Mathematikaufgaben zur Vorbereitung auf das Studium

Größe: px
Ab Seite anzeigen:

Download "Mathematikaufgaben zur Vorbereitung auf das Studium"

Transkript

1 Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen Dresden 2002

2

3 Bezeichnungen Im folgenden bedeuten: IN = {0,, 2,...} : Menge der natürlichen Zahlen, IR : Menge der reellen Zahlen.. Elementare Rechenoperationen, Potenzen, Wurzeln, Logarithmen Kenntnisse und Fähigkeiten: Bruchrechnung, Multiplikation und Division von Polynomen, Binomische Formeln, Ausklammern von Faktoren aus Polynomen, Potenz- und Logarithmengesetze, Summenzeichen. Untersuchen Sie im folgenden zuerst, für welche Werte der vorkommenden Variablen die auftretenden Terme definiert sind... Kürzen Sie so weit wie möglich. a) 204a2 b c 255ab 2 c b) 5x2 + 5x 2 + a a 2 c) 2a + a2 + 2a Fassen Sie zu einem Bruch zusammen, und kürzen Sie so weit wie möglich. 2 a) x 2 4 2x a 2 b 2 b) 6x 2a(a + b) abc c) a b b a ( b)c a.. Vereinfachen Sie. a) (2x2 y ) 4 ( x m y n z r+ ) 2 (4x y 4 ) 2 b) x 2 y 2 n z r 2, m, n, r IN c) x 2 y 2 xy x 4 d) (x y 2 ) 4 x 2 e) a n b n a n b n 2 + a n 2 b n a n b n, n IN.4. Vereinfachen Sie. a) a 5 b a b 4 6 (ab ) a 5 b 4 2 n (9a2 ) n b b) c c 2, n IN

4 .5. Vereinfachen Sie die folgenden Terme so weit wie möglich. a) 2x + 5 x + x 4 x x2 + 6x + 0 x 2 + 5x + 6 b) a a b + b a + b a a + b b a b c) a + b + c d) (2ax + 2ay)m (bx by) n (cx 2 cy 2 ) m+n, m IN, n IN, m, n 0 e) a5x y a4x y : 6n 2 f) b b n, a + b a2 + b 2 a4 b 4 x, y IR, n IN g) ( p + q p q) 2 h) x x 2 y 2 x + x 2 y 2 i) b b 2 5 b 8 4 b.6. Geben Sie die folgenden Zahlen exakt und als auf 4 Kommastellen gerundete Dezimalzahl an. Vereinfachen Sie dazu die Terme und rechnen Sie danach mit dem Taschenrechner. a) b) ( 5 ) 2 ( 5+ ) 2 c) d) e) f) (6 ) (8 4 ) g) ( 5) 2 h) 4 ( 2) 6 6 ( ).7. Vereinfachen Sie und berechnen Sie mit dem Taschenrechner. a) 0 2, b) 4, c), 08 0 d) sin(, 5) e) log 25 (25) f) log 20 (00) + log 00 (20) 2

5 .8. Vereinfachen Sie (ohne Benutzung eines Taschenrechners) so weit wie möglich. a) ln(e 2 )+ b) ln(e 2 +) c) lg( 00) d) 2e 2 ln(2) e) ln (ln (ln(e e ))) f) e 2+ln(9) g) (( e) 2 ) ln(8).9. Vereinfachen Sie. a) ln(2a) + 2 ln(b) 2 ln(2c), a, b, c > 0, b) ln(a2 b 2 ) 2 ln(a b) 2 ln(a + b), a + b > 0, a b > 0, c) ln(a 2 2ab + b 2 ) ln(a 2 b 2 ) + ln ( a + b ), a > b > Ermitteln Sie alle x IR mit a) x = 27 b) 0 x = 0, 0 c) log x () = 8 d) log 2 (x) = 5 e) log x ( 5) = f) log8 ( 5 64 ) = x ( g) log x (6) = 5 h) log 27) = x i) log () = x Faktorisieren Sie, d.h. schreiben Sie als Produkt. a) 5a 5 b c 2 5a b 5 c a 4 b 4 c b) (4x + y)(a + 2b) + (y 4x)( 2b a) c) (x + 2y)(x y)( 2x + y) y(6x y)(2y 2x).2. Faktorisieren Sie unter Verwendung binomischer Formeln. a) 6a ab + 9b 2 b) ( a )(a ) (a 2 ) c) - 4 x2 4y 2 2xy.. Schreiben Sie mittels quadratischer Ergänzung als Summe bzw. Differenz von Quadraten. a) x 2 4x + b) x 2 + x 6 c) 4x 2 + 4x + 2 d) x 2 + 4ax + 9b 2 e) x 2 2x + y 2 + 6y f) 4x 2 + 8x y 2 + 2y

6 .4. Klären Sie, unter welchen Bedingungen die folgenden Quotienten definiert sind und führen Sie die Division aus. a) (2a 2 + ab 7ac 20b bc 5c 2 ) : (a + 4b 5c) b) (x 4 y 4 ) : (x y) c) (q n ) : (q ), n IN \ {0} d) (2x 4 x + 25x 2 2x + 20) : (2x 2 7x + 6).5. Lösen Sie die folgenden Formeln auf: a) I = nu nr i + R a nach n, R i, R a, b) K = K 0 q n + R qn q nach R, K 0, n, c) f = f + f 2 d f f 2 nach f, f, f 2, d) X = ωl ωc nach L, C, ω..6. Ermitteln Sie die folgenden Summenwerte. 6 i a) i c) 0 i 2 d) 00 2 e) f) i+ b) 00 i= i= 5 nx n für x = 2 n= i= g) 50 (5i + ) i=.7. Berechnen ( ) Sie die Binomialkoeffizienten. ( ) ( ) 4 8 a) b) c) d) 2 5 ( ) ( ) ( ) 0, f) g) h) i) 5 2 k=0.8. Beweisen Sie die Gültigkeit der Gleichung für n k 0, n IN, k IN. ( ) ( ) ( ) n n n + + = k k + k + ( ) 4, 5 ( ) 2 0, 5 e) j) 5 ( k) k k= ( ) 2, 8 4 ( ) π 0 4

7 2. Gleichungen für eine reelle Veränderliche Kenntnisse und Fähigkeiten: Umformen von Gleichungen, lineare Gleichungen, quadratische Gleichungen, Bruchgleichungen, Wurzelgleichungen, Exponentialgleichungen, Logarithmusgleichungen. 2.. Bestimmen Sie die Lösungsmengen der folgenden Gleichungen. a) 2x (5 4x) = x (2x + 8) b) (5 x)(x + ) = (x 2)(8 x) c) 2x + x x = 7x + 8 d) a(2x b) + bc = b(2x a) bc 2.2. Lösen Sie die folgenden Gleichungen. a) x 2 5x + 6 = 0 b) 6x 2 + x = 0 c) x 2 + 4x + = 0 d) x 2 = 2x + 2 e) (x 2 4x 5)(x ) = 0 f) 5x 6 20x 4 = 0 g) x 4x 2 + 4x = 0 h) x 4 + x 2 4 = Lösen Sie die folgenden Gleichungen. a) x x + = x x 5 c) x x = x + 2 b) x + x + = 5 2x + 2 d) x + x x + x = Bestimmen Sie die Lösungsmengen folgender Gleichungen. a) x x 2 4 = b) x x x = x c) x 2 + 2x 2x 2 + 2x 4 = d) x + 6 x 4 x 2 = x 54 2x 8 x + 6 2(x + 6) 5

8 2.5. Lösen Sie die folgenden Wurzelgleichungen. a) x = x 2 b) x + 4 = x + 2 c) x x = 2x x 2 d) = x + x e) 2 + x + 2 x = 2 x 2.6. Geben Sie die Lösungen der folgenden Gleichungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) ln(x + ) = 2 b) (x + ) (ln(x) + ) = 0 c) ln(x) 2 ln(x ) = 0 d) log 2 (x 2 + x + 6) = 2.7. Lösen Sie die Gleichungen, und geben Sie die Lösungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) 2 0 x = b) e 2x+ = 0 c) 2 6x 2 = 4 2x+ d) = 0, 25 + e x 2.8. Lösen Sie die Gleichungen und geben Sie die Lösungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) 2 2x 2 x+ = 0 b) x ln(x) = 2 c) (ln(x)) x = d) x lg(x) = 0 9 e) 2 x 5 2x = 0 2x+ f) lg(2 x ) + lg( x ) + lg(4 x ) = 5 6

9 . Gleichungssysteme für zwei reelle Veränderliche Kenntnisse und Fähigkeiten: Gleichungen mit 2 Unbekannten, Einsetzungsverfahren und Gleichsetzungsverfahren... Lösen Sie die Gleichungssysteme. a) x 2y = 8 2x + y = 4 b) 2x = 9 4y x = 4 2y x c) 5 + y = x + y 2 = 0 e) x + y = 0 xy = 9 d) x + y = x 2 + y 2 = 4. Funktionen Kenntnisse und Fähigkeiten: Funktionsbegriff, lineare und quadratische Funktionen, Potenz-, Exponential- und Logarithmusfunktionen, Nullstelle, Maximum, Minimum, Monotonie, Grenzwerte von Funktionen. 4.. Gegeben seien die Terme: a) f(x) = 0, x, b) f(x) = 2x 0,5 + x, c) f(x) = + e 0,x. Bilden Sie die folgenden Terme und vereinfachen Sie sie, falls möglich. f (x) = f(x + ) f 2 (x) = f(x) + f (x) = f(x) f 4 (x) = f( x) f 5 (x) = f(x) f 6 (x) = f(x 2 ) f 7 (x) = [f(x)] Bilden Sie zu den Funktionen f : IR IR mit a) f(x) = + 0, 5x, x IR, b) f(x) = x 2, x IR, c) f(x) = e x, x IR jeweils die Funktionen f i : IR IR, i =,..., 6, mit f (x) = f(x + ), f 2 (x) = f(x) +, f (x) = f(x), f 4 (x) = f( x), f 5 (x) = 2f(x), f 6 (x) = f(2x), und skizzieren Sie die Graphen der Funktionen. 7

10 4.. Für welche x sind die folgenden Terme definiert? Ermitteln Sie jeweils den größtmöglichen Definitionsbereich. a) f(x) = x 2 4 b) f(x) = ln(x + 5) ln(x + 4) c) f(x) = d) f(x) = (x )(x + 2) e 0,x 4.4. Skizzieren Sie die folgenden Geraden in einem geeigneten Koordinatensystem. a) y = x 4 b) 0x + 5y = 0 c) x 0 + y = d) k = 0, t +, 2 5 e) s = 2 (2 8t)/ 4.5. Skizzieren Sie jeweils den Graphen der Funktion für x IR. a) y = (x + ) 2 4 b) y = x 2 4x + c) y = 6 x x Skizzieren Sie jeweils den Graphen der Funktion. Versuchen Sie, möglichst ohne Wertetabelle auszukommen. a) y = x 2, x [0; ) b) y = x 4, x IR c) y = x, x ( ; 0) d) y = x 2 4x 8, x IR e) y = x + x 2 + 8x 40, x IR f) y = ln(x 2), x (2; ) g) y = x +, x x (; ) h) y = ln x, x IR\{0} i) y = x 4, x [4; ) 0 für < x j) y = (x + ) 2 für < x < 0 2 x + für 0 x < 8

11 4.7. Skizzieren Sie jeweils den Graphen der Funktion für den größtmöglichen Definitionsbereich, und bestimmen Sie den Wertebereich der Funktion. a) y = + x b) y = x 2 c) y = + 4 x Skizzieren Sie jeweils den Graphen der Funktion, und geben Sie den Wertebereich an. a) y = e x, x IR b) y = 2 e x, x IR c) y = e x+, x IR d) y = e x + e x, x IR 4.9. Skizzieren Sie jeweils den Graphen der Funktion für x IR, und bestimmen Sie den Wertebereich der Funktion. a) y = + sin(x) b) y = sin(x ) c) y = sin(2(x )) d) y = + 4 sin(2(x )) 4.0. Skizzieren Sie die Graphen der Funktionen für jeweils eine Teilaufgabe in einem gemeinsamen Koordinatensystem. a) y = e ax für a = 0, ± 2, ±, ±2, x IR b) y = e x + a für a = 0, ±, ±2, x IR c) y = e x+a für a = 0, ±, ±2, x IR 4.. In welchen Intervallen sind folgende Funktionen monoton wachsend? a) y = x + 6, x IR b) y = x 2 2x +, x IR 4.2. Ermitteln Sie (ohne Differentialrechnung) die Maxima/Minima (soweit vorhanden) der Funktionen nach Lage, Art und Größe. a) y = x 2 5, x IR b) y = x 2 4x + 5, x IR c) y = e x2, x IR d) y = x 2 +, x IR e) y = sin 2 (x), x IR f) y = + cos 2 (x), x IR 9

12 4.. Bestimmen Sie die Grenzwerte. Lösungen x a) lim x x 7 c) lim t ( e t ) x 5 x 2 b) lim x 2x 4 + x 2 d) lim e t t.. a) 4ab 5c 2, a, b, c 0 b), a 2 c) a +, a, a 2(a ) 5x + 4x a) 6x 4, x 0 b) a + b, a 0, a b 2a c), a, b, c 0, a b.. a) x 2 y 4, x, y 0 b) x 2m 4 y 4n 4 z 6, x, y, z 0 c) xy, x, y 0 d) y8 (b a), x 0 e) x4 a n b n, a, b 0 ( ) n ab.4. a) a 4 b, a, b 0 b), a, b 0, c > 0 c.5. a) 0x + 2, x IR\{ 2; } (x + )(x + 2) b) a2 + 2ab b 2 a 2 2ab b 2, a2 b 2, a b( ± 2) abc c) ab + ac + bc, abc 0, a + b + c 0 ( ) m ( ) n 2a b d) c c (x + y) n (x y) m, c(x2 y 2 ) 0 e) a x b 5n, a > 0, b > 0 f), a + b > 0, a b > 0 a b g) 2p 2 p 2 q 2, p + q 0, p q 0 h) y, x 0, x 2 y 2 i) b /8, b 0 0

13 .6. a) 2 7/8, 840 b) 4 c) = 0, 25 8 d) 4 7 0, 580 e) , f) 8, 960 g) 5 h) 2 2 2, a), 08 b), c) 2, 589 d) 0, 9975 e), 5 f) 2, a) b) - c) ( ) ab 2.9. a) ln 2c 2 2 d) 8 e) 0 f) e g) 4 b) 6 ln(a2 b 2 ) c) ln ( (a 2 b 2 ) a + b ).0. a) b) 2 c) 8 d) 2 e) 5 2 f) 5 g) / 5 6 h) i).. a) 5a b c 2 ( a 2 9b 2 c 2 + 5abc) b) 8x(a + 2b) c) (x y)(y 2x)(x 4y).2. a) (4a + b) 2 b) 2(a 2 ) c) ( 2 x + 2y)2.. a) (x 2) b) (x + 2 ) c) 2 2 (x + 2 )2 + d) (x + 2a) 2 4a 2 + 9b 2 e) (x ) 2 + (y + ) 2 0 f) 4(x + ) 2 (y 2) a) 4a 5b + c, a + 4b 5c 0 b) x + x 2 y + xy 2 + y, x y c) q n + q n q +, q und n IN \ {0} d) x 2 2x + 2, 5 + 2,5x+5 2x 2 7x+6, x 2, x, 5.5. a) n = RaI U R ii, R i = nu RaI ni, R a = n(u RiI) I b) R = (K K 0 q n q ) q n, K 0 = K q R n q qn ( ) n n = ln q ln K(q )+R K 0(q )+R c) f = ff2 f +f 2 d, f = f(d f2) f f 2, f 2 = f(d f) f f d) L = X ω + ω 2 C, C = ω 2 L ωx, ω = 2L q, ( X ± ) X 2 + 4L C

14 .6. a) b) 5050 c) 85 d) 202 e) 289 f) 29 g) a) 6 b) 56 c) 0 d) 05 6 = 6, 5625 e) -0,06 f) 0,75 6 = 0, 0625 g) -6 h) - i) - j) 2.. a) L = { 5 } b) L = { 8 } c) L = {0} d) L = { bc a b }, falls a b, L = IR, falls (a = b) und (b c = 0), L =, falls a = b und bc a) L = {2; } b) L = { 2 ; } c) L = d) L = {2 + 8; 2 8} e) L = { ; ; 5} f) L = {0; 2; 2} g) L = {0; 2} h) L = { ; } 2.. a) L = {2} b) L = {2} c) L = { 4 } d) L = 2.4. a) L = { ; 2 2 7} c) L = {2} b) L = { ; 2 2 5} d) L = {4} 2.5. a) L = {} b) L = {0} c) L = {} d) L = e) L = {2} 2.6. a) e 2 4, 89 b) e 0, 679 c) , 680 d) L = {; 2} 2.7. a) 0 log 2 () 8, 450 b) 2 =, 5 c) 4 d) ln(7), a) log 2 (), 5850 b) L = {e ln(2) ; e ln(2) } c) e 2, 78 d) L = {0 ; 0 } 5 e) log 2 (5), 29 f) lg(24), a) (4; 2) b) - c) ( 45; 0) d) (; 2), ( 2; ) e) (9; ), (; 9) 4.. a) b) c) f (x) 0, 9 0, x 2(x + ) 0,5 + x+ f 4 (x) + 0, x 2( x) 0,5 x +e 0,(x+) +e 0,x f 6 (x) 0, x 2 2x + x 2 +e 0,x2 2

15 4.. a) x 2, b) ( 5; ), c) ( 4; )\{ 2; }, d) IR\{0} 4.. a), b) [; ) 4.2. a) Min(0; 5), b) Min(2; ), c) Max(0; ), d) Max(0; ), e) Max( π 2 + kπ; ), Min(kπ; 0), k ZZ, ZZ = Menge der ganzen Zahlen, f) Max( π 2 + kπ; ), Min(kπ; 2 ), k ZZ. 4..,,,

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Computertechnik / Automatisierungstechnik Elektrotechnik

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät

Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät Liebe Studieninteressentin, lieber Studieninteressent, wir freuen uns, dass Sie sich für ein wirtschaftswissenschaftliches Studium an der

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Wintersemester 2014/15 Aufgaben I-1. Es seien die folgenden Mengen A = {5,7,9}, B = {5,6,7} und C = {1,3,5,7,9} gegeben.

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen...

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen... ASK Hochschule Konstanz HTWG www.ask.htwg-konstanz.de INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK Inhalt 1 Anforderungen... 2 2 Aufgaben... 9 3 Lösungen... 11 4 Ausführliche Lösungen... 15 5 Musterprüfungen...

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Teil I.2 Lösen von Bestimmungsgleichungen

Teil I.2 Lösen von Bestimmungsgleichungen Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Propädeutikum. Wichtige Grundlagen der Mathematik. Stand WS 2011 / 2012. Dörte Fröhlich

Propädeutikum. Wichtige Grundlagen der Mathematik. Stand WS 2011 / 2012. Dörte Fröhlich Propädeutikum Wichtige Grundlagen der Mathematik Stand WS 0 / 0 Dörte Fröhlich Mathe-Grundlagen D. Fröhlich Wichtige Grundlagen der Mathematik Für Ihr Studium und sicher nicht nur für das Fach Wirtschaftsmathematik

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Propädeutikum Wichtige Grundlagen der Mathematik Stand WS 2015 / 2016 Dörte Fröhlich

Propädeutikum Wichtige Grundlagen der Mathematik Stand WS 2015 / 2016 Dörte Fröhlich Propädeutikum Wichtige Grundlagen der Mathematik Stand WS 05 / 06 Dörte Fröhlich Mathe-Grundlagen Dörte Fröhlich Seite Wichtige Grundlagen der Mathematik Für Ihr Studium und sicher nicht nur für das Fach

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Skript Dr. Johanna Dettweiler Institut für Analysis 20. Oktober 2009 Inhaltsverzeichnis Einleitung 7 1 Aussagen und Mengen 9 1.1 Aussagen:

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

Faktorisierung bei Brüchen und Bruchtermen

Faktorisierung bei Brüchen und Bruchtermen Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Prof. Dr. M. Heilmann Fachbereich C, Mathematik Bergische Universität Wuppertal September 0 c 0 Heilmann, Bergische

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

STOFFPLAN MATHEMATIK

STOFFPLAN MATHEMATIK STOFFPLAN MATHEMATIK 1. Semester (2 Wochenstunden) Mengenlehre Reelle Zahlen Lineare Gleichungen und Ungleichungen mit einer Unbekannten Funktionen und ihre Graphen Lineare Funktionen Aufgaben aus der

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Mathematik-Vorkus WS 2015/2016 14.09.-18.09.2015. Dilay Sonel

Mathematik-Vorkus WS 2015/2016 14.09.-18.09.2015. Dilay Sonel Mathematik-Vorkus WS 2015/2016 14.09.-18.09.2015 Dilay Sonel dilay.sonel@studmail.hs-lu.de Mathe Online Kurs Hier mit seinem Namen und seiner Normalen email Adresse registrieren Auf Nachfrage biete ich

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Vorbereitung zur 1. Mathematikschulaufgabe

Vorbereitung zur 1. Mathematikschulaufgabe Vorbereitung zur. Mathematikschulaufgabe. Semester A ) Grundlagen der Mengenlehre. Geben Sie folgende Mengen, die hier in beschreibender Form gegeben sind, in aufzählender Form an: a) Die Menge der Primzahlen,

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

Wiederholung der Algebra Klassen 7-10

Wiederholung der Algebra Klassen 7-10 PKG Oberstufe 0.07.0 Wiederholung der Algebra Klassen 7-0 06rr5 4. (a) Kürze so weit wie möglich: 4998 (b) Schreibe das Ergebnis als gemischte Zahl und als Dezimalbruch: (c) Schreibe das Ergebnis als Bruch:

Mehr

Mathematik Berufskolleg zur Erlangung der Fachhochschulreife

Mathematik Berufskolleg zur Erlangung der Fachhochschulreife Mathematik Berufskolleg zur Erlangung der Fachhochschulreife INHALTSVERZEICHNIS. GRUNDLAGEN. DAS KOORDINATENSYSTEM. DARSTELLUNG VON GERADEN. SEITENVERHÄLTNISSE IM RECHTWINKLIGEN DREIECK 4. WEITERE GERADENGLEICHUNGEN

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Inhalt. Vorkurs Mathematik für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik. Visitenkarte.

Inhalt. Vorkurs Mathematik für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik. Visitenkarte. für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik Dr. Michael Stiglmayr Bergische Universität Wuppertal Fachbereich C - und Informatik Wintersemester 01/016 Inhalt Grundlagen

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Trainingskurs Mathematik bearbeitet von: Prof. Dr. J. Puhl

Trainingskurs Mathematik bearbeitet von: Prof. Dr. J. Puhl Trainingskurs Mathematik bearbeitet von: Prof. Dr. J. Puhl Einleitende Bemerkungen Es ist leider eine sehr traurige Tatsache, daß ein großer Teil der Studienanfänger außerordentliche Schwierigkeiten im

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Lineare Gleichungssysteme Basis

Lineare Gleichungssysteme Basis Lineare Gleichungssysteme Basis Graphische Lösung von Gleichungen Regel Gegeben sind zwei Gleichungen von zwei Funktionen. Die Lösung dieses Systems ist gleich dem Schnittpunkt beider Graphen. Verlaufen

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Propädeutikum Mathematik

Propädeutikum Mathematik Propädeutikum Mathematik Sommersemester 2016 Carsten Krupp BBA Seite 1 Literaturhinweise Cramer, E., Neslehova, J.: Vorkurs Mathematik, Springer, 2004 Piehler, Sippel, Pfeiffer: Mathematik zum Studieneinstieg,

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Polynome Teil V: Elementarsymmetrische Funktionen.

Polynome Teil V: Elementarsymmetrische Funktionen. Die WURZEL Werkstatt Mathematik Polynome Teil V: Elementarsymmetrische Funktionen. Es gibt Gleichungssysteme, die lassen sich mit schulischen Mitteln nicht bzw. nur sehr mühsam knacken. So musste etwa

Mehr

Arbeitsblatt Funktionen

Arbeitsblatt Funktionen Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Dozent: Roger Burkhardt Klasse: Brückenkurs 011 Arbeitsblatt Funktionen Büro: 4.613 Semester: -

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5 Inhaltsverzeichnis Vorwort zur 7. Auflage 5 1 Potenzrechnung 11 1.1 Darstellung 11 1.1.1 Begriff 11 1.1.2 Vorzeichenregel 11 1.1.3 Addition und Subtraktion von Potenzen 12 1.1.4 Multiplikation von Potenzen

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

Zahlen. Grundwissenskatalog G8-Lehrplanstandard

Zahlen. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Zahlen Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huber-Gymnasiums Gräfelfing J O H A N N E S -

Mehr

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker Mathematik für Wirtschaftsinformatiker Alfred Müller, Martin Rathgeb Universität Siegen Wintersemester 2008/09 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Zahlbereiche.................................... 1 1.2

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK

BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK BESONDERE LEISTUNGSFESTSTELLUNG 003 MATHEMATIK Arbeitszeit: Hilfsmittel: 150 Minuten 1. Formeln und Tabellen für die Sekundarstufen I und II. Berlin: Paetec, Ges. für Bildung und Technik. Formeln und Tabellen

Mehr

Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel

Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr