastrate (Samplerate) Wortlänge (Bitrate)

Mehr

Funkentstörung von Schaltnetzteilen

Funkentstörung von Schaltnetzteilen Seite 35 Funkentstörung von Schaltnetzteilen Schaltnetzteile erzeugen infolge ihrer hochfrequenten Taktung Funkstörungen. Diese breiten sich mittels elektromagnetischer Felder im freien Raum, und leitungsgebunden

Mehr

Asynchrone Schaltungen

Asynchrone Schaltungen Asynchrone Schaltungen Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2013 Asynchrone Schaltungen 1/25 2013/07/18 Asynchrone Schaltungen

Mehr

A/D- und D/A-Wandler

A/D- und D/A-Wandler niversität Paderborn Fakultät für Naturwissenschaften - Physikalisches Praktikum P 1 A/D- und D/A-Wandler odulpraktikum essmethoden Versuch A/D- und D/A-Wandler H. Suche, April 2000 angepasst für Praktikum

Mehr

Serielle Datenauswertung

Serielle Datenauswertung Serielle Datenauswertung Liebherr Temperature Monitoring Serial Interface Kälte-Berlin Inh.: Christian Berg Am Pfarracker 41 12209 Berlin Fon: +49 (0) 30 / 74 10 40 22 Fax: +49 (0) 30 / 74 10 40 21 email:

Mehr

SDR# Software Defined Radio

SDR# Software Defined Radio SDR# Software Defined Radio Beispiel von DVB T USB Stick und SDR Receiver Frequenz 24 1700MHz Frequenz 0,1 2000MHz, mit Down Converter für KW Treiber und Software http://sdrsharp.com/#download 1 Nach dem

Mehr

SPI-Bus-Kommunikation mit Sensortechnics digitalen Drucksensoren der HCE-Serie

SPI-Bus-Kommunikation mit Sensortechnics digitalen Drucksensoren der HCE-Serie 1 EINFÜHRUNG 1.1 Digitale Drucksensoren Sensortechnics digitale Drucksensoren nutzen einen internen ASIC zur digitalen Kalibrierung, Temperaturkompensation und Ausgabe eines digitalen Ausgangssignals mit

Mehr

Spannungen und Ströme

Spannungen und Ströme niversität Koblenz Landau Name:..... Institut für Physik orname:..... Hardwarepraktikum für Informatiker Matr. Nr.:..... Spannungen und Ströme ersuch Nr. 1 orkenntnisse: Stromkreis, Knotenregel, Maschenregel,

Mehr

Elektronik II 2. Groÿe Übung

Elektronik II 2. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 4. Mai 2015 1/31 Elektronik II 2. Groÿe Übung G. Kemnitz Institut für Informatik, Technische Universität Clausthal 4. Mai 2015 1. Brückengleichrichter

Mehr

SDR - Software Defined Radio für den Funkamateur

SDR - Software Defined Radio für den Funkamateur SDR - Software Defined Radio für den Funkamateur So funktioniert die neue Technik Dipl.-Kaufm. Bodo J. Krink (DL7BJK) Ш Verlag für Technik und Handwerk Baden-Baden Inhaltsverzeichnis Vorwort 11 Einführung

Mehr

Auswertung des Versuches Lebensdauer von Positronen in Materie

Auswertung des Versuches Lebensdauer von Positronen in Materie Auswertung des Versuches Lebensdauer von Positronen in Materie Andreas Buhr, Matrikelnummer 122993 23. Mai 26 Inhaltsverzeichnis Lebensdauer von Positronen in Materie 1 Formales 3 2 Überblick über den

Mehr

Was ist analog und digital? Die Begriffe analog und digital werden im Folgenden im Bezug auf Hifi erklärt.

Was ist analog und digital? Die Begriffe analog und digital werden im Folgenden im Bezug auf Hifi erklärt. Was ist analog und digital? Die Begriffe analog und digital werden im Folgenden im Bezug auf Hifi erklärt. Kurzerklärung: Bei einer analogen Übertragung werden sich kontinuierlich ändernde Spannungen übertragen.

Mehr

Rotative Messtechnik. Absolute Singleturn Drehgeber in Wellenausführung

Rotative Messtechnik. Absolute Singleturn Drehgeber in Wellenausführung Höchste Schockfestigkeit am Markt ( 2500 m/s 2, 6 ms nach DIN IEC 68-2-27) SSI, Parallel- oder Stromschnittstelle Teilungen: bis zu 16384 (14 Bit), Singleturn ø 58 mm Wellenausführung IP 65 Zahlreiche

Mehr

1. Versuchsziel und Ausrüstung

1. Versuchsziel und Ausrüstung Technische Informatik Regenerative Energietechnik 2. Semester Praktikum: Bauelemente und Grundschaltungen, 90min Raum: Labor Schaltungs- und Prozessortechnik Betreuung: Prof. Dr.- Ing. M. Viehmann Dipl.-

Mehr

Simulation von Analogschaltungen. Roland Küng, 2011

Simulation von Analogschaltungen. Roland Küng, 2011 Simulation von Analogschaltungen Roland Küng, 2011 1 Wozu Schaltungssimulation? Erlaubt automatische Analyse von Schaltungen aus Literatur Erlaubt vereinfachte Handrechnung beim Design Erlaubt sehr einfach

Mehr

Fohhn DSP-Endstufen, Fohhn DSP-System Controller, Fohhn DSP-Audio-Signal-Matrix.

Fohhn DSP-Endstufen, Fohhn DSP-System Controller, Fohhn DSP-Audio-Signal-Matrix. Fohhn DSP-Endstufen, Fohhn DSP-System Controller, Fohhn DSP-Audio-Signal-Matrix. Perfekte Kontrolle, höchste Betriebssicherheit und erstklassige Klangqualität für Ihre Beschallungsprojekte. 42 Fohhn Amps

Mehr

1 Allgemeine Angaben. 2 Vorbereitungen. Gruppen Nr.: Name: Datum der Messungen: 1.1 Dokumentation

1 Allgemeine Angaben. 2 Vorbereitungen. Gruppen Nr.: Name: Datum der Messungen: 1.1 Dokumentation 1 Allgemeine Angaben Gruppen Nr.: Name: Datum der Messungen: 1.1 Dokumentation Dokumentieren Sie den jeweiligen Messaufbau, den Ablauf der Messungen, die Einstellungen des Generators und des Oscilloscopes,

Mehr

ADSL über ISDN-Basisanschlüsse

ADSL über ISDN-Basisanschlüsse ADSL über ISDN-Basisanschlüsse Thomas Keßler und Werner Henkel Deutsche Telekom AG, Technologiezentrum, Postfach 10 00 03, 64276 Darmstadt Zusammenfassung Für ADSL-Kunden mit ISDN-Basisanschluß müssen

Mehr

Versuch 17.2 Der Transistor

Versuch 17.2 Der Transistor Physikalisches A-Praktikum Versuch 17.2 Der Transistor Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 11.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de

Mehr

BK 600 Optischer Rückkanalempfänger SEO 121

BK 600 Optischer Rückkanalempfänger SEO 121 Funea Broadband Services bv BK 600 Optischer Rückkanalempfänger Gouden Rijderstraat 1 Postbus 57 4900 AB Oosterhout T: +31 (0) 162 475 800 F: + 31(0) 162 455 751 E: info@funea.com I : www.funea.com hr

Mehr

Versuch 21. Der Transistor

Versuch 21. Der Transistor Physikalisches Praktikum Versuch 21 Der Transistor Name: Christian Köhler Datum der Durchführung: 07.02.2007 Gruppe Mitarbeiter: Henning Hansen Assistent: Jakob Walowski testiert: 3 1 Einleitung Der Transistor

Mehr

Optischer Rückkanalempfänger SEO 120

Optischer Rückkanalempfänger SEO 120 Optischer Rückkanalempfänger SEO 120 Erz.-Nr. 88650359 Systembeschreibung INHALTSVERZEICHNIS 1 DOKUMENT UND ÄNDERUNGSSTÄNDE 3 2 EINLEITUNG 4 3 TECHNISCHE BESCHREIBUNG 4 4 TECHNISCHE DATEN 6 4.1 Systemdaten

Mehr

Inhaltsverzeichnis. 1. Einleitung

Inhaltsverzeichnis. 1. Einleitung Inhaltsverzeichnis 1. Einleitung 1.1 Das Analogoszilloskop - Allgemeines 2. Messungen 2.1 Messung der Laborspannung 24V 2.1.1 Schaltungsaufbau und Inventarliste 2.2.2 Messergebnisse und Interpretation

Mehr

Nr. 11 Transistor als Verstärker Teil A

Nr. 11 Transistor als Verstärker Teil A Nr. 11 Transistor als Verstärker Teil Der Transistor ( Transmitting Resistor ), was so etwas wie steuerbarer Widerstand bedeutet, hat vor Jahrzehnten durch blösung der Elektronenröhre eine technische Revolution

Mehr

7 Transistor-Schaltungen

7 Transistor-Schaltungen 7 Verstärker 7 Arbeitspunkt und Stabilität Wird ein Transistor als Verstärker benutzt, so möchte man ein möglichst lineares Verhalten erreichen Dafür muss zunächst der Arbeitspunkt richtig eingestellt

Mehr

Transistor-Mismatch bei einem Strom-DAC in 65nm-Technologie

Transistor-Mismatch bei einem Strom-DAC in 65nm-Technologie Electronic Vision(s) Universität Heidelberg Transistor-Mismatch bei einem Strom-DAC in 65nm-Technologie Projektpraktikum Für den Studiengang Bachelor Physik Christian Graf 2011 1 Inhaltsverzeichnis Inhaltsverzeichnis

Mehr

Herzlich Willkommen Bienvenue Welcome. Beispiele zur Mathematik-/Logikfunktion. Manfred Schleicher

Herzlich Willkommen Bienvenue Welcome. Beispiele zur Mathematik-/Logikfunktion. Manfred Schleicher Herzlich Willkommen Bienvenue Welcome Beispiele zur Mathematik-/Logikfunktion Manfred Schleicher Hinweise zur Präsentation Diese Präsentation zeigt Beispiele zur Anwendung der Mathematikfunktion: Mittelwertbildung

Mehr

TOSVERT VF-AS1. Betriebshandbuch zur PID-Regelung

TOSVERT VF-AS1. Betriebshandbuch zur PID-Regelung TOSVERT VF-AS1 Betriebshandbuch zur PID-Regelung Die technischen Informationen in diesem Handbuch dienen zur Erläuterung der Hauptfunktionen und -anwendungen des Produkts. Sie bilden jedoch keine Lizenz

Mehr

Auswertung P1-33 Oszilloskop

Auswertung P1-33 Oszilloskop Auswertung P1-33 Oszilloskop Michael Prim & Tobias Volkenandt 12. Dezember 2005 Aufgabe 1.1 Triggerung durch Synchronisation In diesem und den beiden folgenden Versuchen sollte die Triggerfunktion des

Mehr

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5

Zahlensysteme. Zahl 0 0 0 0 0 5 5. Stellenwert Zahl 0 0 0 0 0 50 5. Zahl = 55 +50 +5 Personal Computer in Betrieb nehmen 1/6 Weltweit setzen die Menschen alltäglich das Zehnersystem für Zählen und Rechnen ein. Die ursprüngliche Orientierung stammt vom Zählen mit unseren 10 Fingern. Für

Mehr

IO Performance in virtualisierten Umgebungen

IO Performance in virtualisierten Umgebungen IO Performance in virtualisierten Umgebungen Bruno Harsch El. Ing. HTL/FH Managing Partner Tel +41 52 366 39 01 bruno.harsch@idh.ch www.idh.ch IDH GmbH Lauchefeld 31 CH-9548 Matzingen 2 Die Firma IDH wurde

Mehr

Hardware Leitungscodierung und Protokoll

Hardware Leitungscodierung und Protokoll Hardware Leitungscodierung und Protokoll Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2010/2011 Hardware Leitungscodierung

Mehr

DENEX-300TN ARBEITSEINWEISUNG

DENEX-300TN ARBEITSEINWEISUNG 0 DENEX-300TN ARBEITSEINWEISUNG 1.0 Aufnahme der Kennlinie des Detektors DENEX-300TN Die in der Tabelle zugrunde liegenden Messwerte sind in Abb. 1 in Form eine Grafik dargestellt. U-Anode U-Drift Count/10s

Mehr

Transistorschaltungen

Transistorschaltungen FACHHOCHSCHULE LAUSITZ UNIVERSITY OF APPLIED SCIENCES Fachbereich IEM-Elektrotechnik Prof. Dr.-Ing. B. K. Glück, Dipl.-Ing. (FH) M. Sader, Dipl.-Ing. (TU) V. Schurig Versuchsanleitung zum Laborpraktikum

Mehr

Transistoren Funktionsweise und Kennlinien BJT, MOS-FET und J-FET

Transistoren Funktionsweise und Kennlinien BJT, MOS-FET und J-FET Transistoren Funktionsweise und n BJT, MOS-FET und J-FET Dieses Skript erklärt wie die heute am häufigsten verwendeten Transistoren funktionieren und welches ihre charakteristischen n sind. Vorbereitete

Mehr

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Sequentielle Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Schaltwerke Flip-Flops Entwurf eines Schaltwerks Zähler Realisierung Sequentielle

Mehr