Mathematikaufgaben zur Vorbereitung auf das Studium

Größe: px
Ab Seite anzeigen:

Download "Mathematikaufgaben zur Vorbereitung auf das Studium"

Transkript

1 Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen Dresden 2002

2

3 Bezeichnungen Im folgenden bedeuten: IN = {0,, 2,...} : Menge der natürlichen Zahlen, IR : Menge der reellen Zahlen.. Elementare Rechenoperationen, Potenzen, Wurzeln, Logarithmen Kenntnisse und Fähigkeiten: Bruchrechnung, Multiplikation und Division von Polynomen, Binomische Formeln, Ausklammern von Faktoren aus Polynomen, Potenz- und Logarithmengesetze, Summenzeichen. Untersuchen Sie im folgenden zuerst, für welche Werte der vorkommenden Variablen die auftretenden Terme definiert sind... Kürzen Sie so weit wie möglich. a) 204a2 b c 255ab 2 c b) 5x2 + 5x 2 + a a 2 c) 2a + a2 + 2a Fassen Sie zu einem Bruch zusammen, und kürzen Sie so weit wie möglich. 2 a) x 2 4 2x a 2 b 2 b) 6x 2a(a + b) abc c) a b b a ( b)c a.. Vereinfachen Sie. a) (2x2 y ) 4 ( x m y n z r+ ) 2 (4x y 4 ) 2 b) x 2 y 2 n z r 2, m, n, r IN c) x 2 y 2 xy x 4 d) (x y 2 ) 4 x 2 e) a n b n a n b n 2 + a n 2 b n a n b n, n IN.4. Vereinfachen Sie. a) a 5 b a b 4 6 (ab ) a 5 b 4 2 n (9a2 ) n b b) c c 2, n IN

4 .5. Vereinfachen Sie die folgenden Terme so weit wie möglich. a) 2x + 5 x + x 4 x x2 + 6x + 0 x 2 + 5x + 6 b) a a b + b a + b a a + b b a b c) a + b + c d) (2ax + 2ay)m (bx by) n (cx 2 cy 2 ) m+n, m IN, n IN, m, n 0 e) a5x y a4x y : 6n 2 f) b b n, a + b a2 + b 2 a4 b 4 x, y IR, n IN g) ( p + q p q) 2 h) x x 2 y 2 x + x 2 y 2 i) b b 2 5 b 8 4 b.6. Geben Sie die folgenden Zahlen exakt und als auf 4 Kommastellen gerundete Dezimalzahl an. Vereinfachen Sie dazu die Terme und rechnen Sie danach mit dem Taschenrechner. a) b) ( 5 ) 2 ( 5+ ) 2 c) d) e) f) (6 ) (8 4 ) g) ( 5) 2 h) 4 ( 2) 6 6 ( ).7. Vereinfachen Sie und berechnen Sie mit dem Taschenrechner. a) 0 2, b) 4, c), 08 0 d) sin(, 5) e) log 25 (25) f) log 20 (00) + log 00 (20) 2

5 .8. Vereinfachen Sie (ohne Benutzung eines Taschenrechners) so weit wie möglich. a) ln(e 2 )+ b) ln(e 2 +) c) lg( 00) d) 2e 2 ln(2) e) ln (ln (ln(e e ))) f) e 2+ln(9) g) (( e) 2 ) ln(8).9. Vereinfachen Sie. a) ln(2a) + 2 ln(b) 2 ln(2c), a, b, c > 0, b) ln(a2 b 2 ) 2 ln(a b) 2 ln(a + b), a + b > 0, a b > 0, c) ln(a 2 2ab + b 2 ) ln(a 2 b 2 ) + ln ( a + b ), a > b > Ermitteln Sie alle x IR mit a) x = 27 b) 0 x = 0, 0 c) log x () = 8 d) log 2 (x) = 5 e) log x ( 5) = f) log8 ( 5 64 ) = x ( g) log x (6) = 5 h) log 27) = x i) log () = x Faktorisieren Sie, d.h. schreiben Sie als Produkt. a) 5a 5 b c 2 5a b 5 c a 4 b 4 c b) (4x + y)(a + 2b) + (y 4x)( 2b a) c) (x + 2y)(x y)( 2x + y) y(6x y)(2y 2x).2. Faktorisieren Sie unter Verwendung binomischer Formeln. a) 6a ab + 9b 2 b) ( a )(a ) (a 2 ) c) - 4 x2 4y 2 2xy.. Schreiben Sie mittels quadratischer Ergänzung als Summe bzw. Differenz von Quadraten. a) x 2 4x + b) x 2 + x 6 c) 4x 2 + 4x + 2 d) x 2 + 4ax + 9b 2 e) x 2 2x + y 2 + 6y f) 4x 2 + 8x y 2 + 2y

6 .4. Klären Sie, unter welchen Bedingungen die folgenden Quotienten definiert sind und führen Sie die Division aus. a) (2a 2 + ab 7ac 20b bc 5c 2 ) : (a + 4b 5c) b) (x 4 y 4 ) : (x y) c) (q n ) : (q ), n IN \ {0} d) (2x 4 x + 25x 2 2x + 20) : (2x 2 7x + 6).5. Lösen Sie die folgenden Formeln auf: a) I = nu nr i + R a nach n, R i, R a, b) K = K 0 q n + R qn q nach R, K 0, n, c) f = f + f 2 d f f 2 nach f, f, f 2, d) X = ωl ωc nach L, C, ω..6. Ermitteln Sie die folgenden Summenwerte. 6 i a) i c) 0 i 2 d) 00 2 e) f) i+ b) 00 i= i= 5 nx n für x = 2 n= i= g) 50 (5i + ) i=.7. Berechnen ( ) Sie die Binomialkoeffizienten. ( ) ( ) 4 8 a) b) c) d) 2 5 ( ) ( ) ( ) 0, f) g) h) i) 5 2 k=0.8. Beweisen Sie die Gültigkeit der Gleichung für n k 0, n IN, k IN. ( ) ( ) ( ) n n n + + = k k + k + ( ) 4, 5 ( ) 2 0, 5 e) j) 5 ( k) k k= ( ) 2, 8 4 ( ) π 0 4

7 2. Gleichungen für eine reelle Veränderliche Kenntnisse und Fähigkeiten: Umformen von Gleichungen, lineare Gleichungen, quadratische Gleichungen, Bruchgleichungen, Wurzelgleichungen, Exponentialgleichungen, Logarithmusgleichungen. 2.. Bestimmen Sie die Lösungsmengen der folgenden Gleichungen. a) 2x (5 4x) = x (2x + 8) b) (5 x)(x + ) = (x 2)(8 x) c) 2x + x x = 7x + 8 d) a(2x b) + bc = b(2x a) bc 2.2. Lösen Sie die folgenden Gleichungen. a) x 2 5x + 6 = 0 b) 6x 2 + x = 0 c) x 2 + 4x + = 0 d) x 2 = 2x + 2 e) (x 2 4x 5)(x ) = 0 f) 5x 6 20x 4 = 0 g) x 4x 2 + 4x = 0 h) x 4 + x 2 4 = Lösen Sie die folgenden Gleichungen. a) x x + = x x 5 c) x x = x + 2 b) x + x + = 5 2x + 2 d) x + x x + x = Bestimmen Sie die Lösungsmengen folgender Gleichungen. a) x x 2 4 = b) x x x = x c) x 2 + 2x 2x 2 + 2x 4 = d) x + 6 x 4 x 2 = x 54 2x 8 x + 6 2(x + 6) 5

8 2.5. Lösen Sie die folgenden Wurzelgleichungen. a) x = x 2 b) x + 4 = x + 2 c) x x = 2x x 2 d) = x + x e) 2 + x + 2 x = 2 x 2.6. Geben Sie die Lösungen der folgenden Gleichungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) ln(x + ) = 2 b) (x + ) (ln(x) + ) = 0 c) ln(x) 2 ln(x ) = 0 d) log 2 (x 2 + x + 6) = 2.7. Lösen Sie die Gleichungen, und geben Sie die Lösungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) 2 0 x = b) e 2x+ = 0 c) 2 6x 2 = 4 2x+ d) = 0, 25 + e x 2.8. Lösen Sie die Gleichungen und geben Sie die Lösungen exakt und als Dezimalzahl auf 4 Kommastellen gerundet an. a) 2 2x 2 x+ = 0 b) x ln(x) = 2 c) (ln(x)) x = d) x lg(x) = 0 9 e) 2 x 5 2x = 0 2x+ f) lg(2 x ) + lg( x ) + lg(4 x ) = 5 6

9 . Gleichungssysteme für zwei reelle Veränderliche Kenntnisse und Fähigkeiten: Gleichungen mit 2 Unbekannten, Einsetzungsverfahren und Gleichsetzungsverfahren... Lösen Sie die Gleichungssysteme. a) x 2y = 8 2x + y = 4 b) 2x = 9 4y x = 4 2y x c) 5 + y = x + y 2 = 0 e) x + y = 0 xy = 9 d) x + y = x 2 + y 2 = 4. Funktionen Kenntnisse und Fähigkeiten: Funktionsbegriff, lineare und quadratische Funktionen, Potenz-, Exponential- und Logarithmusfunktionen, Nullstelle, Maximum, Minimum, Monotonie, Grenzwerte von Funktionen. 4.. Gegeben seien die Terme: a) f(x) = 0, x, b) f(x) = 2x 0,5 + x, c) f(x) = + e 0,x. Bilden Sie die folgenden Terme und vereinfachen Sie sie, falls möglich. f (x) = f(x + ) f 2 (x) = f(x) + f (x) = f(x) f 4 (x) = f( x) f 5 (x) = f(x) f 6 (x) = f(x 2 ) f 7 (x) = [f(x)] Bilden Sie zu den Funktionen f : IR IR mit a) f(x) = + 0, 5x, x IR, b) f(x) = x 2, x IR, c) f(x) = e x, x IR jeweils die Funktionen f i : IR IR, i =,..., 6, mit f (x) = f(x + ), f 2 (x) = f(x) +, f (x) = f(x), f 4 (x) = f( x), f 5 (x) = 2f(x), f 6 (x) = f(2x), und skizzieren Sie die Graphen der Funktionen. 7

10 4.. Für welche x sind die folgenden Terme definiert? Ermitteln Sie jeweils den größtmöglichen Definitionsbereich. a) f(x) = x 2 4 b) f(x) = ln(x + 5) ln(x + 4) c) f(x) = d) f(x) = (x )(x + 2) e 0,x 4.4. Skizzieren Sie die folgenden Geraden in einem geeigneten Koordinatensystem. a) y = x 4 b) 0x + 5y = 0 c) x 0 + y = d) k = 0, t +, 2 5 e) s = 2 (2 8t)/ 4.5. Skizzieren Sie jeweils den Graphen der Funktion für x IR. a) y = (x + ) 2 4 b) y = x 2 4x + c) y = 6 x x Skizzieren Sie jeweils den Graphen der Funktion. Versuchen Sie, möglichst ohne Wertetabelle auszukommen. a) y = x 2, x [0; ) b) y = x 4, x IR c) y = x, x ( ; 0) d) y = x 2 4x 8, x IR e) y = x + x 2 + 8x 40, x IR f) y = ln(x 2), x (2; ) g) y = x +, x x (; ) h) y = ln x, x IR\{0} i) y = x 4, x [4; ) 0 für < x j) y = (x + ) 2 für < x < 0 2 x + für 0 x < 8

11 4.7. Skizzieren Sie jeweils den Graphen der Funktion für den größtmöglichen Definitionsbereich, und bestimmen Sie den Wertebereich der Funktion. a) y = + x b) y = x 2 c) y = + 4 x Skizzieren Sie jeweils den Graphen der Funktion, und geben Sie den Wertebereich an. a) y = e x, x IR b) y = 2 e x, x IR c) y = e x+, x IR d) y = e x + e x, x IR 4.9. Skizzieren Sie jeweils den Graphen der Funktion für x IR, und bestimmen Sie den Wertebereich der Funktion. a) y = + sin(x) b) y = sin(x ) c) y = sin(2(x )) d) y = + 4 sin(2(x )) 4.0. Skizzieren Sie die Graphen der Funktionen für jeweils eine Teilaufgabe in einem gemeinsamen Koordinatensystem. a) y = e ax für a = 0, ± 2, ±, ±2, x IR b) y = e x + a für a = 0, ±, ±2, x IR c) y = e x+a für a = 0, ±, ±2, x IR 4.. In welchen Intervallen sind folgende Funktionen monoton wachsend? a) y = x + 6, x IR b) y = x 2 2x +, x IR 4.2. Ermitteln Sie (ohne Differentialrechnung) die Maxima/Minima (soweit vorhanden) der Funktionen nach Lage, Art und Größe. a) y = x 2 5, x IR b) y = x 2 4x + 5, x IR c) y = e x2, x IR d) y = x 2 +, x IR e) y = sin 2 (x), x IR f) y = + cos 2 (x), x IR 9

12 4.. Bestimmen Sie die Grenzwerte. Lösungen x a) lim x x 7 c) lim t ( e t ) x 5 x 2 b) lim x 2x 4 + x 2 d) lim e t t.. a) 4ab 5c 2, a, b, c 0 b), a 2 c) a +, a, a 2(a ) 5x + 4x a) 6x 4, x 0 b) a + b, a 0, a b 2a c), a, b, c 0, a b.. a) x 2 y 4, x, y 0 b) x 2m 4 y 4n 4 z 6, x, y, z 0 c) xy, x, y 0 d) y8 (b a), x 0 e) x4 a n b n, a, b 0 ( ) n ab.4. a) a 4 b, a, b 0 b), a, b 0, c > 0 c.5. a) 0x + 2, x IR\{ 2; } (x + )(x + 2) b) a2 + 2ab b 2 a 2 2ab b 2, a2 b 2, a b( ± 2) abc c) ab + ac + bc, abc 0, a + b + c 0 ( ) m ( ) n 2a b d) c c (x + y) n (x y) m, c(x2 y 2 ) 0 e) a x b 5n, a > 0, b > 0 f), a + b > 0, a b > 0 a b g) 2p 2 p 2 q 2, p + q 0, p q 0 h) y, x 0, x 2 y 2 i) b /8, b 0 0

13 .6. a) 2 7/8, 840 b) 4 c) = 0, 25 8 d) 4 7 0, 580 e) , f) 8, 960 g) 5 h) 2 2 2, a), 08 b), c) 2, 589 d) 0, 9975 e), 5 f) 2, a) b) - c) ( ) ab 2.9. a) ln 2c 2 2 d) 8 e) 0 f) e g) 4 b) 6 ln(a2 b 2 ) c) ln ( (a 2 b 2 ) a + b ).0. a) b) 2 c) 8 d) 2 e) 5 2 f) 5 g) / 5 6 h) i).. a) 5a b c 2 ( a 2 9b 2 c 2 + 5abc) b) 8x(a + 2b) c) (x y)(y 2x)(x 4y).2. a) (4a + b) 2 b) 2(a 2 ) c) ( 2 x + 2y)2.. a) (x 2) b) (x + 2 ) c) 2 2 (x + 2 )2 + d) (x + 2a) 2 4a 2 + 9b 2 e) (x ) 2 + (y + ) 2 0 f) 4(x + ) 2 (y 2) a) 4a 5b + c, a + 4b 5c 0 b) x + x 2 y + xy 2 + y, x y c) q n + q n q +, q und n IN \ {0} d) x 2 2x + 2, 5 + 2,5x+5 2x 2 7x+6, x 2, x, 5.5. a) n = RaI U R ii, R i = nu RaI ni, R a = n(u RiI) I b) R = (K K 0 q n q ) q n, K 0 = K q R n q qn ( ) n n = ln q ln K(q )+R K 0(q )+R c) f = ff2 f +f 2 d, f = f(d f2) f f 2, f 2 = f(d f) f f d) L = X ω + ω 2 C, C = ω 2 L ωx, ω = 2L q, ( X ± ) X 2 + 4L C

14 .6. a) b) 5050 c) 85 d) 202 e) 289 f) 29 g) a) 6 b) 56 c) 0 d) 05 6 = 6, 5625 e) -0,06 f) 0,75 6 = 0, 0625 g) -6 h) - i) - j) 2.. a) L = { 5 } b) L = { 8 } c) L = {0} d) L = { bc a b }, falls a b, L = IR, falls (a = b) und (b c = 0), L =, falls a = b und bc a) L = {2; } b) L = { 2 ; } c) L = d) L = {2 + 8; 2 8} e) L = { ; ; 5} f) L = {0; 2; 2} g) L = {0; 2} h) L = { ; } 2.. a) L = {2} b) L = {2} c) L = { 4 } d) L = 2.4. a) L = { ; 2 2 7} c) L = {2} b) L = { ; 2 2 5} d) L = {4} 2.5. a) L = {} b) L = {0} c) L = {} d) L = e) L = {2} 2.6. a) e 2 4, 89 b) e 0, 679 c) , 680 d) L = {; 2} 2.7. a) 0 log 2 () 8, 450 b) 2 =, 5 c) 4 d) ln(7), a) log 2 (), 5850 b) L = {e ln(2) ; e ln(2) } c) e 2, 78 d) L = {0 ; 0 } 5 e) log 2 (5), 29 f) lg(24), a) (4; 2) b) - c) ( 45; 0) d) (; 2), ( 2; ) e) (9; ), (; 9) 4.. a) b) c) f (x) 0, 9 0, x 2(x + ) 0,5 + x+ f 4 (x) + 0, x 2( x) 0,5 x +e 0,(x+) +e 0,x f 6 (x) 0, x 2 2x + x 2 +e 0,x2 2

15 4.. a) x 2, b) ( 5; ), c) ( 4; )\{ 2; }, d) IR\{0} 4.. a), b) [; ) 4.2. a) Min(0; 5), b) Min(2; ), c) Max(0; ), d) Max(0; ), e) Max( π 2 + kπ; ), Min(kπ; 0), k ZZ, ZZ = Menge der ganzen Zahlen, f) Max( π 2 + kπ; ), Min(kπ; 2 ), k ZZ. 4..,,,

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Computertechnik / Automatisierungstechnik Elektrotechnik

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät

Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät Mathematik Selbsttest der Wirtschaftswissenschaftlichen Fakultät Liebe Studieninteressentin, lieber Studieninteressent, wir freuen uns, dass Sie sich für ein wirtschaftswissenschaftliches Studium an der

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse

Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Vorkurs: Mathematik für Informatiker Steven Köhler, Anja Moldenhauer, Marcel Morisse Wintersemester 2014/15 Aufgaben I-1. Es seien die folgenden Mengen A = {5,7,9}, B = {5,6,7} und C = {1,3,5,7,9} gegeben.

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen...

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen... ASK Hochschule Konstanz HTWG www.ask.htwg-konstanz.de INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK Inhalt 1 Anforderungen... 2 2 Aufgaben... 9 3 Lösungen... 11 4 Ausführliche Lösungen... 15 5 Musterprüfungen...

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Propädeutikum Wichtige Grundlagen der Mathematik Stand WS 2015 / 2016 Dörte Fröhlich

Propädeutikum Wichtige Grundlagen der Mathematik Stand WS 2015 / 2016 Dörte Fröhlich Propädeutikum Wichtige Grundlagen der Mathematik Stand WS 05 / 06 Dörte Fröhlich Mathe-Grundlagen Dörte Fröhlich Seite Wichtige Grundlagen der Mathematik Für Ihr Studium und sicher nicht nur für das Fach

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Skript Dr. Johanna Dettweiler Institut für Analysis 20. Oktober 2009 Inhaltsverzeichnis Einleitung 7 1 Aussagen und Mengen 9 1.1 Aussagen:

Mehr

Propädeutikum. Wichtige Grundlagen der Mathematik. Stand WS 2011 / 2012. Dörte Fröhlich

Propädeutikum. Wichtige Grundlagen der Mathematik. Stand WS 2011 / 2012. Dörte Fröhlich Propädeutikum Wichtige Grundlagen der Mathematik Stand WS 0 / 0 Dörte Fröhlich Mathe-Grundlagen D. Fröhlich Wichtige Grundlagen der Mathematik Für Ihr Studium und sicher nicht nur für das Fach Wirtschaftsmathematik

Mehr

Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Prof. Dr. M. Heilmann Fachbereich C, Mathematik Bergische Universität Wuppertal September 0 c 0 Heilmann, Bergische

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Mathematik Berufskolleg zur Erlangung der Fachhochschulreife

Mathematik Berufskolleg zur Erlangung der Fachhochschulreife Mathematik Berufskolleg zur Erlangung der Fachhochschulreife INHALTSVERZEICHNIS. GRUNDLAGEN. DAS KOORDINATENSYSTEM. DARSTELLUNG VON GERADEN. SEITENVERHÄLTNISSE IM RECHTWINKLIGEN DREIECK 4. WEITERE GERADENGLEICHUNGEN

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Vorbereitung zur 1. Mathematikschulaufgabe

Vorbereitung zur 1. Mathematikschulaufgabe Vorbereitung zur. Mathematikschulaufgabe. Semester A ) Grundlagen der Mengenlehre. Geben Sie folgende Mengen, die hier in beschreibender Form gegeben sind, in aufzählender Form an: a) Die Menge der Primzahlen,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Inhalt. Vorkurs Mathematik für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik. Visitenkarte.

Inhalt. Vorkurs Mathematik für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik. Visitenkarte. für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik Dr. Michael Stiglmayr Bergische Universität Wuppertal Fachbereich C - und Informatik Wintersemester 01/016 Inhalt Grundlagen

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Trainingskurs Mathematik bearbeitet von: Prof. Dr. J. Puhl

Trainingskurs Mathematik bearbeitet von: Prof. Dr. J. Puhl Trainingskurs Mathematik bearbeitet von: Prof. Dr. J. Puhl Einleitende Bemerkungen Es ist leider eine sehr traurige Tatsache, daß ein großer Teil der Studienanfänger außerordentliche Schwierigkeiten im

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel

Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel Fachlehrplan Mathematik - Berufsmaturität Natur, Landschaft und Lebensmittel 1. Allgemeine Bildungsziele Mathematik im Grundlagenbereich vermittelt fachspezifische und fachübergreifende Kenntnisse, Fähigkeiten

Mehr

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen.

Bevor lineare Gleichungen gelöst werden, ein paar wichtige Begriffe, die im Zusammenhang von linearen Gleichungen oft auftauchen. R. Brinkmann http://brinkmann-du.de Seite 1 13.0.010 Lineare Gleichungen Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs

W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs W. Schäfer/K. Georgi/G. Trippier Mathematik-Vorkurs Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr.

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5 Inhaltsverzeichnis Vorwort zur 7. Auflage 5 1 Potenzrechnung 11 1.1 Darstellung 11 1.1.1 Begriff 11 1.1.2 Vorzeichenregel 11 1.1.3 Addition und Subtraktion von Potenzen 12 1.1.4 Multiplikation von Potenzen

Mehr

Einige Mathematik-Wiederholungsaufgaben vor dem Studienbeginn

Einige Mathematik-Wiederholungsaufgaben vor dem Studienbeginn Einige Mathematik-Wiederholungsaufgaben vor dem Studienbeginn Prof. Dr. rer. nat. habil. Volkmar Friedrich Angeregt durch Erfahrungen aus der Mathematik- und Informatikausbildung von Ingenieuren sowie

Mehr

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Mathematik für Wirtschaftsinformatiker

Mathematik für Wirtschaftsinformatiker Mathematik für Wirtschaftsinformatiker Alfred Müller, Martin Rathgeb Universität Siegen Wintersemester 2008/09 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Zahlbereiche.................................... 1 1.2

Mehr

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015 II Inhaltsverzeichnis 5 Grundlagen 1 5.1 Funktionen einer Variablen...................... 1 5.2 spezielle Funktionen.........................

Mehr

Hans Marthaler Benno Jakob Reto Reuter. Mathematik I. Algebra für die Berufsmaturität

Hans Marthaler Benno Jakob Reto Reuter. Mathematik I. Algebra für die Berufsmaturität Hans Marthaler Benno Jakob Reto Reuter Mathematik I Algebra für die Berufsmaturität Vorwort Mathematik ist ein wichtiges Hilfsmittel und Werkzeug für künftige Fachhochschulstudierende und Berufsleute.

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

gerade Zahl. Nr. 5) Negieren Sie folgende Aussagen: 19 ist eine gerade Zahl. Stuttgart liegt am Neckar.

gerade Zahl. Nr. 5) Negieren Sie folgende Aussagen: 19 ist eine gerade Zahl. Stuttgart liegt am Neckar. Arbeitsblätter zum Vorkurs Mathematik der Universität Hohenheim A I. Einführung in die Uni-Mathematik Nr. ) Definieren Sie den Begriff gerade Zahl. Nr. ) Klären Sie, ob man mit der Definition Eine Primzahl

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Lösungen der Probe-Vorklausur 1. Lösungen der Probe-Vorklausur 2

Lösungen der Probe-Vorklausur 1. Lösungen der Probe-Vorklausur 2 Bei allen Aufgaben muss der Rechenweg erkennbar sein (auch beim Bruchrechnen mindestens Zwischenschritt). Ohne Rechnung gibt es auch bei richtigem Ergebnis keine Punkte. Lösungen der Probe-Vorklausur Aufgabe

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Terme und Gleichungen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Terme und Gleichungen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Terme

Mehr

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376 EigenMath Howto EigenMath ist ein kleines Programm, das als 'Taschenrechner' für die Mathematik der Oberstufe verwendet werden kann. Es ist viel weniger mächtig als die großen Brüder Sage, Maxima, Axiom

Mehr

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Gesucht Stuenten, ie minestens ie Vorlesungen aus en ersten 2

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Wirtschaftsmathematik.

Wirtschaftsmathematik. y y = f(x) F1 F3 a F b x Wirtschaftsmathematik. Lösungen: Fragen zur Selbstkontrolle Betriebswirtschaftslehre (B.A.) Lösungen Lösungen Lektion 1 1. Grundlagen der Analysis 1.1 Arithmetische und algebraische

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth

Klausuraufgabensammlung Mathematik. Klausuraufgaben zur Mathematik 1-3 von Wolfgang Langguth Hochschule für Technik und Wirtschaft des Saarlandes University of Applied Sciences Fakultät für Ingenieurswissenschaften Bachelorstudiengang Biomedizinische Technik Prof. Dr. W. Langguth Klausuraufgabensammlung

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr.

Rabatt und Skonto. Rechnung Computersystem. Bruttopreis Rabatt Nettopreis Skonto Zahlung. 2'950.00 Fr. 2'457.35 Fr. Ratt und Skonto Rechnung Computersystem Computer P7 '650.00 Fr. Drucker XX 300.00 Fr. Total '950.00 Fr. 15% 44.50 Fr. '507.50 Fr. % 50.15 Fr. '457.35 Fr. Bruttopreis Ratt Nettopreis Skonto Zahlung Worterklärungen

Mehr

Martin Meyer. Mehr Mathematikverständnis. 2010 by InnoLearn UG

Martin Meyer. Mehr Mathematikverständnis. 2010 by InnoLearn UG Martin Meyer Mehr Mathematikverständnis 2010 by InnoLearn UG Dieses Werk ist urheberrechtlich geschützt. Die Rechte für dieses urheberrechtlich geschützte Buch und der beiliegenden CD liegen bei. InnoLearn

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr