Mathematikaufgaben zur Vorbereitung auf das Studium

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematikaufgaben zur Vorbereitung auf das Studium"

Transkript

1 Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen Dresden 2002

2

3 Bezeichnungen Im folgenden bedeuten: IN = {0,, 2,...} : Menge der natürlichen Zahlen, IR : Menge der reellen Zahlen.. Elementare Rechenoperationen, Potenzen, Wurzeln, Logarithmen Kenntnisse und Fähigkeiten: Bruchrechnung, Multiplikation und Division von Polynomen, Binomische Formeln, Ausklammern von Faktoren aus Polynomen, Potenz- und Logarithmengesetze, Summenzeichen. Untersuchen Sie im folgenden zuerst, für welche Werte der vorkommenden Variablen die auftretenden Terme definiert sind... Kürzen Sie so weit wie möglich. a) 204a2 b c 255ab 2 c b) 5x2 + 5x 2 + a a 2 c) 2a + a2 + 2a Fassen Sie zu einem Bruch zusammen, und kürzen Sie so weit wie möglich. 2 a) x 2 4 2x a 2 b 2 b) 6x 2a(a + b) abc c) a b b a ( b)c a.. Vereinfachen Sie. a) (2x2 y ) 4 ( x m y n z r+ ) 2 (4x y 4 ) 2 b) x 2 y 2 n z r 2, m, n, r IN c) x 2 y 2 xy x 4 d) (x y 2 ) 4 x 2 e) a n b n a n b n 2 + a n 2 b n a n b n, n IN.4. Vereinfachen Sie. a) a 5 b a b 4 6 (ab ) a 5 b 4 2 n (9a2 ) n b b) c c 2, n IN

4 .5. Vereinfachen Sie die folgenden Terme so weit wie möglich. a) 2x + 5 x + x 4 x x2 + 6x + 0 x 2 + 5x + 6 b) a a b + b a + b a a + b b a b c) a + b + c d) (2ax + 2ay)m (bx by) n (cx 2 cy 2 ) m+n, m IN, n IN, m, n 0 e) a5x y a4x y : 6n 2 f) b b n, a + b a2 + b 2 a4 b 4 x, y IR, n IN g) ( p + q p q) 2 h) x x 2 y 2 x + x 2 y 2 i) b b 2 5 b 8 4 b.6. Geben Sie die folgenden Zahlen exakt und als auf 4 Kommastellen gerundete Dezimalzahl an. Vereinfachen Sie dazu die Terme und rechnen Sie danach mit dem Taschenrechner. a) b) ( 5 ) 2 ( 5+ ) 2 c) d) e) f) (6 ) (8 4 ) g) ( 5) 2 h) 4 ( 2) 6 6 ( ).7. Vereinfachen Sie und berechnen Sie mit dem Taschenrechner. a) 0 2, b) 4, c), 08 0 d) sin(, 5) e) log 25 (25) f) log 20 (00) + log 00 (20) 2

5 .8. Vereinfachen Sie (ohne Benutzung eines Taschenrechners) so weit wie möglich. a) ln(e 2 )+ b) ln(e 2 +) c) lg( 00) d) 2e 2 ln(2) e) ln (ln (ln(e e ))) f) e 2+ln(9) g) (( e) 2 ) ln(8).9. Vereinfachen Sie. a) ln(2a) + 2 ln(b) 2 ln(2c), a, b, c > 0, b) ln(a2 b 2 ) 2 ln(a b) 2 ln(a + b), a + b > 0, a b > 0, c) ln(a 2 2ab + b 2 ) ln(a 2 b 2 ) + ln ( a + b ), a > b > Ermitteln Sie alle x IR mit a) x = 27 b) 0 x = 0, 0 c) log x () = 8 d) log 2 (x) = 5 e) log x ( 5) = f) log8 ( 5 64 ) = x ( g) log x (6) = 5 h) log 27) = x i) log () = x Faktorisieren Sie, d.h. schreiben Sie als Produkt. a) 5a 5 b c 2 5a b 5 c a 4 b 4 c b) (4x + y)(a + 2b) + (y 4x)( 2b a) c) (x + 2y)(x y)( 2x + y) y(6x y)(2y 2x).2. Faktorisieren Sie unter Verwendung binomischer Formeln. a) 6a ab + 9b 2 b) ( a )(a ) (a 2 ) c) - 4 x2 4y 2 2xy.. Schreiben Sie mittels quadratischer Ergänzung als Summe bzw. Differenz von Quadraten. a) x 2 4x + b) x 2 + x 6 c) 4x 2 + 4x + 2 d) x 2 + 4ax + 9b 2 e) x 2 2x + y 2 + 6y f) 4x 2 + 8x y 2 + 2y

6 .4. Klären Sie, unter welchen Bedingungen die folgenden Quotienten definiert sind und führen Sie die Division aus. a) (2a 2 + ab 7ac 20b bc 5c 2 ) : (a + 4b 5c) b) (x 4 y 4 ) : (x y) c) (q n ) : (q ), n IN \ {0} d) (2x 4 x + 25x 2 2x + 20) : (2x 2 7x + 6).5. Lösen Sie die folgenden Formeln auf: a) I = nu nr i + R a nach n, R i, R a, b) K = K 0 q n + R qn q nach R, K 0, n, c) f = f + f 2 d f f 2 nach f, f, f 2, d) X = ωl ωc nach L, C, ω..6. Ermitteln Sie die folgenden Summenwerte. 6 i a) i c) 0 i 2 d) 00 2 e) f) i+ b) 00 i= i= 5 nx n für x = 2 n= i= g) 50 (5i + ) i=.7. Berechnen ( ) Sie die Binomialkoeffizienten. ( ) ( ) 4 8 a) b) c) d) 2 5 ( ) ( ) ( ) 0, f) g) h) i) 5 2 k=0.8. Beweisen Sie die Gültigkeit der Gleichung für n k 0, n IN, k IN. ( ) ( ) ( ) n n n + + = k k + k + ( ) 4, 5 ( ) 2 0, 5 e) j) 5 ( k) k k= ( ) 2, 8 4 ( ) π 0 4

7 2. Gleichungen für eine reelle Veränderliche Kenntnisse und Fähigkeiten: Umformen von Gleichungen, lineare Gleichungen, quadratische Gleichungen, Bruchgleichungen, Wurzelgleichungen, Exponentialgleichungen, Logarithmusgleichungen. 2.. Bestimmen Sie die Lösungsmengen der folgenden Gleichungen. a) 2x (5 4x) = x (2x + 8) b) (5 x)(x + ) = (x 2)(8 x) c) 2x + x x = 7x + 8 d) a(2x b) + bc = b(2x a) bc 2.2. Lösen Sie die folgenden Gleichungen. a) x 2 5x + 6 = 0 b) 6x 2 + x = 0 c) x 2 + 4x + = 0 d) x 2 = 2x + 2 e) (x 2 4x 5)(x ) = 0 f) 5x 6 20x 4 = 0 g) x 4x 2 + 4x = 0 h) x 4 + x 2 4 = Lösen Sie die folgenden Gleichungen. a) x x + = x x 5 c) x x = x + 2 b) x + x + = 5 2x + 2 d) x + x x + x = Bestimmen Sie die Lösungsmengen folgender Gleichungen. a) x x 2 4 = b) x x x = x c) x 2 + 2x 2x 2 + 2x 4 = d) x + 6 x 4 x 2 = x 54 2x 8 x + 6 2(x + 6) 5

8 2.5. Lösen Sie die folgenden Wurzelgleichungen. a) x = x 2 b) x + 4 = x + 2 c) x x = 2x x 2 d) = x + x e) 2 + x + 2 x = 2 x 2.6. Geben Sie die Lösungen der folgenden Gleichungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) ln(x + ) = 2 b) (x + ) (ln(x) + ) = 0 c) ln(x) 2 ln(x ) = 0 d) log 2 (x 2 + x + 6) = 2.7. Lösen Sie die Gleichungen, und geben Sie die Lösungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) 2 0 x = b) e 2x+ = 0 c) 2 6x 2 = 4 2x+ d) = 0, 25 + e x 2.8. Lösen Sie die Gleichungen und geben Sie die Lösungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) 2 2x 2 x+ = 0 b) x ln(x) = 2 c) (ln(x)) x = d) x lg(x) = 0 9 e) 2 x 5 2x = 0 2x+ f) lg(2 x ) + lg( x ) + lg(4 x ) = 5 6

9 . Gleichungssysteme für zwei reelle Veränderliche Kenntnisse und Fähigkeiten: Gleichungen mit 2 Unbekannten, Einsetzungsverfahren und Gleichsetzungsverfahren... Lösen Sie die Gleichungssysteme. a) x 2y = 8 2x + y = 4 b) 2x = 9 4y x = 4 2y x c) 5 + y = x + y 2 = 0 e) x + y = 0 xy = 9 d) x + y = x 2 + y 2 = 4. Funktionen Kenntnisse und Fähigkeiten: Funktionsbegriff, lineare und quadratische Funktionen, Potenz-, Exponential- und Logarithmusfunktionen, Nullstelle, Maximum, Minimum, Monotonie, Grenzwerte von Funktionen. 4.. Gegeben seien die Terme: a) f(x) = 0, x, b) f(x) = 2x 0,5 + x, c) f(x) = + e 0,x. Bilden Sie die folgenden Terme und vereinfachen Sie sie, falls möglich. f (x) = f(x + ) f 2 (x) = f(x) + f (x) = f(x) f 4 (x) = f( x) f 5 (x) = f(x) f 6 (x) = f(x 2 ) f 7 (x) = [f(x)] Bilden Sie zu den Funktionen f : IR IR mit a) f(x) = + 0, 5x, x IR, b) f(x) = x 2, x IR, c) f(x) = e x, x IR jeweils die Funktionen f i : IR IR, i =,..., 6, mit f (x) = f(x + ), f 2 (x) = f(x) +, f (x) = f(x), f 4 (x) = f( x), f 5 (x) = 2f(x), f 6 (x) = f(2x), und skizzieren Sie die Graphen der Funktionen. 7

10 4.. Für welche x sind die folgenden Terme definiert? Ermitteln Sie jeweils den größtmöglichen Definitionsbereich. a) f(x) = x 2 4 b) f(x) = ln(x + 5) ln(x + 4) c) f(x) = d) f(x) = (x )(x + 2) e 0,x 4.4. Skizzieren Sie die folgenden Geraden in einem geeigneten Koordinatensystem. a) y = x 4 b) 0x + 5y = 0 c) x 0 + y = d) k = 0, t +, 2 5 e) s = 2 (2 8t)/ 4.5. Skizzieren Sie jeweils den Graphen der Funktion für x IR. a) y = (x + ) 2 4 b) y = x 2 4x + c) y = 6 x x Skizzieren Sie jeweils den Graphen der Funktion. Versuchen Sie, möglichst ohne Wertetabelle auszukommen. a) y = x 2, x [0; ) b) y = x 4, x IR c) y = x, x ( ; 0) d) y = x 2 4x 8, x IR e) y = x + x 2 + 8x 40, x IR f) y = ln(x 2), x (2; ) g) y = x +, x x (; ) h) y = ln x, x IR\{0} i) y = x 4, x [4; ) 0 für < x j) y = (x + ) 2 für < x < 0 2 x + für 0 x < 8

11 4.7. Skizzieren Sie jeweils den Graphen der Funktion für den größtmöglichen Definitionsbereich, und bestimmen Sie den Wertebereich der Funktion. a) y = + x b) y = x 2 c) y = + 4 x Skizzieren Sie jeweils den Graphen der Funktion, und geben Sie den Wertebereich an. a) y = e x, x IR b) y = 2 e x, x IR c) y = e x+, x IR d) y = e x + e x, x IR 4.9. Skizzieren Sie jeweils den Graphen der Funktion für x IR, und bestimmen Sie den Wertebereich der Funktion. a) y = + sin(x) b) y = sin(x ) c) y = sin(2(x )) d) y = + 4 sin(2(x )) 4.0. Skizzieren Sie die Graphen der Funktionen für jeweils eine Teilaufgabe in einem gemeinsamen Koordinatensystem. a) y = e ax für a = 0, ± 2, ±, ±2, x IR b) y = e x + a für a = 0, ±, ±2, x IR c) y = e x+a für a = 0, ±, ±2, x IR 4.. In welchen Intervallen sind folgende Funktionen monoton wachsend? a) y = x + 6, x IR b) y = x 2 2x +, x IR 4.2. Ermitteln Sie (ohne Differentialrechnung) die Maxima/Minima (soweit vorhanden) der Funktionen nach Lage, Art und Größe. a) y = x 2 5, x IR b) y = x 2 4x + 5, x IR c) y = e x2, x IR d) y = x 2 +, x IR e) y = sin 2 (x), x IR f) y = + cos 2 (x), x IR 9

12 4.. Bestimmen Sie die Grenzwerte. Lösungen x a) lim x x 7 c) lim t ( e t ) x 5 x 2 b) lim x 2x 4 + x 2 d) lim e t t.. a) 4ab 5c 2, a, b, c 0 b), a 2 c) a +, a, a 2(a ) 5x + 4x a) 6x 4, x 0 b) a + b, a 0, a b 2a c), a, b, c 0, a b.. a) x 2 y 4, x, y 0 b) x 2m 4 y 4n 4 z 6, x, y, z 0 c) xy, x, y 0 d) y8 (b a), x 0 e) x4 a n b n, a, b 0 ( ) n ab.4. a) a 4 b, a, b 0 b), a, b 0, c > 0 c.5. a) 0x + 2, x IR\{ 2; } (x + )(x + 2) b) a2 + 2ab b 2 a 2 2ab b 2, a2 b 2, a b( ± 2) abc c) ab + ac + bc, abc 0, a + b + c 0 ( ) m ( ) n 2a b d) c c (x + y) n (x y) m, c(x2 y 2 ) 0 e) a x b 5n, a > 0, b > 0 f), a + b > 0, a b > 0 a b g) 2p 2 p 2 q 2, p + q 0, p q 0 h) y, x 0, x 2 y 2 i) b /8, b 0 0

13 .6. a) 2 7/8, 840 b) 4 c) = 0, 25 8 d) 4 7 0, 580 e) , f) 8, 960 g) 5 h) 2 2 2, a), 08 b), c) 2, 589 d) 0, 9975 e), 5 f) 2, a) b) - c) ( ) ab 2.9. a) ln 2c 2 2 d) 8 e) 0 f) e g) 4 b) 6 ln(a2 b 2 ) c) ln ( (a 2 b 2 ) a + b ).0. a) b) 2 c) 8 d) 2 e) 5 2 f) 5 g) / 5 6 h) i).. a) 5a b c 2 ( a 2 9b 2 c 2 + 5abc) b) 8x(a + 2b) c) (x y)(y 2x)(x 4y).2. a) (4a + b) 2 b) 2(a 2 ) c) ( 2 x + 2y)2.. a) (x 2) b) (x + 2 ) c) 2 2 (x + 2 )2 + d) (x + 2a) 2 4a 2 + 9b 2 e) (x ) 2 + (y + ) 2 0 f) 4(x + ) 2 (y 2) a) 4a 5b + c, a + 4b 5c 0 b) x + x 2 y + xy 2 + y, x y c) q n + q n q +, q und n IN \ {0} d) x 2 2x + 2, 5 + 2,5x+5 2x 2 7x+6, x 2, x, 5.5. a) n = RaI U R ii, R i = nu RaI ni, R a = n(u RiI) I b) R = (K K 0 q n q ) q n, K 0 = K q R n q qn ( ) n n = ln q ln K(q )+R K 0(q )+R c) f = ff2 f +f 2 d, f = f(d f2) f f 2, f 2 = f(d f) f f d) L = X ω + ω 2 C, C = ω 2 L ωx, ω = 2L q, ( X ± ) X 2 + 4L C

14 .6. a) b) 5050 c) 85 d) 202 e) 289 f) 29 g) a) 6 b) 56 c) 0 d) 05 6 = 6, 5625 e) -0,06 f) 0,75 6 = 0, 0625 g) -6 h) - i) - j) 2.. a) L = { 5 } b) L = { 8 } c) L = {0} d) L = { bc a b }, falls a b, L = IR, falls (a = b) und (b c = 0), L =, falls a = b und bc a) L = {2; } b) L = { 2 ; } c) L = d) L = {2 + 8; 2 8} e) L = { ; ; 5} f) L = {0; 2; 2} g) L = {0; 2} h) L = { ; } 2.. a) L = {2} b) L = {2} c) L = { 4 } d) L = 2.4. a) L = { ; 2 2 7} c) L = {2} b) L = { ; 2 2 5} d) L = {4} 2.5. a) L = {} b) L = {0} c) L = {} d) L = e) L = {2} 2.6. a) e 2 4, 89 b) e 0, 679 c) , 680 d) L = {; 2} 2.7. a) 0 log 2 () 8, 450 b) 2 =, 5 c) 4 d) ln(7), a) log 2 (), 5850 b) L = {e ln(2) ; e ln(2) } c) e 2, 78 d) L = {0 ; 0 } 5 e) log 2 (5), 29 f) lg(24), a) (4; 2) b) - c) ( 45; 0) d) (; 2), ( 2; ) e) (9; ), (; 9) 4.. a) b) c) f (x) 0, 9 0, x 2(x + ) 0,5 + x+ f 4 (x) + 0, x 2( x) 0,5 x +e 0,(x+) +e 0,x f 6 (x) 0, x 2 2x + x 2 +e 0,x2 2

15 4.. a) x 2, b) ( 5; ), c) ( 4; )\{ 2; }, d) IR\{0} 4.. a), b) [; ) 4.2. a) Min(0; 5), b) Min(2; ), c) Max(0; ), d) Max(0; ), e) Max( π 2 + kπ; ), Min(kπ; 0), k ZZ, ZZ = Menge der ganzen Zahlen, f) Max( π 2 + kπ; ), Min(kπ; 2 ), k ZZ. 4..,,,

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Computertechnik / Automatisierungstechnik Elektrotechnik

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Dr. Michael Stiglmayr Teresa Schnepper, M.Sc. WS 014/015 Bergische Universität Wuppertal Aufgabensammlung Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Aufgabe 1

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4

Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,033 = 6 14 = 8 0,3 : 4 Aufgabe : Probe Vereinfachen Sie folgende Brüche auf einen ganzzahligen, teilerfremden Bruch oder eine endliche Dezimalzahl. 0,9 0, = 0, 0, =, 0,0 =,, = : 0,7 = 8 0, : 0, = 7 0, 0, = 0, = 0,7 0,8 0 =,

Mehr

Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger

Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger Internet Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart

Mehr

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch

Fachbereich I Management, Controlling, Health Care. Mathematikvorkurs. Wintersemester 2017/2018. Elizaveta Buch Fachbereich I Management, Controlling, Health Care Mathematikvorkurs Wintersemester 2017/2018 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Prozentrechnung Dienstag Binomische

Mehr

Übungen zum Vorkurs Mathematik

Übungen zum Vorkurs Mathematik Dr. Tatiana Samrowski Institut für Mathematik Universität Zürich Übungen zum Vorkurs Mathematik Mengenlehre Aufgabe : Stellen Sie die folgenden Menge durch Aufzählen ihrer Elemente dar: A = { N : ist Primzahl

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

Aufgaben zum Vorbereitungskurs Mathematik

Aufgaben zum Vorbereitungskurs Mathematik Aufgaben zum Vorbereitungskurs Mathematik Verwendete Symbole aus Mengenlehre und Logik A... Klammer umfasst die Elemente einer Menge. x Ü A xist Element der Menge A. A ä B Aist Teilmenge von B. A Þ B Durchschnittsmenge

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012

Mathematik-Vorkurs. Übungsaufgaben. im Sommersemester 2012 Mathematik-Vorkurs Übungsaufgaben im Sommersemester 2012 Goethe Universität-Frankfurt am Main Prof. Dr. Heinz D. Mathes Professur für Produktionswirtschaft 1 Aufgaben zu Thema 1 Aufgabe 1.1: Lesen Sie

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Exponentialfunktionen und Logarithmen Inhalt:. Zinsrechnung. Exponential- und Logaritmusfunktionen

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Übungen zu Mathematik für ET

Übungen zu Mathematik für ET Wintersemester 2017/18 Prof. Dr. Henning Kempka Übungen zu Mathematik für ET Übungsblatt 0 zum Thema Elementaraufgaben. Aufgabe 1 Vereinfachen Sie folgende Ausdrücke so weit wie möglich: a) 100 [(b + 20)

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät

Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät Liebe Studieninteressentin, lieber Studieninteressent, wir freuen uns, dass Sie sich für ein wirtschaftswissenschaftliches Studium an der

Mehr

Rationales Rechnen. Punktrechnung geht vor Strichrechnung

Rationales Rechnen. Punktrechnung geht vor Strichrechnung Rationales Rechnen Au ösung von Klammern Die Reihenfolge von Rechenoperationen wird durch Klammersetzung 1 festgelegt. Um Klammern zu sparen, vereinbart man: Multiplikation bzw. Division werden vor der

Mehr

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM

Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM Einstiegsvoraussetzungen für das 3. Semester Angewandte Mathematik AM 1. Siehe: Einstiegsvoraussetzungen für das 1. Semester 2. Bereich: Zahlen und Maße 2.1. Fehlerrechnung (Begriffe absoluter und relativer

Mehr

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2 Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Übungen zu dem Mathe-Fit Kurs

Übungen zu dem Mathe-Fit Kurs Hochschule Darmstadt Fachbereich Mathematik und Naturwissenschaften WS 00/ Übungen zu dem Mathe-Fit Kurs Thema : Mengen A.. Durch welche charakterisierenden Eigenschaften können die folgenden Mengen beschrieben

Mehr

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure

Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Institut für Mathematik Vorkurs Mathematik für Naturwissenschaftler und Ingenieure Ausführliches Inhaltsverzeichnis mit thematischen Links Prof. Dr. Konrad Engel Prof. Dr. Roger Labahn {konrad.engel,roger.labahn}@uni-rostock.de

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK

FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Fit für die E-Phase?

Fit für die E-Phase? Kapitel Bruchrechnung (mit und ohne Variablen) a) 6 4 i) 6 7 7 8 4 b) 5 5 4 6 7 j) : 7 8 c) 5a a 4 ab y 6 k) : b y d) y l) ( y ) : y y e) a a a m) a 8b 5 6b f) y y n) a 5b 9a 0 b g) a b b y y o) +y y (+y)

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Wintersemester 2014/15 Aufgaben I-1. Es seien die folgenden Mengen A = {5,7,9}, B = {5,6,7} und C = {1,3,5,7,9} gegeben.

Mehr

Skript zur Verwendung von Übungszwecken. Aufgabensammlung zum Propädeutikum Mathematik. WiSe 2017/18

Skript zur Verwendung von Übungszwecken. Aufgabensammlung zum Propädeutikum Mathematik. WiSe 2017/18 Skript zur Verwendung von Übungszwecken Aufgabensammlung zum Propädeutikum Mathematik für die Studiengänge Maschinenbau (-MB), Ingenieurwissenschaften (-IngWiss), Wirtschaftsingenieurwesen (-WiIng) und

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 8. 7. 6, 8. -. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung (

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

M Mathematikvorkurs SoSe 18

M Mathematikvorkurs SoSe 18 Fachbereich I Management, Controlling, Health Care M Mathematikvorkurs SoSe 18 Oliver Krieger Ablauf 08:45 10:15 Vorlesung 10:15 10:30 Pause 10:30 12:00 Vorlesung 12:00 13:00 Mittagspause 13:00 16:15 Tutorium

Mehr

Mathematik-Übungssammlung für die Studienrichtung Facility Management

Mathematik-Übungssammlung für die Studienrichtung Facility Management Mathematik-Übungssammlung für die Studienrichtung Facility Management Auf den nachfolgenden Seiten finden Sie Übungen zum Stoff, welcher bei Studienbeginn vorausgesetzt wird. Der dazugehörige Stoff wird

Mehr

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7 Folgen und Reihen. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 2. Untersuchen Sie folgende Folgen auf Monotonie, Beschränktheit, Häufungspunkte und Konvergenz,

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing Vorkurs Mathematik Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing WS 2016/2017 19. 23.09.2015 2 Vorkurs Mathematik Der Vorkurs findet vor Beginn der Erstsemesterwoche statt Im

Mehr

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Übungsheft Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Übungsheft Dr. Johanna Dettweiler Institut für Analysis 0. Oktober 009 Aufgaben zu Kapitel Die Nummerierung der Aufgaben bezieht sich auf

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University

Dr. O. Wittich Aachen, 12. September 2017 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2017, RWTH Aachen University Dr. O. Wittich Aachen,. September 7 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 7, RWTH Aachen University Intervalle, Beschränktheit, Maxima, Minima Aufgabe Bestimmen Sie jeweils, ob

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Lösungen der Aufgaben zu Kapitel 10

Lösungen der Aufgaben zu Kapitel 10 Lösungen der Aufgaben zu Kapitel 10 Abschnitt 10.2 Aufgabe 1 (a) Die beiden Funktionen f(x) = 1 und g(y) = y sind auf R definiert und stetig. 1 + x2 Der Definitionsbereich der Differentialgleichung ist

Mehr

Teil I.2 Lösen von Bestimmungsgleichungen

Teil I.2 Lösen von Bestimmungsgleichungen Brückenkurs Mathematik Teil I.2 Lösen von Bestimmungsgleichungen Staatliche Studienakademie Leipzig Studienrichtung Informatik Dr. Susanne Schneider 12. September 2011 Bestimmungsgleichungen 1 Reelle Zahlen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Einstiegsvoraussetzungen 3. Semester

Einstiegsvoraussetzungen 3. Semester Einstiegsvoraussetzungen 3. Semester Wiederholung vom VL Bereich: Zahlen und Maße Fehlerrechnung kennen Fehler in der Darstellung von Zahlen und können Ergebnisse auf sinnvolle Art runden. verstehen die

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b

( 4-9 ) ( 5x + 16 ) -5x c - d - ( c - d ) 0 4. ( 3b + 4d ) - ( 5b - 3d ) 7d - 2b a - [ 5b - ( 6a + 7b ) ] 3a + 2b Klammerrechnung Für das Rechnen mit Klammern gilt: Steht vor einer Klammer ein Minus, so drehen sich beim Auflösen der Klammern die Vorzeichen um. Distributivgesetz: Wird eine ganze Zahl mit einer eingeklammerten

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Repetitionsaufgaben Termumformungen

Repetitionsaufgaben Termumformungen Kantonale Fachschaft Mathematik Repetitionsaufgaben Termumformungen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Vorbemerkung... 1 B) Lernziele... 1 C)

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlagen in Mathematik für die. Klassen der HMS und der FMS Einleitung Ø In der Mathematik wird häufig auf bereits Gelerntem und Bekanntem aufgebaut. Wer die Grundlagen nicht beherrscht, hat deshalb

Mehr

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing. Anni Schmalz HWS 2015/

Vorkurs Mathematik. Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing. Anni Schmalz HWS 2015/ Vorkurs Mathematik Anni Schmalz Vorbereitung auf das Bachelorstudium im Fachbereich II IPO und Marketing HWS 2015/2015 14. 18.09.2015 2 Mathe Online Kurs Hier mit seinem Namen und seiner Normalen email

Mehr

Mathevorkurs SoSe 16 FB III

Mathevorkurs SoSe 16 FB III M Mathevorkurs SoSe 16 FB III Mathe Online Kurs Hier mit seinem Namen und seiner Normalen email Adresse registrieren Mathe Online Kurs Auf Nachfrage biete ich Termine an, an denen ich Probleme bzw. Fragen

Mehr

Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter

Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter Termumformungen 2. Kapitel aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: theorie@ronaldbalestra.ch 11. Oktober 2009 Überblick über die bisherigen ALGEBRA

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 6. Gegeben ist

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Nichtlineare Funktionen einer Variablen

Nichtlineare Funktionen einer Variablen Kap. 3 Nichtlineare Funktionen einer Variablen Bisher: f :R n R m X 1 X n Y 1 Y m =A X 1 X n Einfache Zuordnung (Matrix mit konstanten Koeffizienten) Jetzt: f :R R X Y =f(x) f darf komplizierte Form haben

Mehr

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge

LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge LÖSUNGSSCHABLONE Basiswissen Mathematik für Ingenieurstudiengänge Zweite Fassung Mai 04 Duale Hochschule Baden-Württemberg Stuttgart Campus Horb Testfragen Schreiben Sie das Ergebnis in das dafür vorgesehene

Mehr

c) 10k + 6m 8n + 5k m 2n = 5 ( 3k + m 2n)

c) 10k + 6m 8n + 5k m 2n = 5 ( 3k + m 2n) R. Brinkmann http://brinkmann-du.de Seite 1 17.09.01 Lösungen Terme I Ergebnisse: E1 E E Ergebnisse a) 5x + 7y x + 1y = 4( x + 5y) b) 1 a+ 4 b+ 5 a+ 11 b+ 1 a = 1 ( 4a+ 5b) 9 6 9 6 c) 10k + 6m 8n + 5k

Mehr