Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung"

Transkript

1 Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium

2 Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale Darstellung auf der Betrachtungsfläche dem Monitor um.

3 Graphik/-Pipeline local world view 3d screen display coordinates coordinates coordinates space space Lokale/ Modell/ Objekt- Kamera/ Betrachtungs- Projektion Rasterisierung transformation transformation

4 Lokale oder Modellkoordinaten system, in dem die einzelnen Teile einer Szene modelliert worden sind. Oft ist der Ursprung eines lokalen systems das Zentrum des jeweiligen Objektes oder ein Eckpunkt.

5 Lokale oder Modellkoordinaten Xiaoyuan Tu, Univ. Toronto

6 Gemeinsames, globales system, in das alle Objekte platziert werden Alle Objekte zusammen bestimmen die -Szene. Bestimmt die relative Lage der Objekte zueinander Beleuchtung wird in angegeben

7 y w z w x w

8 Transformation von lokalen nach : P W =M W *P L P W : M W : Punkt in Transformationsmatrix von lokalen nach für Punkt P L P L : Punkt in lokalen

9 Betrachter/Kamera/Augenkoordinaten Bestimmt die Betrachtungsparameter (Betrachterstandort, -richtung, -volumen) Augenpunkt C, ebene Betrachterk.system View-Pyramide Blickrichtung N im Abstand d von C mit Achsen U,V,N bei C

10 Transformation von Welt- nach : P B =M B *P W P W : Punkt in M B : Transformationsmatrix von nach P B :Punkt in

11 M B = R*T T: Translationsmatrix (Abbildung des systems auf das verschobene Kamerakoordinatensystem. Inverse Translation vom Weltursprung nach C.) R: Rotationsmatrix (Abbildung des versch. WK auf das rotierte KK. Inverse Rotation der WK-Achsen auf KK-Achsen.) 0 0 C x C T=[1 y ] C z x U y U z 0 V R=[U x V y V z 0 N x N y N z ]

12 back-face culling C N θ V N V>0: Polygon ist sichtbar N V= N V cos( θ )

13 Erweiterte View-Pyramide h Vordere Clip- Ebene hat Höhe 2h Vordere und hintere Clip-Ebene bei z B =d und z B =f (für far)

14 Clipping (Abschneiden) Zu clippendes Polygon Akzeptiertes Polygon Ausgeschlossene Polygone

15 Clipping Wird üblicherweise nicht in sondern in vorgenommen, da es dort effizienter realisiert werden kann.

16 Clipping gegen Sichtvolumen geschieht hier. Verdeckungsberechnung (hidden surface removal) via z-buffer. Transformation in 2D- ebenenkoordinaten über Projektion.

17 Albrecht Dürer, Der Zeichner der Laute 1525 Lokale/ Projektion

18 Jan Vrederman De Vries, Perspective, Lokale/ Projektion

19 Perspektivprojektion Ähnliche Dreiecke: x s d = x B z B, y s d = y B z B Mit X=x B,Y=y B,Z=z B,w= z B d gilt: [ X Y Z w xb pers[ y ]=T B ] z B 1 T wobei pers =[ d 0 ]

20 Parallelprojektion [ X Y Z w xb pers[ y ]=T B ] z B 1 wobei Projektion parallel zur ZB- Achse: x S =x B, y S =y B, z S =0 T pers =[ ]

21 Perspektivprojektion z B -Werte sollen für z-buffer Algorithmus erhalten bleiben, aber Abbildung [d,f] auf [0,1] z S = f 1 dz B f d

22 Perspektivprojektion Verformung der View-Pyramide in Quader (- 1,-1,0) bis (1,1,1) (Diagonale)

23 Perspektivprojektion Verformung der View-Pyramide in Quader (- 1,-1,0) bis (1,1,1) (Diagonale) x S =d x B hz B, y S =d y B hz B

24 Perspektivprojektion Putting it all together: Mit X= d h x B,Y= d h y B,Z= fz B f d df f d,w=z B [ X Y Z w xb pers[ y ]=T B ] z B 1 T pers =[ dh gilt: wobei dh f f d df f d ]

25 Transformation von Betrachter- nach : P S =M S *P B P B : M S : Punkt in Transformationsmatrix von nach = T pers P S : Punkt in homogenen

26 Clipping geschieht mit Punkten P S in homogenen durch -w <= X <= w -w <= Y <= w 0 <= Z <= w vor Division durch w

27 [ Lokale/ Gesamttransformation von lokalen nach : [ X Y Z w ]=M S M B M W x L y L z L 1 ] [ ]=[ xs y S z S 1 Xw Yw Zw 1 ] perspective divide

28 Übung (Vorbereitung) 1. Schreiben Sie einen reader für Volumendaten, der die Daten in eine für den MC-Algorithmus brauchbare Datenstruktur ablegt. 2. Testdateien (64x64x64) von einlesen 3. Beginn der MC-Alg. Implementierung 4. Sehen Sie bei nach, wie die Ecken-, Kanten- und Dreieckstabellen benutzt werden. Die Seite gibt auch noch einmal einen Überblick über den Marching Cubes Algorithmus. In der nächsten Übung werden die Tabellen benutzt!

2.2 Projektionen und Kameramodelle

2.2 Projektionen und Kameramodelle Graphikprog. GRUNDLEGENDE VERFAHREN UND TECHNIKEN. Projektionen und Kameramodelle Nachdem alle Objekte einer Szenerie mittels der besprochenen Transformationen im D-Weltkoordinatensystem platziert sind,

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen V. Die Rendering-Pipeline Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Der Begriff Rendering 2. Die Rendering-Pipeline Geometrische Modellierung

Mehr

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese Geometrisches Modell bestehend aus Datenstrukturen zur Verknüpfung geometrischer Primitive, welche eine Gesamtszene beschreiben Bildsynthese := Modellabbildung Pixelbasiertes Modell zur Darstellung eines

Mehr

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert.

3.1 Motivation. - Mit (mehreren) Koordinatentransformationen wird das Objektsystem in das Gerätesystem transformiert. 3.1 Motivation Wichtige Grundlage der Bildwiedergabe auf dem Bildschirm oder anderen Ausgabegeräten sind Koordinatensysteme und Koordinatentransformationen im IR 2 und IR 3. Im allgemeinen unterscheidet

Mehr

Projektion. Ebene geometrische Projektionen

Projektion. Ebene geometrische Projektionen Projektion - 1 - Ebene geometrische Projektionen Die ebenen geometrischen Projektionen sind dadurch charakterisiert, daß mit Projektionsstrahlen konstanter Richtung, d.h. entlang von Geraden, auf Ebenen

Mehr

Computergrafik 1 Beleuchtung

Computergrafik 1 Beleuchtung Computergrafik 1 Beleuchtung Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Lokale Beleuchtungsmodelle Ambiente Beleuchtung Diffuse Beleuchtung (Lambert) Spiegelnde Beleuchtung

Mehr

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de Überblick Echtzeit-Rendering Uwe Domaratius dou@hrz.tu-chemnitz.de Gliederung 1. Einleitung 2. geometriebasierende Verbesserungen 3. Level-of-Detail 4. Culling 5. Texturen 6. bildbasiertes Rendering Was

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen Oliver Deussen Mathematische Grundlagen 1 Affine Räume um Zeichenebene bzw. Raum zu beschreiben, muß vorher ein Koordinatensystem festgelegt werden durch geometrische Fragestellungen

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

Softwareprojekt Spieleentwicklung

Softwareprojekt Spieleentwicklung Softwareprojekt Spieleentwicklung Prototyp I (2D) Prototyp II (3D) Softwareprojekt 12.04. 19.04. 26.04. 03.05. 31.05. Meilenstein I 28.06. Meilenstein II Prof. Holger Theisel, Tobias Günther, OvGU Magdeburg

Mehr

Computergrafik 1. 2D Rendering

Computergrafik 1. 2D Rendering Computergrafik 2D Rendering Hearn/Baker 32., 3.4-3.6,5. 5.8, 6. 6.8, 6. Based on material b Werner Purgathofer, Gerhard Reitmar and Dieter Schmalstieg 2D Racasting Inhalt Einfaches Rendering Model 2D Transformationen

Mehr

"rendern" = ein abstraktes geometrisches Modell sichtbar machen

rendern = ein abstraktes geometrisches Modell sichtbar machen 3. Grundlagen des Rendering "rendern" = ein abstraktes geometrisches Modell sichtbar machen Mehrere Schritte: Sichtbarkeitsberechnung Beleuchtungsrechnung Projektion Clipping (Abschneiden am Bildrand)

Mehr

VHDL - Grundlagen des Pointrenderings

VHDL - Grundlagen des Pointrenderings VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges

Mehr

Skript zum Vortrag Grundlagen der Computergrafik

Skript zum Vortrag Grundlagen der Computergrafik Skript zum Vortrag Grundlagen der Computergrafik Hanna Peeters Carsten Pauck VR-Gruppe Rechen- und Kommunikationszentrum RWTH Aachen Betreuer: Jakob T. Valvoda Dieses Dokument entstand im Rahmen der Seminarvorträge

Mehr

Koordinatensysteme und Clipping

Koordinatensysteme und Clipping Koordinatensysteme und Clipping Michael Olp Inhaltsverzeichnis 1 Einführung in die perspektivische Projektion 1 1.1 Projektion von Liniensegmenten....... 1 2 Koordinatensysteme 2 2.1 Modeling....................

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

Transformationen im 3D-Raum

Transformationen im 3D-Raum Thomas Jung Repräsentation von 3D-Oberflächen Aufbau von Szenen Transformationen im 3D-Raum Projektionstranformationen Anwendung in OpenGL Geometrietransformationen bilden die Basis für die Computergrafik

Mehr

3D rendering. Introduction and interesting algorithms. PHP Usergroup Dortmund, Dortmund, 2006-12-14. Kore Nordmann <kore@php.net>

3D rendering. Introduction and interesting algorithms. PHP Usergroup Dortmund, Dortmund, 2006-12-14. Kore Nordmann <kore@php.net> 3D rendering Introduction and interesting algorithms PHP Usergroup Dortmund, Dortmund, 2006-12-14 Kore Nordmann Speaker Kore Nordmann Studies computer science at the University Dortmund

Mehr

Algorithmen und Datenstrukturen Bereichsbäume

Algorithmen und Datenstrukturen Bereichsbäume Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation

Mehr

Computergrafik. Michael Bender, Manfred Brill. Ein anwendungsorientiertes Lehrbuch ISBN Inhaltsverzeichnis

Computergrafik. Michael Bender, Manfred Brill. Ein anwendungsorientiertes Lehrbuch ISBN Inhaltsverzeichnis Computergrafik Michael Bender, Manfred Brill Ein anwendungsorientiertes Lehrbuch ISBN 3-446-40434-1 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40434-1 sowie

Mehr

Kapitel 4: Schattenberechnung

Kapitel 4: Schattenberechnung Kapitel 4: Schattenberechnung 1 Überblick: Schattenberechnung Motivation Schattenvolumen Shadow Maps Projektive Schatten 2 Motivation Wesentlich für die Wahrnehmung einer 3D-Szene Eigentlich ein globaler

Mehr

1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen

1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen 3D-Rendering Ulf Döring, Markus Färber 07.03.2011 1. Sichtbarkeitsproblem beim Rendern einer dreidimensionalen Szene auf einer zweidimensionalen Anzeigefläche (a) Worin besteht das Sichtbarkeitsproblem?

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse

Mehr

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop

Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen. Hermann Schwarz Marko Pilop Seminar 3-D Grafik Mathematische Grundlagen, Räume, Koordinatensysteme, Projektionen Hermann Schwarz Marko Pilop 2003-11-20 http://www.informatik.hu-berlin.de/~pilop/3d_basics.pdf {hschwarz pilop}@informatik.hu-berlin.de

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen IV. Koordinatensysteme und geometrische Transformationen Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Skalare Punkte und Vektoren 2.

Mehr

Computer Graphik I Intro

Computer Graphik I Intro Computer Graphik I Intro 1 Ziele Modellierung 2 Ziele Bildgenerierung 3 Anwendungen Ausgabe 4 Kontakt Marc Alexa TU Berlin Computer Graphik marc.alexa@tu- berlin.de Raum EN 717 hep://www.cg.tu- berlin.de

Mehr

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung Objekte und ihre Beschreibung Einleitung Computergraphik: 3D sehr wichtig photo-realistic rendering Computer-Animation, Modellierung Visualisierung, Virtual Reality Ansatz: per rendering wird eine 3D-Szene

Mehr

Computer Graphik II Tesselierung impliziter Kurven und Flächen

Computer Graphik II Tesselierung impliziter Kurven und Flächen Computer Graphik II impliziter Kurven und Flächen 1 impliziter Flächen Problem: Nullstellenmenge kann nicht explizit berechnet werden! Lösung: ApproximaCon der Fläche auf Zellen Beispiel 2D: f p ( )

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Heute. Motivation. Diskretisierung. Medizinische Bildverarbeitung. Volumenrepräsentationen. Volumenrepräsentationen. Thomas Jung

Heute. Motivation. Diskretisierung. Medizinische Bildverarbeitung. Volumenrepräsentationen. Volumenrepräsentationen. Thomas Jung t.jung@fhtw-berlin.de Heute Volumenrepräsentationen Thomas Jung Generierung von Volumenrepräsentationen Rendering von Volumenrepräsentationen Konvertierung in Oberflächenrepräsentationen Weitere Geometrische

Mehr

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1

1 Transformationen. 1.1 Transformationsmatrizen. Seite 1 Seite 1 1 Transformationen 1.1 Transformationsmatrizen In den folgenden Teilaufgaben sind die Koeffizienten von 4 4 Transformationsmatrizen zur Repräsentation von affinen Abbildungen im R 3 zu bestimmen.

Mehr

Rendering. (illumination/shading) Beleuchtungsmodelle. Schattierung von Polygonen. Lokale Beleuchtungsmodelle

Rendering. (illumination/shading) Beleuchtungsmodelle. Schattierung von Polygonen. Lokale Beleuchtungsmodelle Beleuchtung/Schattierung (illumination/shading) Beleuchtungsmodelle Globale Beleuchtungsmodelle Lokale Beleuchtungsmodelle Schattierung von Polygonen 1. Flat shading 2. Gouraud Shading 3. Phong Shading

Mehr

Computergrafik Sommersemester 2004 Übungen

Computergrafik Sommersemester 2004 Übungen Sommersemester 4 Freiwillige Zusatzübung Aufgabe 6: Transformationen im zweidimensionalen aum Berechnen Sie die Transformationsmatri, die eine Szene zuerst um 3 Grad um den Ursprung dreht und anschließend

Mehr

Bildverarbeitung: 3D-Geometrie. D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13

Bildverarbeitung: 3D-Geometrie. D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13 Bildverarbeitung: 3D-Geometrie D. Schlesinger () Bildverarbeitung: 3D-Geometrie 1 / 13 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Lösungsvorschlag zum zweiten Übungsblatt

Lösungsvorschlag zum zweiten Übungsblatt Lösungsvorschlag zum zweiten Übungsblatt Aufgabe Wir zeigen, daß die Drehung um den Ursprung um 9 und die Spiegelung an der x-achse nicht kommutieren. Die Matrix für die Drehmatrix lautet in diesem Fall

Mehr

Computergrafik. Ein anwendungsorientiertes Lehrbuch. Bearbeitet von Michael Bender, Manfred Brill

Computergrafik. Ein anwendungsorientiertes Lehrbuch. Bearbeitet von Michael Bender, Manfred Brill Computergrafik Ein anwendungsorientiertes Lehrbuch Bearbeitet von Michael Bender, Manfred Brill 1. Auflage 2003. Taschenbuch. 528 S. Paperback ISBN 978 3 446 22150 5 Format (B x L): 16,9 x 24,1 cm Gewicht:

Mehr

Prüfungsdauer: 120 Minuten

Prüfungsdauer: 120 Minuten Computergraphik und Multimediasysteme Seite 1 von 6 Klausur: Computergraphik II Probeklausur Semester: Prüfer: Prüfungsdauer: 1 Minuten Hilfsmittel: Schreibgeräte, Lineal, nichtprogrammierbarer Taschenrechner

Mehr

Szenengraph-Architekturen im Kontext von VR- und AR-Anwendungen

Szenengraph-Architekturen im Kontext von VR- und AR-Anwendungen Szenengraph-Architekturen - 1 Szenengraph-Architekturen im Kontext von VR- und AR-Anwendungen Hauptseminar Medieninformatik Christina Eicher 10. Mai 2004 Inhalt Szenengraph-Architekturen - 2 Teil 1: Szenengraphen

Mehr

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering

Probelektion zum Thema. Shadow Rendering. Shadow Maps Shadow Filtering Probelektion zum Thema Shadow Rendering Shadow Maps Shadow Filtering Renderman, 2006 CityEngine 2011 Viewport Real reconstruction in Windisch, 2013 Schatten bringen viel Realismus in eine Szene Schatten

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 13 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

EVC Repetitorium Blender

EVC Repetitorium Blender EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen

Mehr

Volumenverarbeitung und Optimierung II

Volumenverarbeitung und Optimierung II Volumenverarbeitung und Optimierung II Praktikum Medizinische GPU Verfahren Susanne Fischer sanne@uni-koblenz.de Institut für Computervisualistik Universität Koblenz-Landau 9. Dezember 2006 Susanne Fischer

Mehr

computer graphics & visualization

computer graphics & visualization Entwicklung und Implementierung echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs echtzeitfähiger Verfahren zur Darstellung von reflektierenden Objekten auf GPUs Motivation

Mehr

Kapitel 3: Geometrische Transformationen

Kapitel 3: Geometrische Transformationen [ Computeranimation ] Kapitel 3: Geometrische Transformationen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 3. Geometrische Transformationen

Mehr

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011

C A R L V O N O S S I E T Z K Y. Transformationen. Johannes Diemke. Übung im Modul OpenGL mit Java Wintersemester 2010/2011 C A R L V O N O S S I E T Z K Y Transformationen Johannes Diemke Übung im Modul OpenGL mit Java Wintersemester 2010/2011 Motivation Transformationen Sind Grundlage vieler Verfahren der Computergrafik Model-

Mehr

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich.

Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Kapitel 1 Animation (Belebung) Animation ist das Erzeugen von Filmen mit Hilfe der Computergrafik. Objekte bewegen sich hierbei oder Beleuchtung, Augpunkt, Form,... ändern sich. Anwendungen findet die

Mehr

3D-Transformationen. Kapitel Translation Skalierung

3D-Transformationen. Kapitel Translation Skalierung Kapitel 3 3D-Transformationen Wie im weidimensionalen Fall, werden die Definitionspunkte der Objekte als Spaltenvektoren mit homogener Koordinate geschrieben. Die notwendigen Transformationen werden wieder

Mehr

Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten

Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Referent: Arndt Ebert 1 2 Ziel des Vortrags Einordnung der point based representation (PBR) und Grundlagen Effiziente

Mehr

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar

Workshop: Einführung in die 3D-Computergrafik. Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar Workshop: Einführung in die 3D-Computergrafik Julia Tolksdorf Thies Pfeiffer Christian Fröhlich Nikita Mattar 1 Organisatorisches Tagesablauf: Vormittags: Theoretische Grundlagen Nachmittags: Bearbeitung

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.4 2.5 Perspektivische 2.6 Parallele 2.7 Umsetzung der Zentralprojektion 2.8 Weitere 2.9 Koordinatensysteme, Frts. 2.10 Window to Viewport 2.11 Clipping 3 Repräsentation

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Grundlegende Algorithmen

Grundlegende Algorithmen 3D Spieleprogrammierung Grundlegende Algorithmen Übersicht Game Loop Spielarchitektur Aufäumen von Strukturen Vorbereiten für spätere Aufgaben Bewegungen Zeitmessung Zeitunabhängigkeit GameLoop Game Engine

Mehr

Universität Augsburg. 20. April 2012. B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6

Universität Augsburg. 20. April 2012. B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6 Kapitel 1 Einführung B. Möller Universität Augsburg 20. April 2012 B. Möller (U. Augsburg) Computergraphik SS12 20. April 2012 1 / 6 Begriffsdefinition Computergrafik: realistische Darstellung realer oder

Mehr

geschlossene Schachtel mit einem kleinen Loch

geschlossene Schachtel mit einem kleinen Loch Kameramodellierung Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt

Mehr

BlendaX Grundlagen der Computergrafik

BlendaX Grundlagen der Computergrafik BlendaX Grundlagen der Computergrafik Beleuchtungsmodelle (Reflection Models) 16.11.2007 BlendaX Grundlagen der Computergrafik 1 Rendering von Polygonen Der Renderingprozess lässt sich grob in folgende

Mehr

Seminar Computerspiele Räumliche Datenstrukturen. Ralf Pramberger

Seminar Computerspiele Räumliche Datenstrukturen. Ralf Pramberger Seminar Computerspiele Räumliche Datenstrukturen Ralf Pramberger Themen 2 1. Grundlagen Szene Sichtbarkeit (Raytracing) Culling 2. Räumliche Datenstrukturen Bounding Volume Hierarchie Quadtree/Octree BSP-Tree

Mehr

SPEZIALEFFEKTE IN CINEMA4D:

SPEZIALEFFEKTE IN CINEMA4D: ANIMATION UND 3D- VISUALISIERUNG SPEZIALEFFEKTE IN CINEMA4D: TUTORIAL: DER DINO AUS DEM EI ÜBUNGSAUFGABE 4 TEAM E KURZ MARGRET STÖGERER MANUELA 1 Animation Cinema4d EGG + DINO Als Ausgangsbasis für die

Mehr

Photonik Technische Nutzung von Licht

Photonik Technische Nutzung von Licht Photonik Technische Nutzung von Licht Raytracing und Computergraphik Überblick Raytracing Typen von Raytracern z-buffer Raytracing Lichtstrahlen-Verfolgung (engl. ray tracing): Berechnung von Lichtstrahlen

Mehr

3 Übungen zur Kräftigung

3 Übungen zur Kräftigung 3 Übungen zur Kräftigung Definition Kraftfähigkeit: Fähigkeit des Sportlers, Widerstände durch willkürliche Muskelkontraktion zu überwinden bzw. äußeren Kräften entgegenwirken zu können (Schnabel/Harre/Borde,

Mehr

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal.

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal. 11/4/10 lausthal omputergraphik I Scan onversion of Lines. Zachmann lausthal University, ermany zach@tu-clausthal.de Einordnung in die Pipeline Rasterisierung der Objekte in Pixel Ecken-Werte interpolieren

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y

14 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE. x y 4 MATHEMATISCHE GRUNDLAGEN DER COMPUTERGEOMETRIE 4 Projektionen 4. Parallelprojektion (a) Senkrechte Projektion auf eine Koordinatenebene Wir wählen als Projektionsebene die Ebene, d. h. in den Beeichnungen

Mehr

Computer Graphik (CS231) Projektübungsblatt 3

Computer Graphik (CS231) Projektübungsblatt 3 UNIVERSITÄT BASEL Prof. Dr. Thomas Vetter Departement Mathematik und Informatik Bernoullistrasse 16 CH 456 Basel Clemens Blumer Tobias Maier Fabian Brix http://informatik.unibas.ch/lehre/fs13/cs231/ Computer

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Parallelprojektion. Das Projektionszentrum liegt im Unendlichen. Projektionsebene. Projektionsrichtung. Quader. Bild des Quaders

Parallelprojektion. Das Projektionszentrum liegt im Unendlichen. Projektionsebene. Projektionsrichtung. Quader. Bild des Quaders Parallelprojektion Das Projektionszentrum liegt im Unendlichen. Projektionsebene Projektionsrichtung Quader Bild des Quaders Zentralprojektion Auge und Kamera Sowohl das Sehen mit dem Auge als auch das

Mehr

Rendering für Augmented Reality

Rendering für Augmented Reality Rendering für Augmented Reality Vorlesung Augmented Reality Prof. Dr. Andreas Butz WS 2006/07 Folien heute von Dr. Martin Wagner LMU München Medieninformatik Butz Augmented Reality WS2006/07 Folie 1 Ein

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen VII. Clipping und Culling Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Definition und Anwendung von Clipping 2. Sichtbarleitsbestimmung

Mehr

Schritt für Schritt Anleitung zum Erstellen einer Android-App zum Ein- und Ausschalten einer LED

Schritt für Schritt Anleitung zum Erstellen einer Android-App zum Ein- und Ausschalten einer LED Schritt für Schritt Anleitung zum Erstellen einer Android-App zum Ein- und Ausschalten einer LED Mit Google Chrome nach MIT App Inventor suchen. In den Suchergebnissen (siehe unten) auf

Mehr

Das Werkzeug Verschieben/Kopieren wird über die Symbolleiste oder im Pull-Down-Menü Tools > Verschieben aktiviert.

Das Werkzeug Verschieben/Kopieren wird über die Symbolleiste oder im Pull-Down-Menü Tools > Verschieben aktiviert. Verschieben/Kopieren-Werkzeug 95 Die Änderungswerkzeuge In den Kapiteln zuvor haben Sie gelernt, wie Sie mit den Zeichnen-Werkzeugen die in SketchUp vorhandenen Grundformen (Rechteck, Kreis, Bogen, Linie

Mehr

OpenGL und die Fixed-Function-Pipeline

OpenGL und die Fixed-Function-Pipeline OpenGL und die Fixed-Function-Pipeline Proseminar Game Design WS 07/08 Jan-Hendrik Behrmann Einführung In modernen Computerspielen hat sich inzwischen die Darstellung der Spielwelt in dreidimensionaler

Mehr

Dynamische Geometrie

Dynamische Geometrie Dynamische Geometrie 1) Die Mittelsenkrechten, die Seitenhalbierenden, die Höhen und die Winkelhalbierenden eines beliebigen Dreiecks schneiden sich jeweils in einem Punkt. a) Untersuchen Sie die Lage

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Inhalt. Grundlagen - Licht und visuelle Wahrnehmung 1. Grundlagen - 2D-Grafik (Teil 1) 43. Grundlagen - 2D-Grafik (Teil 2) 67

Inhalt. Grundlagen - Licht und visuelle Wahrnehmung 1. Grundlagen - 2D-Grafik (Teil 1) 43. Grundlagen - 2D-Grafik (Teil 2) 67 Grundlagen - Licht und visuelle Wahrnehmung 1 Physikalische Grundlagen 2 Licht 2 Fotometrie 6 Geometrische Optik 9 Schatten 13 Farben 15 Visuelle Wahrnehmung - vom Reiz zum Sehen und Erkennen 17 Das Auge

Mehr

146

146 145 netpbm PBM Portable Bitmap PGM Portable Greymap PPM Portable Pixmap PNM Portable Anymap Konvertierungsroutinen: anytopnm, asciitopgm, bmptoppm, giftopnm, pbmtopgm, pgmtopbm, pgmtoppm, ppmtopgm, pstopnm,

Mehr

3D GLASBILD AUS IHREM LIEBLINGSFOTO. Fotogeschenke in Glas

3D GLASBILD AUS IHREM LIEBLINGSFOTO. Fotogeschenke in Glas 3D GLASBILD AUS IHREM LIEBLINGSFOTO. Fotogeschenke in Glas Wie kommt mein Bild ins Glas? Die Glasinnengravur mittels Laser ist technisch sehr anspruchsvoll, bietet aber gleichzeitig hohes kreatives Potential.

Mehr

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene

Rechnen mit Vektoren. 1. Vektoren im Koordinatensystem Freie Vektoren in der Ebene Rechnen mit 1. im Koordinatensystem 1.1. Freie in der Ebene 1) Definition Ein Vektor... Zwei sind gleich, wenn... 2) Das ebene Koordinatensystem Wir legen den Koordinatenursprung fest, ferner zwei zueinander

Mehr

VU Einführung in Visual Computing 1. Test Gruppe A

VU Einführung in Visual Computing 1. Test Gruppe A 26.04.2013 186.822 VU Einführung in Visual Computing 1. Test Gruppe A Matrikelnummer: Nachname: Punkte: Studienkennzahl: Vorname: Bitte tragen sie Ihre Matrikelnummer, Studienkennzahl sowie Vor- und Nachname

Mehr

Computergrafik 1 3D Rendering

Computergrafik 1 3D Rendering Computergrafik 3D Rendering Hearn/Baker 5.9-6,7.-9,7. Based on material b Werner Purgathofer and Dieter Schmalstieg Creating an Illusion The environment The imaging process = rendering The camera 2 Rendering

Mehr

6. Analytische Geometrie : Geraden in der Ebene

6. Analytische Geometrie : Geraden in der Ebene M 6. Analtische Geometrie : Geraden in der Ebene 6.. Vektorielle Geradengleichung Eine Gerade ist durch einen Punkt A und einen Richtungsvektor r eindeutig bestimmt. Durch die Einführung eines Parameters

Mehr

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen )

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) Geometrische Optik Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) k - Vektoren zeigen zu Wellenfronten für Ausdehnung D von Strukturen, die zu geometrischer Eingrenzung führen

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

3D-Computergrafik und animation. Shading und globale Beleuchtungsverfahren, Animationstechniken

3D-Computergrafik und animation. Shading und globale Beleuchtungsverfahren, Animationstechniken 3D-Computergrafik und animation Shading und globale Beleuchtungsverfahren, Animationstechniken 1 Von 2D nach 3D Weiter: Modell für eine Sichtbeschreibung 2 Kameramodell Reale Kamera als Orientierung und

Mehr

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences

Computer graphics. Vektoren und Matrizen. Dr. Ernst Kruijff. Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences Computer graphics Vektoren und Matrizen Dr. Ernst Kruijff Institute of Visual Computing 3DMi group Bonn-Rhein-Sieg University of Applied Sciences 3 Dm group Einführung Transformationen Sources Online:

Mehr

Seminar Game Development Game Computer Graphics. Einleitung

Seminar Game Development Game Computer Graphics. Einleitung Einleitung Gliederung OpenGL Realismus Material Beleuchtung Schatten Echtzeit Daten verringern Grafik Hardware Beispiel CryEngine 2 Kristian Keßler OpenGL Was ist OpenGL? Grafik API plattform- und programmiersprachenunabhängig

Mehr

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Beweisen Sie aus den Axiomen für komplexe Zahlen, dass für alle z, w C gilt: zw = z w; b) Schreiben

Mehr

6. Triangulation von Polygonen

6. Triangulation von Polygonen 1 6. Triangulation von Polygonen 2 Problemstellung 3 Problemstellung 4 Problemstellung 5 Problemstellung 6 Jedes Polygon lässt sich triangulieren. Wir führen einen Induktionsbeweis nach der Anzahl der

Mehr

Darstellende Geometrie Übungen. Tutorial 09. CAD 2 - Archimedische Körper

Darstellende Geometrie Übungen. Tutorial 09. CAD 2 - Archimedische Körper Tutorial 09 CAD 2 - Archimedische Körper Achtung: In diesem Tutorial wird die Konstruktion eines Pentagondodekaeders erklärt. Diese ist der Konstruktion des Fußballes aus der Übung 09 sehr ähnlich und

Mehr

Kollisionserkennung

Kollisionserkennung 1 Kollisionserkennung von Jens Schedel, Christoph Forman und Philipp Baumgärtel 2 1. Einleitung Wozu wird Kollisionserkennung benötigt? 3 - für Computergraphik 4 - für Simulationen 5 - für Wegeplanung

Mehr

19.09.2014. 2D-Texturen. Reflectance Mapping 3D-Texturen. Farbtexturen

19.09.2014. 2D-Texturen. Reflectance Mapping 3D-Texturen. Farbtexturen 2D-Texturen Texturarten Transformationen Generierung Thomas Jung Reflectance Mapping 3D-Texturen Modellierung von Details erfordert Zeit Darstellung ist aufwendig (langsam) Details belegen Speicherplatz

Mehr

4.4 Glättung von Kanten

4.4 Glättung von Kanten 4.4 Glättung von Kanten Es wurden verschiedene Aspekte zur Beleuchtung von Modellen und Szenen vorgestellt. Es gibt zwei Arten von Licht, das Hintergrundlicht und Licht von Lichtquellen, wobei hier zu

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Shading-Verfahren Graphische DV und BV, Regina Pohle, 22. Shading-Verfahren Einordnung in die Inhalte der Vorlesung Einführung mathematische

Mehr

Computergrafik 1 Transformationen

Computergrafik 1 Transformationen Computergrafik 1 Transformationen Kai Köchy Sommersemester 2010 Beuth Hochschule für Technik Berlin Überblick Repräsentationen, Primitiven Transformationen in 2D Skalierung Translation Rotation Scherung

Mehr

Computer Graphik I Generative Computergraphik Intro

Computer Graphik I Generative Computergraphik Intro Computer Graphik I Generative Computergraphik Intro Marc Alexa, TU Berlin, 2014 Ziele Modellierung Ziele Bildgenerierung Anwendungen Ausgabe Kontakt Marc Alexa TU Berlin Computer Graphik marc.alexa@tu-berlin.de

Mehr

Computergraphik 1 LU ( ) Ausarbeitung Abgabe 2

Computergraphik 1 LU ( ) Ausarbeitung Abgabe 2 Computergraphik 1 LU (186.095) Ausarbeitung Abgabe 2 Beispiel 4... 2 CG1Object... 2 if (dobackfaceeculling && numvertexindec >=3)... 2 CG1ScanfilledPolygon CG1Polygon... 2... 2... 3 buildactivelist (int

Mehr