A/D- und D/A- Wandler

Größe: px
Ab Seite anzeigen:

Download "A/D- und D/A- Wandler"

Transkript

1 Elektronik2 A/D- und D/A- Wandler Einführung Die Wandlung von Signalen unserer Umgebung in die digitale Zahlenwelt und umgekehrt wird immer wichtiger. Viele Prozesse werden mit Computern überwacht, analoge Funktion auf Signalprozessoren ausgeführt, Messgeräte arbeiten digital und Sprach- und Bildsignale werden mit modernen digitalen Verfahren übermittelt. Die Domäne der A/D- und D/A- Wandler hat deshalb in den letzten Jahren eine steile Entwicklungszeit hinter sich. Die Zeit da Preise für präzise Wandler unter 10 Fr. Realität sind ist längst angebrochen. Dies widerspiegelt sich auch in der Tatsache, dass Messinstrumente mit digital erzeugten Signalen (Bsp. Waveform Synthesizer) und Signalauswertung mit eigentlichen Rechnern (Bsp. FFT Analyzer) heute billiger sind, als entsprechende analoge Geräte. Hilfreich sind zudem die Vorteile von Signalprozessor Lösungen, nämlich garantierte Reproduzierbarkeit ohne teure Abgleiche und Widerverwendbarkeit der Hardware für andere Produktetypen. Durch die grossen Preiseinbrüche bei den Wandlerbausteinen baut man heute nur noch in speziellen Fällen eigene Wandler von Grund auf selber. So ist zum Beispiel im Hörgeräte-Bereich für die Ära der digitalen Hilfen ein 16- Bit Wandler mit Verlustleistung unter 500 MicroWatt notwendig und im Radarbereich werden 8- Bit Wandler mit 2 GHz Abtastrate benötigt. Das Feld dazwischen ist bestens durch käufliche Produkte mit den unterschiedlichsten Wandlungsverfahren abgedeckt. Dieses Kapitel soll daher im Wesentlichen die verschiedenen Wandlertechniken behandeln und weniger die Fähigkeit, selber einen Wandler von Grund auf zu entwickeln. Für den Systemingenieur ist es wichtig, Wandler spezifizieren, auswählen und ausmessen zu können. Die Wandler sind der Schlüssel zum Tor der DSP Technik, was im Wandler an Signalen verloren geht oder ungewollt dazukommt ist nicht mehr zu korrigieren. A/D- und D/A- Wandler muss sowohl den Analog- wie den Digitaltechniker interessieren, es ist die Schnittstelle 'Where Digital Meets Analog'. Digital - Analog Wandler Zur Umwandlung von digitalen Signalworten in analoge Signale gibt es mehrere populäre Möglichkeiten, die im Folgenden kurz erläutert werden. Die einfachste Möglichkeit leitet sich aus dem Opamp Summierer ab. In der invertierenden Verstärkerschaltung lassen sich ja sehr schön Ströme summieren, die dann über dem Rückkopplungswiderstand eine entsprechende Summenspannung bilden. Wählt man nun die Summierwiderstände in Zweierpotenzschritten, so werden alle Bits, die auf logisch 1 gesetzt sind entsprechend ihrem Gewicht einen proportionalen Strom an den Summenpunkt liefern. Je feiner die Auflösung und Genauigkeit sein soll, desto genauere Widerstände müssen eingesetzt werden. Kleinere Widerstände haben mehr Gewicht und müssen präziser ausgewählt sein. Die dem logischen Zustand 1 entsprechenden Signalspannungen müssen für alle Bits identisch sein. Dies kann einfach mit einer Referenzquelle und niederohmigen FET als Schalter (z.b. transmission gates) realisiert werden. Eine mögliche Lösung zeigt die Figur ad.4. welche eine 6 Bit Grösse in eine Spannung zwischen -10 * (63/64) V und 0 V umwandelt. Eine Pegelverschiebung ist leicht mit einem weiteren Opamp zu realisieren. Auch BCD- codierte Signalworte lassen sich auf diese Weise direkt umsetzen. Roland Küng 1

2 Fig. ad.4: D/A Wandlung durch Summieren mit skalierten Widerständen Die Methode der gewichteten Widerstände wird aber unhandlich, wenn mehr als 10 Bit zu wandeln sind, da das Widerstandsverhältnis dann über einen Faktor 1000 beträgt. Eine elegante Umgehung dieses Problems liefert die R - 2R Ladder (Sprossenleiter). Dieses Netzwerk braucht nur zwei Widerstandswerte um die skalierten Ströme zu erzeugen. Fig. ad.5 stellt einen 4 Bit Wandler mit R-2R Ladder vor. Fig. ad.5: D/A Wandler mit R-2R Ladder Die Wahl des absoluten Widerstandswertes ist frei, die relative Genauigkeit zueinander muss aber genügend gross sein. Roland Küng 2

3 Die monolithisch integrierte Produktion eines R-2R Ladder ist wesentlich einfacher als die eines binär abgestuften Widerstandsnetzwerkes. Ausser dem Ladder Netzwerk werden lediglich noch Schalter und ein OpAmp benötigt. Die Belastung der Referenzspannung ist zudem wenig Codeabhängig. Da die absolute Genauigkeit des Widerstandwertes R keine Rolle spielt, kann die relative Genauigkeit aller Widerstandsverhältnisse (Paarungstoleranz) durch Laser-Wafer-Trimming beim Herstellprozess einfach abgeglichen werden. Meist ist der Summierwiderstand R F über dem OpAmp mit integriert und sollte auch verwendet werden, da er ebenfalls abgeglichen ist und die gleichen Driftwerte besitzt, wie die Ladder- Widerstände. Der Widerstandswert liegt typisch im Bereich 10 k k. Dass dieses Netzwerk tatsächlich funktioniert ist mit Hilfe der Figur leicht zu sehen. Man beginnt beim 100 k Widerstand rechts oben. Die übrigen 100 k Widerstände liegen alle an Masse oder virtueller Masse. Durch die Kette findet nun von Stufe zu Stufe eine Spannungsverdoppelung statt, bis man links bei V ref angelangt ist. Entsprechend werden die Ströme, in Zweierpotenz gewichtet, dem negativen Eingang des OpAmp zugeführt und addiert. RF v OUT = RF i K = (8S3 + 4 S2 + 2S1 + S0 ) 16R Es ist zu beachten, dass mit steigender Auflösung die Anforderungen an das jeweilige Glied im Ladder Netzwerk proportional ansteigen. Für einen 16 Bit DA-Wandler mit monotonem Verhalten darf beim Übergang 7FFF H auf 8000 H (MSB Ladder Glied wird zugeschaltet) der Fehler nur 1 LSB betragen. Daraus ergibt sich für das 16. Bit eine Widerstandstoleranz von 1/65536*100%, also %. Solch hohe Genauigkeiten können nur durch Wafer Trimmen erreicht werden und ein Gleichlauf der Driften bei Temperaturänderungen ist unbedingt notwendig. Entsprechend kosten solche extremen Genauigkeiten einiges mehr, so dass in der Praxis nur die für die Applikation notwendige Wortbreite eingesetzt werden sollte. Eine eng verwandte Ausführungsart ist der aus der SC-Technik bekannte DA-Wandler, welcher mit einem PCA (programmable capacitor array) aufgebaut ist. Current switched DAC Der oben betrachtete DA-Wandler besitzt einen Spannungsausgang. Die Geschwindigkeit des Wandlers ist begrenzt durch den Operationsverstärker. Schnelle und präzise OpAmp sind teuer. Deshalb sind auch DA-Wandler mit Stromausgang im Angebot zu finden. In Fig. ad.6 ist die grundlegende Idee zu erkennen. Binär gewichtete Ströme werden in einem Transistor-Array generiert. Die Referenzspannung V REF, R 0 und der statisch arbeitende OpAmp bilden eine präzise Referenzstromquelle. Dieser Strom wird durch skalierte Emitterwiderstände in den Stufen Q 4... Q 0 jeweils um den Faktor 2 geteilt. Um die Spannungsabfälle an den BE-Strecken der Transistoren exakt gleich gross zu bekommen, müssen alle Emitter vom gleich grossen Strom durchflossen sein. Dies wird für Mehrfache des kleinsten Stromes durch Parallelschalten der entsprechenden Anzahl Transistoren erreicht (Q4 entspricht somit 4 Q1 parallel). Je nach Wertigkeit des anliegenden Bit wird dieser Strom auf die Ausgangsleitung oder Masse geschaltet. Der Strom I out ist nun proportional zum Binärwert. Die skalierten Widerstände lassen sich vorteilhaft wieder durch ein Ladder Netzwerk R-2R realisieren. Typischer full-scale Ausgangsstrom (Summe aller Ströme) ist meist I FS = 1 ma. Roland Küng 3

4 ad.6: Current-Switched DAC Da sehr oft aber letztlich eine Spannung zur Weiterverarbeitung benötigt wird, muss I out nun noch zu V out gewandelt werden. In schnellen Schaltungen, wie zum Beispiel bei der direkten digitalen Synthese DDS von HF-Signalen, begnügt man sich mit einem ohnehin notwendigen Abschlusswiderstand von beispielsweise 50 Ohm gegen Masse. Stand der Technik ist hier 12 Bit monoton, 100 MHz. Zu beachten ist bei der Wahl des Abschlusswiderstandes, welche maximale Ausgangsspannung am DAC selber auftreten darf. Einige Typen erlauben nur 0.5 V, meist sind einige Volt zulässig. Beim System Design und Layout ist darauf zu achten, dass für schnelle Anwendungen die Einschwingzeit der analogen Spannung an der Last kürzer ist, als die geforderte Wandlerzeit. Eine grosse kapazitive Belastung (Ausgangskapazität des DAC, Leiterbahn, Kabel, Eingangskapazität der Folgestufe) ergibt eine grosse Zeitkonstante. Beispiel: 100 Ohm Abschlusswiderstand und 100 pf Kabelkapazität ergeben eine Einschwingzeit von etwa 100 ns, also max. 10 MHz Wandlerrate. Man beachte, dass die genaue Einschwingzeit abhängig ist, von der Anzahl Bit, welche zu wandeln sind. Um einen 10 Bit Konverter auf ein halbes LSB einschwingen zu lassen (1 Teil auf 2048) braucht es T settle = 7.6*RC. Benötigt man grössere Ausgangsspannungen als einige 100 mv, so wird ein schneller Operationsverstärker eingesetzt. Der DAC wird wie in Fig. ad.7 gezeichnet wiederum mit einem Widerstand abgeschlossen und auf einen nichtinvertierenden OpAmp geschaltet. Hohe Geschwindigkeiten lassen sich nur mit Breitband-OpAmps erreichen, sogenannten Video Verstärkern. Dank den breitbandigen Applikationen in der Datenübertragung und im Natelbereich sind OpAmps mit Transitfrequenzen bis über ein GHz für wenige Franken erhältlich (z.b. Analog Devices, Texas Instruments). Damit lässt sich die hohe Geschwindigkeit der scaled current DAC bei sorgfältigem Layout beibehalten. Produkte Bsp. AD9764, 14 Bit, 125 Msps (Preis 9 $). Roland Küng 4

5 Fig. ad.7: Spannungswandler für current-switched DAC Averaging DAC - Frequency to Voltage Converter Eine spezielle Art der Wandlung ergibt sich, wenn das digitale Eingangssignal aus einer Folge von Pulsen oder Signalen mit bestimmter Frequenz besteht. Anstelle des Zählens innerhalb einer bestimmten Zeit und anschliessender D/A-Wandlung gibt es eine Methode zur direkten Frequenz - Spannungswandlung. Von jeder Periode des Eingangssignals wird ein Standardimpuls generiert. Ein RC-Tiefpass oder besser ein Integrator mittelt diese Impulsfolge. Dadurch entsteht am Ausgang eine Spannung, die proportional zum Mittelwert der Eingangsfrequenz ist. Natürlich entsteht dabei etwas Welligkeit (Ripple) in der Ausgangsspannung. Die Zeitkonstante RC ist so zu wählen, dass die gewünschte D/A Genauigkeit (z.b. +- 1/2 LSB) eingehalten wird. Dies bewirkt leider eine langsame Antwortzeit am Ausgang des Wandlers. Um weniger als ein halbes LSB ripple zu bekommen muss die Zeitkonstante eines RC-Tiefpasses mindestens zu RC = τ = 0.69(n +1)T o gewählt werden, wobei n die Auflösung angibt und T o die Periodendauer für die maximale Eingangsfrequenz ist. Man kann zeigen, dass das RC-Glied nach 0.69*(n+1) Filterzeitkonstanten auf 1/2 LSB eingeschwungen ist, so dass für die settling time gilt: t settle 2 0.5(n +1 ) T o Für einen 12 Bit Wandler mit maximaler Eingangsfrequenz von 100 khz ergibt sich somit eine Zeitkonstante von ca. 90 µs und eine Einschwingzeit von 0.85 ms. Mit etwas aufwendigeren, steileren Filtern kann diese Zeit noch reduziert werden. Es ist aber festzuhalten, dass diese Wandlerart nur für der settling time entsprechenden Änderungsgeschwindigkeiten in der Frequenz des Eingangssignals eingesetzt werden kann. Es handelt sich also um ein System mit tiefer Grenzfrequenz. Fig. ad.8 zeigt ein Blockschaltbild des F-V Wandler AD 650. Über den Eingang F in gelangt das Eingangssignal auf den Komparator Comp, der bei jeder negativen Flanke die monostabile Kippstufe (One Shot) aktiviert. Das Monoflop steuert den Schalter S1 über den ein Konstantstrom von 1 ma in den Eingang des verlustbehafteten Integrators fliesst. Der Kondensator C os bestimmt dabei die Monoflop Impulsdauer und somit die Integrationszeit. Roland Küng 5

6 Bei Veränderung der Eingangsfrequenz ändert das Gleichgewicht zwischen Aufladen mit 1 ma und Entladen über R 1 und R 3. Die mittlere Ausgangsspannung ist proportional zur Eingangsfrequenz. Der ripple und die settling time kann näherungsweise so berechnet werden wie vorhin für den einfachen RC-Tiefpass dargelegt. C os dient zur Einstellung des Monoflop Impulses und ist abhängig von der maximalen Eingangsfrequenz. R 1 +R 3 sind so zu wählen, dass die gewünschte OpAmp Aussteuerung resultiert, während dann C int aus der Zeitkonstante erhalten wird (Dimensionierung im Datenblatt). Fig. ad.8: Frequenz-Spannungsumsetzer von Analog Device Anwendungsfelder dieser averaging D/A Wandler sind beispielsweise bei der Umsetzung von Umdrehungszahlen rotierender Teile in eine Spannung zu finden, z.b. zwecks Regelung. Andere Anwendungen betreffen die einfache quasi-digitale Übertragung über eine Infrarotstrecke oder in der Telemetrie. Dabei wird ein zu übertragendes Signal mit Hilfe eines VCO in eine Frequenz umgesetzt. Die resultierende Rechteckfolge ist nichts anderes als ein digitales Signal und entsprechend leicht zu übertragen. Das empfangene Frequenzsignal wird dann in eine Spannung zurückgewandelt. Besonders geeignet ist die Umsetzung V-F F-V auch zur galvanischen Trennung von Systemeinheiten, zwischen denen Analogsignale ausgetauscht werden müssen. Digitale Optokoppler sind einfacher zu handhaben als ihre analogen Gegenstücke, da nicht auf die Linerarität und Aussteuerung geachtet werden muss. Ein verwandter averaging DAC ist der Pulsbreiten-zu-Spannung Wandler. In seiner direkten Implementation findet man diesen Wandler in vielen DC-DC Convertern angewendet. Interessant als DAC ist aber die Umsetzung eines digitalen Wortes in eine analoge Spannung über die Pulsbreitenmodulation. Man benötigt dazu eine hohe Taktfrequenz, einen Zähler und einen digitalen Magnitude Komparator. Am Komparator liegt einerseits das zu wandelnde Digitalwort an und andrerseits der Zählerausgang. Der Takt inkrementiert nun den Counter bis dieser denselben Roland Küng 6

7 Stand erreicht, wie das Digitalwort. Nun wechselt der Magnitude Komparator seinen Zustand. Nach N Takten wird die Schaltung zurückgesetzt. Die Impulsdauer des Ausgangssignals ist somit proportional zum Digitalwort. Bei genügend hohem Takt ist die Abstufung bei vorgegebener settling time entsprechend gross genug. Das in der Pulsbreite modulierte Digitalsignal mit fester Frequenz kann nun in genau gleicher Art und Weise wie beim F-V Wandler mit einem Tiefpass in eine analoge Spannung gewandelt werden, die dem Mittelwert der in der Pulsbreite modulierten Folge entspricht. Multiplizierender DAC Viele DA-Wandler können als sogenannte multiplying DAC eingesetzt werden, deren Ausgang dem Produkt aus Eingangsspannung und einem digitalen Code entspricht. Verwendet man an Stelle der internen Referenzspannung bzw. Referenzstrom ein externes analoges Signal, so wird dieses ja funktionsgemäss mit dem digitalen Datenwort multipliziert. Anwendungen ergeben sich zum Beispiel in Verstärkungsregelungen, welche direkt von einem Mikroprozessor digital angesteuert werden (AGC) oder bei der Gewichtung von Signalen in Rechenschaltungen oder analog realisierten FIR und IIR Filtern. DAC mit guten Eigenschaften für multiplizierende Anwendungen sind im Datenblatt als solche speziell gekennzeichnet. Ein grosser Analog-Eingangsbereich (d.h. ext. Referenzbereich) und hohe Geschwindigkeit sind wichtige Grössen. Produkt-Bsp. AD7541, 10 Bit 2 Msps. Messtechnik bei DAC Bei der Geschwindigkeitsmessung wird die Einschwingzeit des Systems, die settling time bestimmt. Die Definition ist im Datenblatt des Herstellers genau nachzulesen, da zur optimalen Darstellung der Performance nicht immer die ganze Wahrheit offenbart wird. Korrekt ist die Angabe für den extremsten Fall, nämlich die Zeit zwischen 0 Volt und Vollausschlag (Full Scale, FS) gemessen ab Umschaltung des Codes (50% Schwelle) bis ein definiertes Restfehlerband um den FS-Wert nicht mehr verlassen wird. Fig. ad.11 zeigt eine sinnvolle Spezifikationsmöglichkeit für die settling time. Fig. ad.11: D/A-Wandler settling time Roland Küng 7

8 Analog - Digital Wandler Es gibt sehr viele Arten von A/D-Wandlern und mindestens ein halbes Dutzend verschiedene Wandlerverfahren. Der Grund für diese Vielfalt sind die unterschiedlichen Applikationen mit ihren verschiedenen Anforderungen an Geschwindigkeit, Dynamikbereich, Stromverbrauch, Genauigkeit und Preis. Diese Vielfalt lässt sich aber vielleicht in 3 Kategorien unterteilen. 1. DC oder langsam variierende Analogsignale. Diese Signale bleiben während des Digitalisierungsprozesses konstant oder ändern nur unwesentlich. Typische Anwendungen finden sich in vielen Regelsystemen für physikalische Parameter. Die hauptsächlich benutzten Techniken sind slope converter, voltage to frequency converter, ramp counter converter und delta sigma converter. 2. Kontinuierlich ändernde Wechselsignale und AC- Einzelereignisse. Diese Signale belegen eine bestimmte Bandbreite und die Wellenform muss exakt erfasst und digital abgebildet werden. Ändert sich das Signal während der Wandlungszeit (audio, video), so muss eine Sample and Hold (S&H) oder eine Track and Hold (T&H) Schaltung den zu wandelnden Wert vorgängig einfrieren. Für diese Signale werden successive approximation converter, multistep converter und full parallel converter eingesetzt, meist mit integriertem S&H oder T&H Glied. Delta sigma converter haben sich Teile dieser Kategorie erobert. 3. Pulse-Amplituden Signale begrenzter Dauer. Bei diesen Signalen besteht zu meist keine Beziehung zwischen aufeinander folgenden Pulsen des Analogsignals. Das zu wandelnde Signal ist die Amplitude eines jeden Pulses, nachdem dieser eingeschwungen vorliegt. Eine weit verbreitete Applikation betrifft z.b. CCD-Signale, multiplexed Analogsignale (analoge Abtastwerte), oder Echogramme von Radar- und Sonargeräten, (von einem Peak Detektor). Fast successive approximation converter, multistep converter, full parallel converter und pipelined converter kommen zum Einsatz. Fig. ad.13 zeigt die Charakteristik der Signale zu den Kategorien 1 bis 3. Eine genauere Betrachtung dieser Kategorien und ihrer Anwendungen zeigt, dass offenbar die Wandlungsrate (conversion rate) eine der wesentlichsten Grössen ist. Für die erste Kategorie ist die Wandlungszeit fast unerheblich, nicht so für die anderen beiden Kategorien. A/D-Wandler für kontinuierliche Wechselsignale Diese Signale mit begrenzter Bandbreite (wenn dies nicht sicher ist, ist ein Filter vorzuschalten) werden sehr oft höher abgetastet als die berühmten 2*höchste Frequenz, welche für die digitale Signalverarbeitung genügen würde. Gründe sind ein begrenzter Aufwand beim Tiefpass Filter und Grenzen in den Algorithmen der digitalen Signalverarbeitung. Dieser sogenannte oversampling Faktor beträgt meist 2 bis 5. Für die hochwertige Wiedergabe eines Einzelereignisses sind sogar eine grosse Anzahl Abtastwerte pro Periode der höchsten beteiligten Frequenz notwendig. Roland Küng 8

9 Fig. ad.13: Signaltypen zur Klassierung der A/D-Wandler Generell genügt es nicht sich nur nach der höchsten interessierenden Frequenz zu richten, sondern wegen des durch das Abtasten entstehenden Aliasing Effektes ist stets die höchste vorkommende Frequenz im Signal ausschlaggebend also auch Störsignalanteile. Die notwendige Abtastrate ist aber nicht allein massgebend. Die Zeit selbst, welche eine Wandlung braucht ist ebenso wichtig, um die gewünschte Genauigkeit zu erhalten. Sie wird aperture time genannt. Während dieser Zeit verändert sich das Eingangssignal auch leicht, so dass je nach Frequenz des Eingangssignals unterschiedlich grosse Fehler gemacht werden. Typischerweise sollte die Abweichung im Eingangssignal bei der grössten Steigung (= Nulldurchgang höchste Frequenz bei maximaler Amplitude) nur +- 1/4 LSB betragen. Die maximale Frequenz, welche noch in dieser Toleranz gewandelt werden kann beträgt somit: wobei für?v gilt: f max V 1 = [ ] [ t 2π V peak ] 1 V V = LSB = N 4 2 peak 1 4 Roland Küng 9

10 Mit der Auflösung N und der Vollausteuerung (FullScale) FS = V peak kann also beispielsweise ein N = 12 Bit Wandler mit einer Wandlungszeit von 10 µs und Vollausschlag V peak = 10 V gerade mal f max = 1 Hz für einen maximalen Fehler von 1/4 LSB wandeln. Die conversion rate beträgt aber an und für sich 100 khz. Um die Situation zu verbessern empfiehlt sich daher bei schnelleren Signalen der Einsatz eines Abtast-Haltegliedes (sample-and-hold, S&H) entsprechend der Fig. ad.14. Fig. ad.14: Sample und Hold Schaltung Die Kapazität C H speichert nach deren Aufladen auf V in den analogen Wert während der Wandlung. Ein schneller Ladeverstärker A1 und ein niederohmiger Schalter S erlauben eine rasche Aufladezeit von C H auf einen Wert, der auf ein 1/4 LSB genau ist und ein hochohmiger Eingang von A2 verhindert ein Entladen um mehr als Bruchteile eines LSB während der Wandlung. A/D Wandler, die ein S&H-Glied enthalten heissen oft auch sampling A/D converter. Betrachten wir den 12 Bit Wandler nun mit vorgeschaltetem S&H und wollen diesen für Frequenzen von 10 khz einsetzen, so erhalten wir mit obigen Formeln?V = 0.6 mv und?t = 2 ns. Die Zeit?t, bei S&H Schaltungen aperture uncertainity time genannt, wird also anspruchsvoll klein. Die aperture uncertainity time setzt sich zusammen aus der Unsicherheit des Abtastzeitpunktes in Folge des jitter des Abtasttaktes und in Variationen der Ausschaltzeit des Schalter S. Beide Effekte bewirken immer noch Abtastfehler. Fig. ad.15 zeigt in einem Diagramm, welche maximale Frequenz mit 1/4 LSB Fehler für N Bit Auflösung und gegebene aperture uncertainity time erreicht werden kann. Das Diagramm gilt auch für A/D Wandler ohne S&H und gibt dann die aperture time an. Als aperture delay time bezeichnet man die Verzögerungszeit zwischen dem Ausschaltbefehl (Hold) für S und dem tatsächlichen Auftrennen von S. Da diese delay time eine konstante Verzögerung ist, deren Variation ja in der aperture uncertainity time berücksicht worden sein sollte, spielt sie i.a. keine Rolle auf die Genauigkeit, da ja alle Abtastzeitpunkt um den gleichen Betrag verzögert wirken (Abtasttheorem). Einzig, wenn mit dem Wandlungsprozess bereits innerhalb dieser delay time begonnen wird, so ist diese Zeit ebenfalls zur aperture time zu rechnen. Dies ist eine Frage des interen Ablaufs von S&H- und Wandlungsvorgang. Roland Küng 10

11 Fig. ad.15: A/D aperture time und S&H uncertainity time Diagramm Die hold time muss 10 µs betragen, das heisst der Spannungswert über C H darf in dieser Zeit nur max. 1/4 LSB absinken. Die acquisition time ist diejenige Zeit, die das S&H Glied benötigt, um bis auf einen tolerierbaren Restfehler dem Eingangsignal zu folgen (Fig. ad16). Sie kann aus der RC- Zeitkonstante und der Fehlergrösse unter Annahme einer Sprungfunktion am RC Glied berechnet werden. Die min. Wandlungszeit besteht somit aus der Summe der Akquisitionszeit des S&H-Gliedes (Aufladevorgang) und der Umwandlungszeit des A/D-Teils (Abwägen). Roland Küng 11

12 Fig. ad.16: S&H Timing So genannte subsampling ADC, vor allem in Multimetern und Oszilloskopen eingesetzt, schaffen es trotz Abtasten unterhalb der Nyquistfrequenz, ein repetitives Signal korrekt zu erfassen. Dies wird durch inkrementales Verzögern jedes Abtastzeitpunktes um einen genau definierten Wert erreicht, so dass nach genügender Periodenzahl des Eingangssignale alle Abtastwerte einmal genommen wurden, welche nach Nyquist sonst innerhalb einer Periode erforderlich wären. Auf Kosten der Messgeschwindigkeit und nur bei wirklich repetitiven Signalen funktioniert diese Methode bis hin zu hohen Frequenzen sehr gut. Es wird aber eine sehr stabile Zeitbasis vorausgesetzt, da sich jitter und aperture uncertainity hier viel stärker auswirken, wenn die Abtastung auf mehrere Perioden verteilt wird. Zwischen Track-and-Hold und Sample-and-Hold wird oft kein eigentlicher Unterschied gemacht. Während T&H-Glieder die meiste Zeit im Folgen des Eingangssignales verbringen, sind S&H- Glieder die meiste Zeit im Haltemodus. Für schnelle A/D-Wandler ist dieser Begriffsunterschied immer schwerer zu sehen. A/D Wandler für Puls-Amplituden Signale In dieser Kategorie ist die kritische Spezifikation für den Wandler die Angabe der Zeit, die verbleibt um die Wandlung nach genügend genauer Akquisitionszeit zu vollenden, bevor der nächste Impuls beginnt. Die Wandlung muss in diesem Fall synchron mit dem Eingangssignal ablaufen In Fällen wo der Impuls während der Wandlung nicht auf einem genügend genauen Wert bleibt muss ein S&H-Glied eingesetzt werden. Die wichtigste Grösse ist die Summe von acquisition time plus die aperture delay time plus die A/D conversion time. Die aperture uncertainity time (aperture jitter) ist sehr oft nicht kritisch, da sich das Signal zum Zeitpunkt der S&H-Operation und der Wandlung nur wenig in der Amplitude verändert. Siehe gestrichelte Linie in Fig. ad.17. Roland Küng 12

13 Fig. ad.17: Zeitliche Verhältnisse für Puls-Amplituden-Signal. Wandlerfehler Es gibt eine ganze Reihe von Fehlern in Wandlern und die Interpretation der Datenblätter ist manchmal eine Detektivarbeit, da der Hersteller seinen Baustein möglichst gut darstellen will. Perfekte Wandler gibt es nicht und für viele Anwendungen sind auch nicht alle Genauigkeitsangaben relevant. Die vier wichtigsten Fehler in der Terminologie der Datenblätter sind: - Offset Error - Scale Error - Nonlinearity - Nonmonotonic (Missing Code) Fig. ad.2 zeigt die Fehler offset und scale. Zur näheren Erläuterung mittelt man die digitalisierte Treppenfunktion mittels einer Kurve (ausgezogen in der Fig. ad.2). Diese Kurve vergleicht man mit der idealen Gerade des theoretischen Konverters (gestrichelte Linie). Liegt die Wandler Linie im Nullpunkt neben der idealen Linie, so ermittelt man, wieviele Bruchteile der Wertigkeit des LSB diese Verschiebung ausmacht. In der Figur beträgt der offset error etwa 1 LSB. Das Offsetvorzeichen ist nicht spezifiziert, d.h. der Fehler kann bei einem Wandler auf beide Seiten auftreten. Der scale error zeigt sich in einer zur idealen Kennlinie verschiedenen Steilheit. Der Vollaussteuerbereich (Full Scale FS) kann dann nicht erreicht oder übertroffen werden. Grosse Signale werden dann u.u. in der Amplitude begrenzt. In Fig. ad.2 beträgt der scale error 1,5 LSB. Sowohl der offset error wie der gain error sind entweder vom Hersteller sehr gut abgeglichen oder lassen sich mit externen Widerständen exakt trimmen (OpAmp-Schaltung). Roland Küng 13

14 Fig. ad.2: Wandlerfehler: offset error und scale (gain) error Nicht abgleichbar sind die beiden andern Fehler, nonlinearity and nonmonotonic. Bei der Nichtlinearität weicht die reale Wandlerlinie von einer Geraden ab und führt zu integralen und differentiellen Fehlern. Der differentielle Fehler entspricht der maximalen Abweichung von Stufe zu Stufe. Der integrale Fehler entspricht der maximalen Abweichung in Bruchteilen des LSB von der idealen Gerade, wenn offset und gain abgeglichen sind. Diese Nichtlinearität bewirkt letztlich Verzerrung des Signals in der digitalen Darstellung. Je nach Anwendung spielt dies eine Rolle und es muss dann für einen guten Wandler mehr bezahlt werden. Die schwierigsten Fehler sind die nonmonotonic errors, also lokale Abweichungen in der Treppe, wie sie in Fig. ad.3 dargestellt sind. Dies führt unter Umständen zu fehlenden Codewörtern, das heisst bestimmte digitale Worte werden gar nie erreicht. Oder der digitale Ausgang bleibt über einen zu grossen Analogbereich konstant, der Quantisierungsschritt ist lokal zu gross. Sogenannte 'monotonic' oder 'non-missing code' Wandler sind heute Standard und haben die Eigenschaft, dass nur mit den drei ersten Fehlern zu rechnen ist, von denen nach Abgleich nur der integrale Linearitätsfehler übrig bleibt. Fig. ad.3: Wandlerfehler: nonlinearity und non-monotonic error Roland Küng 14

15 Die Datenblätter sind genau zu studieren. Die Angabe über Auflösung und Genauigkeit sind richtig zu verstehen. Die Auflösung gibt lediglich das Potential des Wandlers an, wie fein er in der Lage ist, ein analoges Signal zu quantisieren. Die Genauigkeit ist die Angabe der Summe aller Wandlerfehler entweder mit Abgleich oder ohne. Angaben über die Einzelfehler lassen sich aus diesem Parameter nicht herauslesen. Moderne Wandler sind derart genau, dass oft der Fehler im Abtastglied vor der Wandlung eine ebenso grosse Rolle spielt (hold leakage, time jitter). A/D Wandler Dynamikbereich Der Dynamikbereich eines A/D-Wandler ist neben der Konversionszeit der zweite Parameter, der für die Auswahl wichtig ist. Analoge Signale weisen sicher in den meisten Anwendungen eine viel zu hohe Auflösung auf. Andrerseits lässt sich das Signal im digitalen Bereich nicht beliebig in der Amplitude quantisieren. es stellt sich also die Frage, wieviele Bits der A/D-Wandler nun braucht, um einen gewissen Dynamikumfang sicherzustellen, das heisst in wieviele Stufen der Wandler seinen Full Scale (FS) Bereich einteilt, oder wieviele Prozent Quantisierungsfehler denn entstehen. Die Tabelle in Fig. ad.18 gibt Antwort auf diese Frage. Soll beispielsweise ein Messsignal, das einem 45 db stärkeren Störsignal überlagert ist, noch mit etwa 4 Bit Auflösung wiedergegeben werden (Annahme: Amplitude des Störsignal = Vollaussteuerung), so sieht man in der Tabelle, dass mit N=8 das Nutzsignal nur gerade noch als LSB darstellbar wäre. Es sind also insgesamt 12 Bit notwendig. Für das Nutzsignal beträgt der prozentuale Fehler etwa 3,12%, der Wiedergabeverlust ist also bereits mit einem KO zu messen. Fig. ad.18: Dynamik Bereich von A/D-Wandlern Verwenden wir 1 V Full Scale so entspricht das LSB einer Spannung von nur 240 µv. Beim Layout muss deshalb auf kapazitive Einkopplung und induktive Einstreuung geachtet werden, um nicht die Wiedergabequalität noch weiter zu verfälschen. Roland Küng 15

16 A/D Wandler Verfahren Full parallel (flash) converter Die schnellsten A/D Umsetzer sind die parallel converter, auch flash converter genannt. Allerdings ist es auch das Verfahren mit den höchsten Kosten pro Bit. der Grund für die hohen erzielbaren Umsetzgeschwindigkeiten ist schnell zu erkennen, denn für jeden möglichen digitalen Code ist ein Komparator vorhanden. Fig. ad.19 zeigt dies am Beispiel eines 3 Bit Wandlers. Die Schaltgeschwindigkeit der Komparatoren und der nachfolgenden Encoderlogik bestimmt die conversion time. Der Stand der Technik liegt bei 8-bit bis 10-bit Wandlern. Höhere Auflösungen bräuchten über 1024 Komparatoren und ergäben extrem kleine Vergleichsspannungen. Beides ist bei hohen Taktraten unwirtschaftlich und störanfällig. Die Geschwindigkeiten liegen im Bereich 100 MS/s (MegaSample pro s) bis 1 GS/s und Preisen von bis zu 100 $). Parallelwandler haben zufällige Linearitätsfehler. Die Abweichung von der idealen Übertragungsfunktion für einen bestimmten Code schwankt von Exemplar zu Exemplar. Fig. ad.19: Flash Wandler für 3 Bit Sie wird hauptsächlich von den Offsetspannungen der Komparatoren und der Genauigkeit des Widerstandsteilers bestimmt. Haben zwei aufeinander folgende Komparatoren entgegengesetzte Offsetspannungen entsprechender Grösse, so kann ohne weiteres ein fehlender Code auftreten (missing codes). Die Hersteller Garantie 'no missing code' bescheinigt entsprechend kleine Toleranzen und haben ihren Preis. Der Eingang, der auf alle Komparatoren führt, hat eine relativ grosse Eingangskapazität. Um diesen Roland Küng 16

17 Eingang bei hoher Geschwindigkeit auch treiben zu können, ist ein schneller Operationsverstärker notwendig, welcher auch bei grossen kapazitiven Lasten stabil bleibt. Fig. ad.20: Half-flash ADC Flash Konverter werden sehr oft ohne S&H-Stufe eingesetzt, weil ihre Wandlungszeit und damit die aperture time vom Prinzip her sehr klein sind, so klein, dass bei der kleinen bis mittleren Auflösung dieser Wandler kein zu grosser Fehler entsteht. Zur Senkung der Kosten oder Erhöhung der Bitzahl wird die half-flash Technik angewendet. Dies ist ein Zweischritt Prozess, in dem zuerst das Eingangssignal mit der halben Auflösung gewandelt wird. Ein interner DAC setzt das Resultat wieder in eine analoge Spannung um, worauf die verstärkte Differenz zwischen ihr und der Eingangsspannung nochmals gewandelt wird, um die unteren Bits zu erhalten. Ein Blockschaltbild des Verfahrens ist in Fig. ad.20 zu sehen. Man erhält 2n Bit mit zwei n-bit Flashwandlern, für N=8 braucht man also lediglich 31 statt 255 Komparatoren. Die Technik des Schachtelns der Wandlung lässt sich noch weiter fortführen, man spricht dann von multistep convertern. Durch die mehrstufige Verarbeitung wird aber die Anforderung an die Wandlungszeit jeder Stufe bei sehr hohen Geschwindigkeiten immer höher. Hier hilft das sogenannte pipelining. Jede Stufe erhält hierin die volle Abtastperiode zur Verfügung um S&H und partielle Konversion durchzuführen. Der Hardwareaufwand steigt dadurch, aber die Geschwindigkeit innerhalb der Stufen wird um die Anzahl pipeline Stufen reduziert. Vor jeder pipeline Stufe wird nun eine S&H-Stufe benötigt. Pipelined ADC benötigen in der Regel mehr Strom als solche ohne pipelining. Stand der Technik sind 16 Bit Auflösung bei 100 MS/s. Solche Wandler erlauben die Digitalisierung von ZF-Signalen bei 4.5 MHz oder 10.7 MHz mit einer Dynamik in der Praxis von über 60 db. In den modernen drahtlosen Telefonen (Natel D, DECT, D-AMPS, PCS) ist dies eine Voraussetzung für die kostengünstige Produktion und die Verminderung der Alterung und Drift der Elektronik. Fig. ad.21 zeigt ein Blockdiagramm eines dreistufigen pipelined parallel converters. Drei 4-bit Wandler, zwei Speicherregister und zwei 4-bit DAC bilden die eigentliche Wandlung. Durch die Dreistufigkeit werden für die 4 MSB's zwei weitere Speicher für die Resultate benötigt und für die 4 mid-bits ein weiterer Speicher, weil ja bis zur Ausgabe des gesamten Digitalwertes bereits zwei neue Abtastwerte in der pipeline sind. Die Verzögerung des gewandelten Wertes um drei Abtastintervalle ist in den allermeisten Anwendungen belanglos. Roland Küng 17

18 Fig. ad.21: three-stage pipelined parallel conversion Einzig bei der alternierenden Wandlung mehrerer Signale kann der Verlust der Gleichzeitigkeit in der Signalverarbeitung Auswirkungen (Phasenverschiebung) zeigen. Im nachfolgenden Prozessor muss daher dann eine Interpolation von zwei Abtastwerten durchgeführt werden, so dass die Verzögerung eliminiert wird. Meist genügt dazu eine simple Mittelwertbildung von zwei Abtastwerten und ein Verzögerungsglied um die Hälfte der Abtastperiode. Roland Küng 18

19 Successive approximation converter Bei dieser populären Wandlerart werden verschiedene Ausgangscodes ausprobiert, indem man sie über einen D/A-Wandler zum Vergleich mit dem analogen Eingangssignal auf einen Komparator gibt. Normalerweise werden zuerst alle Bits 0 gesetzt. Dann wird das MSB provisorisch auf 1 gesetzt und vom DAC in eine analoge Vergleichsspannung gewandelt. Ist das analoge Eingangssignal grösser als diese Vergleichsspannung, so wird das MSB definitiv auf 1 gesetzt, andernfalls definitiv auf 0. Dasselbe Verfahren wird nun sukzessive für das zweithöchst-wertige und die übrigen Bits durchgeführt. Für einen N Bit ADC werden also N Wägeschritte benötigt. Im Prinzip führt man eine binäre Suche durch, beginnend in der Bereichsmitte des ADC. Successive approximation converter verfügen über einen begin conversion Eingang zum Starten der Wandlung und einen conversion done Ausgang, der das Ende des Suchprozesses anzeigt. Nach dem conversion done Signal kann das digitale Resultat parallel oder sehr oft seriell aus einem Register ausgelesen werden. Vielfach ist die digitale Schnittstelle auf bestimmte Microcontroller angepasst um ein einfaches Interface zu ermöglichen. Fig. ad.22 zeigt ein simples Übersichtsbild eines solchen Wandlers. Die Geschwindigkeit dieser Wandler liegt im mittleren Bereich. Typisch werden conversion rates im Bereich 20 khz bis 5 MHz erreicht mit Auflösungen zwischen 8 Bit und 16 Bit, dies vergleichsweise mit der parallel conversion Technik zu tiefen Preisen. Ein Problem bei diesen ADC kann das Auftreten merkwürdiger Nichtlinearitäten und missing codes sein. Diese kommen durch die sukzessive Rückführung und die Nichtidealitäten des D/A-Wandlers zustande, meist wenn Spikes auf Speise- oder Signalleitungen vorhanden sind. Eine zweite Fehlerquelle ist wie bereits besprochen, die aperture time, wenn ohne S&H-Glied gearbeitet wird. Successive approximation converter mit dem Prädikat 'no missing code' benutzen neuerdings anstelle des R-2R DAC eine Kette von 2 N identischen Widerständen. Eine symmetrisch gestaltete, analoge Schaltermatrix erlaubt es, jede Vergleichsspannung als Teilspannung einer Spannungsreferenz monoton einstellen zu können, wie dies beim flash converter gemacht wird. Mit den heutigen IC-Technologien ist es möglich, die Referenzspannung mit hoher Genauigkeit und Temperaturstabilität mit auf den Wandler zu bringen. Ist auch eine µp kompatible Schnittstelle vorhanden, so spricht man in diesem Fall von einem data acquisition System. Die successive approximation Technik lässt sich sehr gut weitgehend in CMOS Technik integrieren. Dadurch wird im Vergleich zur parallel conversion Technik bei gleicher Geschwindigkeit ein deutlich geringerer Stromverbrauch erreicht. Typischerweise kann mit einem Verbrauch von 100 mw mw gerechnet werden. Roland Küng 19

20 Fig. ad.22: Successive approximation ADC Noch drastischere Stromeinsparungen sind möglich, wenn die Switched Capacitor (SC) -Technik zu Hilfe genommen wird. Diese auch als charge redistribution converter oder SC-converter bezeichneten Wandler benutzen exakte Kapazitätsverhältnisse anstelle von Widerständen. Mit nur N + 1 binär gestuften Kapazitäten, einem Komparator und einer Steuerung lässt sich das analoge Eingangssignal digitalisieren. Da zu Beginn der Wandlung alle Kapazitäten parallel geschaltet auf den analogen Wert aufgeladen werden und danach lediglich eine praktisch verlustfreie Ladungsumverteilung unter den C's stattfindet, sinkt die gesamte Verbrauchsleistung auf typisch 1 mw...10 mw. Es werden heute 16 Bit Auflösung erreicht und Wandlungsraten bis zu 1 MHz (Maxim, Linear Technology, Texas Instruments). Diese Wandler sind besonders für batteriebetriebene Geräte interessant und begnügen sich zum Teil mit einer einzigen 5 V Spannungsversorgung. Bsp. LT1864, 16 Bit, 250 ksps, (Preis 7$). Die Wandlung erfolgt in 6 Schritten (Fig. ad.23): 1) Alle C's parallel aufladen auf V in mit S c geschlossen und S i auf V in 2) Gemeinsame Platte aller C's mit S c von Masse trennen, S1...S N auf Masse legen, S i auf V REF schalten -> -V in am Komparator 3) MSB Anschluss mit S 1 auf V REF legen -> Umladeprozess -V in +V REF /2 4) Vergleich mit Masse als Schwelle, falls kleiner MSB = 1, sonst MSB = 0 5) S 1 im Fall MSB = 1 auf Position V REF belassen, sonst auf Masse legen 6) Repeat für alle N Bit's Roland Küng 20

D/A- und A/D- Wandler. Roland Küng, 2011

D/A- und A/D- Wandler. Roland Küng, 2011 D/A- und A/D- Wandler Roland Küng, 2011 1 Konversion Analog Digital 7 6 5 4 3 2 1 0 V REF VREF D2 D3 D4 DN vanalog = (D1 + + + +... ) N 1 2 2 4 8 2 2 D/A-Wandler Grundprinzip S 1 = MSB S N = LSB Grundidee

Mehr

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC

NANO III - MSR. Signalabtastung Analog Digital Converter (ADC) Digital Analog Converter (DAC) Themen: DAC NANO III - MSR Themen: Signalabtastung Analog Digital Converter (ADC) A ADC D Digital Analog Converter (DAC) D DAC A Nano III MSR Physics Basel, Michael Steinacher 1 Signalabtastung Praktisch alle heutigen

Mehr

MSRT-Referat ADC / DAC 31. 12. 1997 ausgearbeitet von Allan Tengg (allan@magnet.at) ADC

MSRT-Referat ADC / DAC 31. 12. 1997 ausgearbeitet von Allan Tengg (allan@magnet.at) ADC ADC Das Charakteristische einer analogen Größe besteht bekanntlich darin, daß sie beliebige Werte annehmen kann und zwischen diesen kontinuierlich, mit fließendem Übergang wechselt. Eine digitale oder

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

10 Analog-Digital-Wandler

10 Analog-Digital-Wandler Digitaltechnik Kapitel 10 Seite 1 10 Analog-Digital-Wandler Inhalt: 10 ANALOG-DIGITAL-WANDLER...1 10.1 EINFÜHRUNG...1 10.2 EIGENSCHAFTEN VON AD-WANDLERN...2 10.2.1 Auflösung und Genauigkeit...2 10.2.2

Mehr

NANO III. Messen Steuern Regeln (MSR) Thema: MSR hat viel mit analoger und digitaler Elektronik sowie Signalverarbeitung zu tun.

NANO III. Messen Steuern Regeln (MSR) Thema: MSR hat viel mit analoger und digitaler Elektronik sowie Signalverarbeitung zu tun. NANO III Thema: Messen Steuern Regeln (MSR) MSR hat viel mit analoger und digitaler Elektronik sowie Signalverarbeitung zu tun. Mobiles AFM der Firma Nanosurf Nano III MSR Physics Basel, Michael Steinacher

Mehr

Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz

Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz 3. Versuch Durchführung Seite G - 6 Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz Vorbemerkung: Betreibt man einen Operationsverstärker ohne Gegenkopplung,

Mehr

Kalibratoren für Strom und Spannung

Kalibratoren für Strom und Spannung Kalibratoren für Strom und Spannung Kalibratoren werden überall dort eingesetzt, wo hochgenaue und hochstabile Spannungen und Ströme benötigt werden. in Anwendungsgebiet ist z.b. die Kalibrierung von Messgeräten.

Mehr

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart

Tontechnik 2. DA-Wandlung. DA-Wandlung (Übersicht) Hold-Schaltung. Prof. Oliver Curdt Audiovisuelle Medien HdM Stuttgart Tontechnik 2 DA-Wandlung Audiovisuelle Medien HdM Stuttgart Quelle: Michael Dickreiter, Handbuch der Tonstudiotechnik DA-Wandlung (Übersicht) Hold-Schaltung 1 DA-Wandlung Rückgewinnung analoger Spannungswerte

Mehr

All Digital Transceiver

All Digital Transceiver All Digital Transceiver Prinzip Digital-Empfänger ADC, Analog Digital Converter ( Analog-Digital-Wandler ) DDC, Digital Down Converter ( Digitaler Abwärtsmischer ) DSP, Digital Signal Processor SDR-14

Mehr

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 1.1 analoge Messgeräte Fließt durch einen Leiter, welcher sich in einem Magnetfeld B befindet ein Strom I, so wirkt auf diesen eine

Mehr

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung

3.Transistor. 1 Bipolartransistor. Christoph Mahnke 27.4.2006. 1.1 Dimensionierung 1 Bipolartransistor. 1.1 Dimensionierung 3.Transistor Christoph Mahnke 7.4.006 Für den Transistor (Nr.4) stand ein Kennlinienfeld zu Verfügung, auf dem ein Arbeitspunkt gewählt werden sollte. Abbildung

Mehr

1 Grundlagen der Impedanzmessung

1 Grundlagen der Impedanzmessung 1 Grundlagen der Impedanzmessung Die Impedanz ist ein wichtiger Parameter, die der Charakterisierung von elektronischen Komponenten, Schaltkreisen und Materialien die zur Herstellung von Komponenten verwendet

Mehr

DSO. Abtastrate und Wiedergabegenauigkeit

DSO. Abtastrate und Wiedergabegenauigkeit DSO Abtastrate und Wiedergabegenauigkeit Inhalt Inhalt...- 0 - Sind eine hohe Abtastrate sowie Bandbreite notwendig?...- 2 - Ein Blick auf die messtechnischen Grundlagen...- 7 - Von Abtastrate und Bandbreite

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

P2-61: Operationsverstärker

P2-61: Operationsverstärker Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Auswertung Matthias Ernst Matthias Faulhaber Karlsruhe, den 16.12.2009 Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker

Mehr

Elektronik Praktikum Operationsverstärker 2 (OV2)

Elektronik Praktikum Operationsverstärker 2 (OV2) Elektronik Praktikum Operationsverstärker 2 (OV2) Datum: -.-.2008 Betreuer: P. Eckstein Gruppe: Praktikanten: Versuchsziele Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Schaltung eines OPV als invertierenden

Mehr

Prozess-rechner. auch im Büro. Automation und Prozessrechentechnik. Prozessrechner. Sommersemester 2011. Prozess I/O. zu und von anderen Rechnern

Prozess-rechner. auch im Büro. Automation und Prozessrechentechnik. Prozessrechner. Sommersemester 2011. Prozess I/O. zu und von anderen Rechnern Automation und Prozessrechentechnik Sommersemester 20 Prozess I/O Prozessrechner Selbstüberwachung zu und von anderen Rechnern Prozessrechner speziell Prozessrechner auch im Büro D A D A binäre I/O (Kontakte,

Mehr

Where Analog Meets Digital

Where Analog Meets Digital Where Analog Meets Digital Roland Küng, 2011 1 Applikationsbeispiel No Limits? 2 3 Wandler und ihre linearen Fehler Bisherige Charakterisierung 4 Nichtlineare Wandlerfehler Bisherige Charakterisierung

Mehr

Elektrische Messtechnik

Elektrische Messtechnik Elektrische Messtechnik Versuch: ZFM Versuchsvorbereitung. Warum ist eine Umformung eines beliebig geformten Messsignals in ein Rechtecksignal erforderlich? Warum wird zur Frequenz- und Periodendauermessung

Mehr

Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Rechnertechnologie Sommersemester 2010 11. Vorlesung Dr.-Ing. Wolfgang Heenes 29. Juni 2010 TechnischeUniversitätDarmstadt Dr.-Ing. WolfgangHeenes 1 Inhalt 1. Einführung in die Signalverarbeitung

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Elektronik für Physiker, RWTH, SS 2003, T.Hebbeker

Elektronik für Physiker, RWTH, SS 2003, T.Hebbeker 8. E1 TH 03 Analog und Digital 1 Elektronik für Physiker, RWTH, SS 2003, T.Hebbeker 2003-07-25 SKRIPTTEIL 8 9. Analog und Digital Bisher haben wir beide Welten getrennt betrachtet. Jetzt wollen wir sie

Mehr

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = Maschenregel Σ ( ) = Ersatzquellen Überlagerungsprinzip Voraussetzung:

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

1. 2 1.1. 2 1.1.1. 2 1.1.2. 1.2. 2. 3 2.1. 2.1.1. 2.1.2. 3 2.1.3. 2.2. 2.2.1. 2.2.2. 5 3. 3.1. RG58

1. 2 1.1. 2 1.1.1. 2 1.1.2. 1.2. 2. 3 2.1. 2.1.1. 2.1.2. 3 2.1.3. 2.2. 2.2.1. 2.2.2. 5 3. 3.1. RG58 Leitungen Inhalt 1. Tastköpfe 2 1.1. Kompensation von Tastköpfen 2 1.1.1. Aufbau eines Tastkopfes. 2 1.1.2. Versuchsaufbau.2 1.2. Messen mit Tastköpfen..3 2. Reflexionen. 3 2.1. Spannungsreflexionen...3

Mehr

Spannungsstabilisierung

Spannungsstabilisierung Spannungsstabilisierung 28. Januar 2007 Oliver Sieber siebero@phys.ethz.ch 1 Inhaltsverzeichnis 1 Zusammenfassung 4 2 Einführung 4 3 Bau der DC-Spannungsquelle 5 3.1 Halbwellengleichrichter........................

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

Modulationsverfahren

Modulationsverfahren Funktions- und Fehleranalyse Herr Rößger 2011 2012 Modulationsverfahren Definition: Modulation ist die Beeinflussung einer Trägerschwingung durch eine Information. Trägerschwingung: Informationsparameter:

Mehr

Messtechnik-Grundlagen

Messtechnik-Grundlagen Carl-Engler-Schule Karlsruhe Messtechnik-Grundlagen 1 (5) Messtechnik-Grundlagen 1. Elektrische Signale 1.1 Messung von Spannung, Strom und Widerstand Für die Größen Spannung U in V (Volt), den Strom I

Mehr

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D)

Digital meets analog. Analoge Welt Messung physikalischer Größen mittels Sensoren analoge Spannung. Analog-Digital-Wandlung (A/D) Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PID-egler Sensorik

Mehr

A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196

A-196 PLL. 1. Einführung VCO. LPF Frequ. doepfer System A - 100 PLL A-196 doepfer System A - 100 PLL A-196 1. Einführung A-196 PLL VCO CV In Offset Das Modul A-196 enthält eine sogenannte Phase Locked Loop (PLL) - im deutschen mit Nachlaufsynchronisation bezeichnet, die aus

Mehr

AS Praktikum M.Scheffler, C.Koegst, R.Völz Amplitudenmodulation mit einer Transistorschaltung - 1 1. EINFÜHRUNG...2 2. VERSUCHSDURCHFÜHRUNG...

AS Praktikum M.Scheffler, C.Koegst, R.Völz Amplitudenmodulation mit einer Transistorschaltung - 1 1. EINFÜHRUNG...2 2. VERSUCHSDURCHFÜHRUNG... - 1 Inhaltsverzeichnis 1. EINFÜHRUNG...2 1.1 BESTIMMUNG DES MODULATIONSGRADS...3 1.1.1 Synchronisation auf die Modulationsfrequenz...4 1.1.2 Synchronisation auf die Trägerfrequenz...4 1.1.3 Das Modulationstrapez...4

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Versuch: A3 Verstärkerschaltungen für ein EKG

Versuch: A3 Verstärkerschaltungen für ein EKG Versuch: A3 Verstärkerschaltungen für ein EKG Ziel dieses Versuches: Transistoren und OP als Verstärker verstehen. Inhalte: Differenzverstärker aus Transistoren und OPs, Spannungsverstärkung, OP als Komparator,

Mehr

Aktiver Bandpass. Inhalt: Einleitung

Aktiver Bandpass. Inhalt: Einleitung Aktiver Bandpass Inhalt: Einleitung Aufgabenstellung Aufbau der Schaltung Aktiver Bandpass Aufnahme des Frequenzgangs von 00 Hz bis 00 KHz Aufnahme deer max. Verstärkung Darstellung der gemessenen Werte

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

Spannungsstabilisierung. Lukas Wissmann lukaswi@student.ethz.ch

Spannungsstabilisierung. Lukas Wissmann lukaswi@student.ethz.ch Spannungsstabilisierung Lukas Wissmann lukaswi@student.ethz.ch 23. Januar 2007 1 Inhaltsverzeichnis 1 Zusammenfassung 2 2 Übersicht 2 3 Aufbau und Messungen 3 3.1 Der Halbwellengleichrichter...........................

Mehr

Versuch V11: D/A und A/D-Wandler

Versuch V11: D/A und A/D-Wandler Versuch V11: D/ und /D-Wandler Henri Menke und Jan Trautwein Gruppe 1 11 Platz k (Betreuer: Boris Bonev) (Datum: 20. Januar 2014) Im Versuch sollen der ufbau und die Funktionsweise einfacher Digital/nalog-

Mehr

Wozu benötigt man AD/DA Wandler?

Wozu benötigt man AD/DA Wandler? Lehrbehelf für Prozessregelung und echnerverbund, 3. Klasse HTL Wozu benötigt man A/A Wandler? In der elektrischen Mess- und Steuerungstechnik werden oft analoge Größen wie Spannung, Widerstand, Leistung,

Mehr

7V: Komplexe Übertragungsfunktion eines RC-Gliedes mittels Digitalspeicher-Oszilloskop Agilent VEE - Direct I/O (SCPI)

7V: Komplexe Übertragungsfunktion eines RC-Gliedes mittels Digitalspeicher-Oszilloskop Agilent VEE - Direct I/O (SCPI) Hochschule Merseburg (FH) FB INW Praktikum Virtuelle Instrumentierung 7V: Komplexe Übertragungsfunktion eines RC-Gliedes mittels Digitalspeicher-Oszilloskop Agilent VEE - Direct I/O (SCPI) Agilent Digital

Mehr

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Modulation Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Datenfernübertragung I Über kurze Entfernungen können Daten über Kupferkabel übertragen werden, indem jedes Bit mit einer positiven

Mehr

Elektrische Messtechnik, Labor Sommersemester 2014

Elektrische Messtechnik, Labor Sommersemester 2014 Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Sommersemester 2014 Rechnerunterstützte Erfassung und Analyse von Messdaten Übungsleiter: Dipl.-Ing. GALLIEN

Mehr

Versuch 7 Komplexe Übertragungsfunktion eines RC-Gliedes mittels Digital-Oszilloskop (Direct I/O)

Versuch 7 Komplexe Übertragungsfunktion eines RC-Gliedes mittels Digital-Oszilloskop (Direct I/O) Fachhochschule Merseburg FB Informatik und Angewandte Naturwissenschaften Praktikum Messtechnik Versuch 7 Komplexe Übertragungsfunktion eines RC-Gliedes mittels Digital-Oszilloskop (Direct I/O) Agilent

Mehr

Empfindlichkeit und Rauschmaß eines DVB T Sticks

Empfindlichkeit und Rauschmaß eines DVB T Sticks Empfindlichkeit und Rauschmaß eines DVB T Sticks Messung kritischer Spezifikationen eines Salcar Stick DVB T RTL 2832U&R820T SDR Salcar Stick, oder ähnlich Blockschaltbild des R820T Tuners Aufbau für Empfindlichkeitsmessung:

Mehr

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende

Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität. Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Schallaufzeichnung Wichtige Eigenschaft: zeitliche Abnahme der Schallintensität Akustische Ereignisse sind zeitliche Phänomene mit Anfang und Ende Akustische Ereignisse sind vergänglich Akustische Ereignisse

Mehr

Operationsverstärker

Operationsverstärker Versuch 4 Operationsverstärker 1. Einleitung In diesem Versuch sollen Sie einige Anwendungen von Operationsverstärkern (OPV) untersuchen. Gleichzeitig sollen Sie erlernen, im Schaltungseinsatz ihre typischen

Mehr

DSO. Abtastrate und Speichertiefe

DSO. Abtastrate und Speichertiefe DSO Abtastrate und Speichertiefe Inhalt Inhalt...- 1 - Feine Signaldetails und lange Abtastzeiträume...- 2 - Was ein großer Speicher bewirkt...- 2 - Einfluss der Oszilloskop-Architektur auf die Update-Rate...-

Mehr

1 Digital Oszilloskop

1 Digital Oszilloskop 1 Digital Oszilloskop Beim digitalen Oszilloskop wird das Signal im Erfassungssystem durch den Analog-Digital- Umsetzer an zeitdiskreten Punkten abgetastet und wandelt die Signalspannung an diesen Punkten

Mehr

Speicherung von Signalen - Flipflops, Zähler, Schieberegister

Speicherung von Signalen - Flipflops, Zähler, Schieberegister Lehrbehelf für Prozessregelung und echnerverbund, 3. Klasse HTL Speicherung von Signalen - Flipflops, Zähler, Schieberegister S - Flipflop Sequentielle Schaltungen unterscheiden sich gegenüber den kombinatorischen

Mehr

Grundlagen der Elektro-Proportionaltechnik

Grundlagen der Elektro-Proportionaltechnik Grundlagen der Elektro-Proportionaltechnik Totband Ventilverstärkung Hysterese Linearität Wiederholbarkeit Auflösung Sprungantwort Frequenzantwort - Bode Analyse Der Arbeitsbereich, in dem innerhalb von

Mehr

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1

R C2 R B2 R C1 C 2. u A U B T 1 T 2 = 15 V. u E R R B1 Fachhochschule Gießen-Friedberg,Fachbereich Elektrotechnik 1 Elektronik-Praktikum Versuch 24: Astabile, monostabile und bistabile Kippschaltungen mit diskreten Bauelementen 1 Allgemeines Alle in diesem

Mehr

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing.

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing. TFH Berlin Messtechnik Labor Seite 1 von 5 Das Oszilloskop Ort: TFH Berlin Datum: 05.01.04 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00h bis 11.30 Uhr Prof. Dr.-Ing. Klaus Metzger Mirko Grimberg, Udo Frethke,

Mehr

Funktionsgenerator. Amplitudenmodulation (AM), Frequenzmodulation (FM), Pulsmodulation (PM) und spannungsgesteuerter

Funktionsgenerator. Amplitudenmodulation (AM), Frequenzmodulation (FM), Pulsmodulation (PM) und spannungsgesteuerter Funktionsgenerator Zur Beschreibung von Signalquellen sind verschiedene Bezeichnungen gebräuchlich, z.b. Signalgenerator, Funktionsgenerator, Pulsgenerator oder Waveformgenerator. Durch diese Unterteilung

Mehr

P2-61: Operationsverstärker

P2-61: Operationsverstärker Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Vorbereitung Matthias Ernst Matthias Faulhaber Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker (gleichstromgegengekoppelt)

Mehr

Bipolartransistoren. Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 2

Bipolartransistoren. Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 2 Versuch 2 Bipolartransistoren 1. Einleitung In diesem Versuch werden zunächst die elementaren Eigenschaften bipolarer Transistoren untersucht. Anschließend erfolgt ihr Einsatz in einigen Verstärker- Grundschaltungen.

Mehr

Optisch isoliertes Mess- und Auswertesystem

Optisch isoliertes Mess- und Auswertesystem Impulsgrößen potentialfrei messen: Optisch isoliertes Mess- und Auswertesystem Die genaue Messung schnell veränderlicher Spannungen und Ströme bereitet in vielen Bereichen der Technik, wie z.b. in der

Mehr

Europäisches Patentamt European Patent Office Office europeen des brevets. Veröffentlichungsnummer: 0 349 793 A2 EUROPÄISCHE PATENTANMELDUNG

Europäisches Patentamt European Patent Office Office europeen des brevets. Veröffentlichungsnummer: 0 349 793 A2 EUROPÄISCHE PATENTANMELDUNG Europäisches Patentamt European Patent Office Office europeen des brevets Veröffentlichungsnummer: 0 349 793 A2 EUROPÄISCHE PATENTANMELDUNG Anmeldenummer: 89110522.3 Int. CI.4: H03M 1/20 @ Anmeldetag:

Mehr

VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER

VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER VORBEREITUNG: TRANSISTOR- UND OPERATIONSVERSTÄRKER FREYA GNAM, TOBIAS FREY 1. EMITTERSCHALTUNG DES TRANSISTORS 1.1. Aufbau des einstufigen Transistorverstärkers. Wie im Bild 1 der Vorbereitungshilfe wird

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grundlagen Ein Oszilloskop ist ein elektronisches Messmittel zur grafischen Darstellung von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellung)

Mehr

Analog/Digital-Umsetzung und Frequenzmessung

Analog/Digital-Umsetzung und Frequenzmessung Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Technische Universität Graz Elektrische Messtechnik, Labor Wintersemester 2006/07 Analog/Digital-Umsetzung und Frequenzmessung Gruppe: Gruppe

Mehr

Computergestützter Schaltungs- und Leiterplattenentwurf Protokoll. Jan Nabbefeld erstellt: 5. Juli 2002

Computergestützter Schaltungs- und Leiterplattenentwurf Protokoll. Jan Nabbefeld erstellt: 5. Juli 2002 Computergestützter Schaltungs- und Leiterplattenentwurf Protokoll André Grüneberg Jan Nabbefeld erstellt: 5. Juli 2002 1 Schaltplaneingabe und Schaltungsimulation 1.1 NAND-Gatter Aufgabe war es, NAND-Gatter

Mehr

Elektrotechnik II: Kolloquium 4

Elektrotechnik II: Kolloquium 4 Elektrotechnik II: Kolloquium 4 Digitalschaltungen Hubert Abgottspon: abgottspon@eeh.ee.ethz.ch Markus Imhof: imhof@eeh.ee.ethz.ch Inhalt des Kolloquium: Digitale Messkette Sensor 1) Filter S&H- Versträker

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

4 DC/DC Konverter / Hoch-Tiefsetzsteller

4 DC/DC Konverter / Hoch-Tiefsetzsteller 4 DC/DC Konverter / Hoch-Tiefsetzsteller Der Hochsetz-Tiefsetzsteller ist neben der in den Übungen IE2 und IE3 behandelten Tiefsetzsteller- und Hochsetzstellerschaltung die dritte Möglichkeit einen Leistungstransistor,

Mehr

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5 Operationsverstärker Versuchsdatum: 22.11.2005 Teilnehmer: 1. Vorbereitung 1.1. Geräte zum Versuchsaufbau 1.1.1 Lawinendiode 1.1.2 Photomultiplier

Mehr

Tabelle 4-1 Analog-Eingangs-Spezifikationen. Eingangsbereiche per Software wählbar ±10 V, ±5 V, ±2 V, ±1 V Abtastrate

Tabelle 4-1 Analog-Eingangs-Spezifikationen. Eingangsbereiche per Software wählbar ±10 V, ±5 V, ±2 V, ±1 V Abtastrate Kapitel 4 Sofern nicht anders vermerkt, gelten alle Angaben für 25 C. Analogeingabe Tabelle 4-1 Analog-Eingangs- Parameter Bedingungen A/D-Wandlertyp 16-Bit-Wandler vom Typ sukzessive Approximation Anzahl

Mehr

Praktikum Elektronik für Wirtschaftsingenieure. Messungen mit Multimeter und Oszilloskop

Praktikum Elektronik für Wirtschaftsingenieure. Messungen mit Multimeter und Oszilloskop Praktikum Elektronik für Wirtschaftsingenieure Versuch Messungen mit Multimeter und Oszilloskop 1 Allgemeine Hinweise Die Aufgaben zur Versuchsvorbereitung sind vor dem Versuchstermin von jedem Praktikumsteilnehmer

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

Die einfachste Art, piezokeramischen Druckmesszellen zu kalibrieren

Die einfachste Art, piezokeramischen Druckmesszellen zu kalibrieren Problemstellung: Aufbau einer einfachen und kostengünstigen Schaltung zur Signalverstärkung und Kalibrierung von keramischen Druckmesszellen mittels eines geeigneten ICs [1] und weniger diskreter Bauelemente

Mehr

Kontinuierliche Digitaltechnik als völlig neues Prinzip der Digitalisierung

Kontinuierliche Digitaltechnik als völlig neues Prinzip der Digitalisierung Kontinuierliche Digitaltechnik als völlig neues Prinzip der Digitalisierung Horst Völz Die Digitalisierung von Signalen insbesondere bei Audio und Video erfolgt im Wesentlichen unverändert seit reichlich

Mehr

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Praktikum Elektronik 1 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Versuchsdatum: 0. 04. 00 Allgemeines: Empfindlichkeit: gibt an, welche Spannungsänderung am Y- bzw. X-Eingang notwendig ist,

Mehr

Kennenlernen der Laborgeräte und des Experimentier-Boards

Kennenlernen der Laborgeräte und des Experimentier-Boards Kennenlernen der Laborgeräte und des Experimentier-Boards 1 Zielstellung des Versuches In diesem Praktikumsversuch werden Sie mit den eingesetzten Laborgeräten vertraut gemacht. Es werden verschiedene

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Weniger ist mehr. Funktion eines Triggers. Messen + Testen

Weniger ist mehr. Funktion eines Triggers. Messen + Testen Messen + Testen Weniger ist mehr Ein Oszilloskop ist dumm, es unterscheidet nicht die Relevanz der Daten. Um der erfassten Datenflut Herr zu werden fischt der geschickte Anwender die relevanten Daten mit

Mehr

Einführung in die Robotik Analog-Digital und Digital-Analog Wandler

Einführung in die Robotik Analog-Digital und Digital-Analog Wandler Einführung in die Robotik Analog-Digital und Digital-Analog Wandler Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 73 / 5 2453 mohamed.oubbati@uni-ulm.de 3.. 22 Analog-Digital (A/D) Wandler Digital

Mehr

Wie funktioniert ein Relais?

Wie funktioniert ein Relais? 1 Wie funktioniert ein Relais? Ein Relais besteht im einfachsten Fall aus einer Spule, einem beweglichen Anker und einem Schaltkontakt (Bildquelle Wikipedia): Eine einfache Schaltung demonstriert die Funktion:

Mehr

Das Oszilloskop als Messinstrument Versuch P1-32,33,34

Das Oszilloskop als Messinstrument Versuch P1-32,33,34 Vorbereitung Das Oszilloskop als Messinstrument Versuch P1-32,33,34 Iris Conradi Gruppe Mo-02 23. November 2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Kennenlernen der Bedienelemente 3 2 Messung im Zweikanalbetrieb

Mehr

Research & Development Ultrasonic Technology / Fingerprint recognition DATA SHEETS OPBOX. http://www.optel.pl email: optel@optel.

Research & Development Ultrasonic Technology / Fingerprint recognition DATA SHEETS OPBOX. http://www.optel.pl email: optel@optel. Research & Development Ultrasonic Technology / Fingerprint recognition DATA SHEETS & OPBOX http://www.optel.pl email: optel@optel.pl Przedsiębiorstwo Badawczo-Produkcyjne OPTEL Spółka z o.o. ul. Otwarta

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V

Das Experimentierbrettchen (Aufbau, Messpunkte): A B + 9V Kojak-Sirene: Experimente zur Funktionsweise 1. astabile Kippstufe 2. astabile Kippstufe Die Schaltung der Kojak-Sirene besteht aus zwei miteinander verbundenen astabilen Kippstufen (Anhang) und einem

Mehr

Laborübung: Oszilloskop

Laborübung: Oszilloskop Laborübung: Oszilloskop Die folgenden Laborübungen sind für Studenten gedacht, welche wenig Erfahrung im Umgang mit dem Oszilloskop haben. Für diese Laborübung wurde eine Schaltung entwickelt, die verschiedene

Mehr

Hilfe bei der Qual der Wahl

Hilfe bei der Qual der Wahl Hilfe bei der Qual der Wahl Die große Auswahl an verfügbaren Halbleitern ermöglicht heute sehr unterschiedliche TOPOLOGIEN BEIM DESIGN VON ABWÄRTSWANDLERN. AUTOMOBIL-ELEKTRONIK stellt diese Topologien

Mehr

C04 Operationsverstärker Rückkopplung C04

C04 Operationsverstärker Rückkopplung C04 Operationsverstärker ückkopplung 1. LITEATU Horowitz, Hill The Art of Electronics Cambridge University Press Tietze/Schenk Halbleiterschaltungstechnik Springer Dorn/Bader Physik, Oberstufe Schroedel 2.

Mehr

Aufgabenbeschreibung Oszilloskop und Schaltkreise

Aufgabenbeschreibung Oszilloskop und Schaltkreise Aufgabenbeschreibung Oszilloskop und Schaltkreise Vorbereitung: Lesen Sie den ersten Teil der Versuchsbeschreibung Oszillograph des Anfängerpraktikums, in dem die Funktionsweise und die wichtigsten Bedienungselemente

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

A/D-Wandler. Glossar

A/D-Wandler. Glossar A/D-Wandler Glossar A/D-Wandler 1 Index A/D-Wandler 1-Bit-Wandler Abtastrate Abtastung Abtastungen pro Sekunde AD-Wandler, A/D ADPCM, adaptive delta pulse code modulation Auflösung DA-Wandler, D/A DAC,

Mehr

Dazu werden so genannte Modulationstechniken verschiedenster Art angewandt.

Dazu werden so genannte Modulationstechniken verschiedenster Art angewandt. 5. Modulation Für die Uebertragung eines Nutzsignals über Leitungen oder durch die Luft muss das informationstragende Signal, das Nutzsignal, an die Eigenschaften des Uebertragungswegs angepasst werden.

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen CMT-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung Wechselstromwiderstände (Lit.: GERTHSEN) Schwingkreise (Lit.: GERTHSEN) Erzwungene Schwingungen (Lit.: HAMMER) Hochpass, Tiefpass,

Mehr

Analogmultiplexer als Amplitudenmodulatoren

Analogmultiplexer als Amplitudenmodulatoren Analogmultiplexer als Amplitudenmodulatoren Dipl.-Phys. Jochen Bauer 09.11.014 Einführung und Motivation Mit dem zunehmenden Verschwinden von Mittel- und Langwellensendern ergibt sich die Notwendigkeit

Mehr

Wechselstromwiderstände - Formeln

Wechselstromwiderstände - Formeln Wechselstromwiderstände - Formeln Y eitwert jω Induktiver Widerstand jω j ω Kapazitiver Widerstand X ω Induktiver Blindwiderstand X ω Kapazitiver Blindwiderstand U U U I di dt Idt Teilspannungen an Widerstand,

Mehr

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte)

Digitalisierung. Digitale Übertragung analoger Signale. störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Digitale Übertragung analoger Signale Vorteile digitaler Übertragung störsicher (0/1-Codierung, Fehlerkorrektur) präzise (fixe unveränderliche Codeworte) Nachteiler digitaler Übertragung natürliche Signale

Mehr

HARDWARE-PRAKTIKUM. Versuch T-1. Kontaktlogik. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch T-1. Kontaktlogik. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRATIUM Versuch T-1 ontaktlogik Fachbereich Informatik Universität aiserslautern eite 2 Versuch T-1 Versuch T-1 Vorbemerkungen chaltnetze lassen sich in drei lassen einteilen: 1. chaltnetze vom

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen

RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen Elektronik Praktikum / Digitaler Teil Name: Jens Wiechula, Philipp Fischer Leitung: Prof. Dr. U. Lynen Protokoll: Philipp Fischer Versuch: 3 Datum: 24.06.01 RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen

Mehr

karteneigenen EEPROM gespeichert. Der INFO-Master korrigiert während des Betriebs

karteneigenen EEPROM gespeichert. Der INFO-Master korrigiert während des Betriebs Strom 0... 20mA Spannung ±10V Technische Daten Die Karte gibt 8 Spannungen von ±10V oder Ströme 0... 20mA mit einer Auflösung von 16 Bit aus. Sie eignet sich z.b. zum Ansteuern von Flow-Controllern und

Mehr