Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kodierung. Kodierung von Zeichen mit dem ASCII-Code"

Transkript

1 Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel Bilder (JPEG) Peter Sobe 1

2 Zeichen im ASCII-Code Einzelne Zeichen, z.b. A, z, 7, oder? werden intern durch einen Zahlenwert repräsentiert, der binär kodiert wird. Ein Zeichen umfasst einen einzelnen Buchstaben, eine Ziffer, ein Sonderzeichen oder ein Steuerzeichen. Es gibt verschiedene Möglichkeiten der Zuordnung des Zeichens auf den Zahlenwert Zuordnung muss eineindeutig sein Operationen (z.b. Vergleich) sollten sich einfach realisieren lassen Eine spezielle Zuordnung ist dann ein Code, z.b. EBCDIC oder ASCII Peter Sobe 2

3 ASCII-Code Peter Sobe 3

4 Zeichen und Zeichenketten ASCII ist ein 7-Bit-Code, 128 darstellbare Zeichen. Später wurden 8 Bits ausgenutzt (ISO ). Die weiteren 128 Plätze wurden mit u.a. mit (westeuropäischen) sprachspezifischen Sonderzeichen belegt. Unicode ist ein 2-Byte-Code, der die unteren 256 Plätze des ASCII-Codes übernommen hat, aber wesentlich mehr internationale Zeichen darstellen kann. Unicode als 2-Byte-Code heute verbreitet Peter Sobe 4

5 Zeichen und Zeichenketten Zeichenketten sind Felder einzelner Zeichen, die zusammenhängende Texte aufnehmen. Zeichenketten werden intern zusammenhängend gespeichert. Jedes einzelne Zeichen wird durch den im Code zugewiesenen Zahlenwert repräsentiert Hallo H,a,l,l,o repäsentiert durch 72, 97,108, 108, 111 Programmiersprachen behandeln Zeichenketten unterschiedlich: Felder einzelner Zeichen, oder eigener Datentyp (String) Peter Sobe 5

6 Zeichen und Zeichenketten (Strings) Vorgriff auf MATLAB: meinstring= Hallo HTW Im Workspace wird die Variable wie folgt aufgeführt: Name: meinstring, Size: 1x9, Bytes: 18 Offenbar wird ein 2-Byte Code benutzt code_8bit = uint8(meinstring) >code_8bit = code_16bit = uint16(meinstring) >code16bit = Peter Sobe 6

7 Zeichen und Zeichenketten (Strings) Viele Programmiersprachen bieten Operationen und Funktionen für Zeichenketten an. Hier für MATLAB: Zuweisung deinstring = meinstring Vergleich if (meinstring==vergleich) if (strcmp(meinstring, deinstring)==0) In MATLAB werden Zeichenketten auf Matrix-Variablen abgebildet, z.b. ein 10 Zeichen langer Text ist eine 1x10-Matrix Peter Sobe 7

8 Speicherplatzsparende Codes ASCII und Unicode: alle Zeichen werden mit einem s.g. Codewort gleicher Länge dargestellt. Wenn die Zeichen mit unterschiedlicher Häufigkeit vorkommen, ist es möglich, die häufigsten mit einer kurzen Bitfolge und die seltenen mit einer längeren Bitfolge zu kodieren. Man erreicht damit insgesamt eine Ersparnis an Speicherplatz (mittlere Anzahl Bits je Zeichen) Beispiel: Huffman-Code für Zeichen A, B, C, D unter der Annahme, dass nur diese 4 Zeichen in einer Nachricht vorkommen. Das Prinzip ist erweiterbar auf alle möglichen Zeichen. Peter Sobe 8

9 Speicherplatzsparende Codes Huffman-Code für Zeichen A, B, C, D Korrigierte Version Relative Häufigkeiten A :0.8, B :0.1, C :0.05, D :0.05 Code: A :0, B :10, C :110, D :111 Häufigstes Zeichen wird mit kürzester Bitfolge kodiert Kein Codewort ist als Anfang in einem anderen Codewort enthalten Zeichenfolge AAAABAAAACAAAAA (15 Zeichen) ergibt (18 Bits) Peter Sobe 9

10 Fehlererkennende und tolerierende Codes Der bisher betrachtete Zeichencode (ASCII, Unicode) versagt, sobald ein Fehler bei der Speicherung, bzw. Übertragung auftritt. Kodierungen für das Internet und Server-Speichersysteme können zum Teil Fehler erkennen und korrigieren. Beispiele: Einfacher Paritätscode: Ein zusätzliches Bit, ein einzelner Bitfehler erkennbar, keine Korrektur möglich. Hamming-Code, Variante mit 4 Bits und 3 Paritätsbits (7,4), ein Fehler korrigierbar Peter Sobe 10

11 Verschlüsselnde Codes Originaldaten können bei Übertragung und Speicherung ver- und entschlüsselt werden. Zusätzlich zur Zeichenkodierung werden die Codeworte (Bitfolgen) verändert (kryptografische Kodierung) Einfachstes Verfahren: One-Time-Pad Veränderung erfolgt durch Summation der Codeworte mit geheimen Summanden (geheimer Schlüssel) Subtraktion des geheimen Anteils lässt Originaldaten wieder erscheinen Anwendung erfolgt bitweise, Summe und Differenz durch XOR (Exklusives ODER auf {0,1}-Werten) Geheimer Anteil darf nicht wiederholt benutzt werden, Schlüssel muss so lang wie die Originalbitfolge sein Peter Sobe 11

12 Verschlüsselnde Codes Beispiel: One-Time-Pad Originaltext: ABAACA Originaltext kodiert mit Huffman-Code: A : 0, B : 10, C : 110, D : 111, Geheimer Schlüssel: übereinstimmend mit korrigierter Version auf Folie 9 Originaltext verschlüsselt: Ergäbe DBBB Originaltext entschlüsselt mit geheimen Schlüssel ergibt , das ist ABAACA Peter Sobe 12

13 Spezielle Codes / Beispiel Bildkodierung mit JPEG Joint Photgraphic Experts Group (CCITT und ISO/IEC), Verschiedene Modi: u.a. verlustfrei und verlustbehaftet Schritte bei verlustbehafteter JPEG-Komprimierung: Aufteilung der Bildmatrix in 16x16 Blöcke Abtastung/ Berechnung Y Einzelmatrizen für Y,U,V Abtastung/Berechnung U,V mit unterschiedlicher Auflösung Umwandlung der Blöcke in eine Frequenzdarstellung (DCT) Wichtung innerhalb der Frequenzdarstellung Diskretisierung und Schwellwertfilterung Linearisierung und Kompression der Daten Entstehung von Nullen u.a. Lauflängenkodierung mit guter Kompression Peter Sobe 13

14 Beispiel Bildkodierung mit JPEG Makroblöcke: Einteilung in Blöcke zu je 16x16 Pixel YUV-Kodierung 8x8 4x für Y 16x16 + 2x (1 für U, 1 für V) 8x8 gröbere Farbauflösun g, durch 2x2-Mittelw.- Bildung 14

15 Beispiel Bildkodierung mit JPEG Discrete Cosinus Transformation (DCT) für jeden 8x8 Block, Y,U,V jeweils getrennt s vu c 4 u c v x 0, c u c v 1 y 0 2 s yx (2x 1) u (2 y 1) v cos cos für u,v=0 sonst c, c u v Grundintensität Anteile mit zunehmenden Frequenzen in y und x-richtung 15

16 Beispiel Bildkodierung mit JPEG Wichtung der DCT-Koeffizienten svu Inverse sqvu round( ) Rvu sqvu Qvu Qvu Quantisierung : Notwendige Vorstufe für eine effektive Kompression Q vu ist als frequenzabhängige Quantisierungstabelle beim Encoding und Decoding bekannt. Wahl der Q vu Werte: Je höher die Frequenzen, desto größer die Q vu Werte Anschließende Diskretisierung führt Rundung auf Wertevorrat durch, dabei werden kleine Werte zu Null 16

17 Beispiel Bildkodierung mit JPEG Kodierung DC-Koeffizienten: Codierung der Differenzen AC-Koeffizienten: Zick-Zack-Durchlauf, es entstehen meist Folgen gleicher Werte Es entsteht ein linearer Datenstrom, im Anschluss: Lauflängenkodierung (RLE) und Huffmann-Kodierung 17

18 Beispiel Bildkodierung mit JPEG Standardisierte Quantisierungskoeffizienten für Y: durch diese Werte werden die entsprechenden DCT-Koeffizienten dividiert. u v Divisor für Quantisierung wird tendenziell größer mit zunehmenden Frequenzen 18

19 Beispiel Bildkodierung mit JPEG Beispiel zur Kompression 8 quantisierte DCT-Koeffizienten (8x8 =256 Bit) 127,86,98,70,71,65,88,77 = , , , , , , , RLE -> (1)(7)(1)(1)(1)(1)(1)(2)(2)(2)(3)(1)(2)(1)(3)(2)(2)(1)(3)(3)(1)(1)(5) (1)(1)(1)(2)(4)(1)(2)(2)(1)(1) (33x3 Bit = 99 Bit, jedes 3-Bit-Codewort kann Werte annehmen) Huffman Code: #(1)=17, #(2)=9, #(3)=4, #(4)=1, #(5)=1, #(6)=0, #(7)=1 1 =0, 2 =10, 3 =110, 4 =1110, 5 =11110, 7 = Bitstrom: 0:111110:0:0:0:0:0:10:10:10:110:0:10:0:110:10:10:0:110:110:0:0:11110: 0:0:0:10:1110:0:10:10:0:0 62 Bit 19

20 Beispiel Bildkodierung mit JPEG Basisfunktionen zur Bildung der DCT-Koeffizienten Bildhafte Berechnung der DCT-Koeffizienten per Multiplikation der Originaldaten mit den links gezeigten Masken, einer Summierung der Produkte und einer Normierung 20

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung

1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung 1. Grundlagen der Informatik Zahlensysteme und interne Informationsdarstellung Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen,

Mehr

Kapitel 3. Codierung von Text (ASCII-Code, Unicode)

Kapitel 3. Codierung von Text (ASCII-Code, Unicode) Kapitel 3 Codierung von Text (ASCII-Code, Unicode) 1 Kapitel 3 Codierung von Text 1. Einleitung 2. ASCII-Code 3. Unicode 2 1. Einleitung Ein digitaler Rechner muss jede Information als eine Folge von 0

Mehr

Grundlagen der Technischen Informatik. 2. Übung

Grundlagen der Technischen Informatik. 2. Übung Grundlagen der Technischen Informatik 2. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit Organisatorisches Übungsblätter zuhause vorbereiten! In der Übung an der Tafel vorrechnen! Bei

Mehr

JPEG Kompression technische Realisierung

JPEG Kompression technische Realisierung Experimentalphysik V 20. Januar 2005 Schema der JPEG Kompression Farbraumkonvertierung RGB YCbCr Subsampling der Farbkomponenten Cb, Cr Zerlegung in Blöcke 8 8 2D Kosinustransformation (DCT) Quantisierung

Mehr

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB

Bilddatenformate BMP GIF JPG. Digitale Bildverarbeitung Liedtke 7.1. Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Bilddatenformate BMP Bezeichnung: Microsoft Windows Bitmap, BMP, DIB Format: Raster Farben: 1 Bit (s/w), 4 Bit (16 Farben), 8 Bit (256 Farben), 24 Bit (16,7 Mio. Farben) Kompression: Keine (meist) oder

Mehr

Grundlagen der Informatik I Informationsdarstellung

Grundlagen der Informatik I Informationsdarstellung Grundlagen der Informatik I Informationsdarstellung Einführung in die Informatik, Gumm, H.-P./Sommer, M. Themen der heutigen Veranstaltung. ASCIi Code 2. Zeichenketten 3. Logische Operationen 4. Zahlendarstellung

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

Run Length Coding und Variable Length Coding

Run Length Coding und Variable Length Coding Fachbereich Medieninformatik Hochschule Harz Run Length Coding und Variable Length Coding Referat Matthias Zittlau 11034 Abgabe: 15.01.2007 Inhaltsverzeichnis 1. RLC...1 2.1 Einführung...1 2.2 Prinzip...1

Mehr

Einführung in Kompressionstechniken

Einführung in Kompressionstechniken Einführung in Kompressionstechniken W. Kowarschick 7. Februar 997. November 9 W. Kowarschick Motivation Dateigrößen Text Vektorgraphiken Rasterbilder Tomographien Telephon CD-Stereo Bildfolgen VD7 VD7

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut

Datenkompression. 1 Allgemeines. 2 Verlustlose Kompression. Holger Rauhut Datenkompression Holger Rauhut 1. September 2010 Skript für die Schülerwoche 2010, 8.-11.9.2010 Hausdorff Center for Mathematics, Bonn 1 Allgemeines Datenkompression hat zum Ziel, Daten in digitaler Form,

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Unicode und UTF-8. Anna-Katharina Wurst. 28. April 2015. WP5 Angewandte Programmierung

Unicode und UTF-8. Anna-Katharina Wurst. 28. April 2015. WP5 Angewandte Programmierung 28. April 2015 WP5 Angewandte Programmierung David Kaumanns & Sebastian Ebert SoSe 2015 CIS Ludwig-Maximilians-Universität München 2 Inhalt 1 Zeichensätze ASCII ISO 8859-x Unicode 2 Kodierung UTF-8 3 Anwendung

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner

Proseminar Datenkomprimierung Dr. U. Tamm. JPEG - Kompression WS 2002/03. Torsten Zichner Proseminar Datenkomprimierung Dr. U. Tamm JPEG - Kompression WS 2002/03 Torsten Zichner Inhaltsangabe: 1. Einleitung 2. JPEG Kompression 2.1. Konvertierung des Bildes in ein geeignetes Farbmodell 2.2.

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Grundzüge Wirtschaftsinformatik KE 1 Ausgabe 25.09.2012 Seite 28 von 178

Grundzüge Wirtschaftsinformatik KE 1 Ausgabe 25.09.2012 Seite 28 von 178 Grundzüge Wirtschaftsinformatik KE 1 Ausgabe 25.09.2012 Seite 28 von 178 Zeichendarstellung Vergleichbar mit der Definition, wie Fest- oder Gleitkommazahlen repräsentiert werden, muss auch für die Darstellung

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Darstellung von Text Plain Text Abstraktion: Text wird durch eine Folge von Symbolen (Buchstaben, Zahlen, Interpunktion) dargestellt Verzicht auf Informationen über

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung

Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer. Programmiertechnik Zahlensysteme und Datendarstellung Prof. Dr. Oliver Haase Karl Martin Kern Achim Bitzer Programmiertechnik Zahlensysteme und Datendarstellung Zahlensysteme Problem: Wie stellt man (große) Zahlen einfach, platzsparend und rechnergeeignet

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Hauptspeicherinhalt. Ton. Vektorgrafik Bitmapgrafik Digit. Video. 1. Darstellung von Daten im Rechner. Abb. 1.1: Einteilung der Daten

Hauptspeicherinhalt. Ton. Vektorgrafik Bitmapgrafik Digit. Video. 1. Darstellung von Daten im Rechner. Abb. 1.1: Einteilung der Daten Hauptspeicherinhalt Programmcode Daten numerisch logisch alphanumerisch Ton Grafik Ganze Zahlen Gleitkommazahlen Zeichen Zeichenketten vorzeichenlos mit Vorzeichen Vektorgrafik Bitmapgrafik Digit. Video

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2 Codierung und Fehlerkorrektur Kapitel 4.2 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Technische Informatik - Meilensteine Informationstheorie Claude Elwood Shannon (geb. 1916)

Mehr

Kompression und Datenformate. Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate

Kompression und Datenformate. Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate Kompression und Datenformate Grundlagen der Bildspeicherung, Kompressionsverfahren, Datenformate Digitale Speicherung von Bildern Digitalisierung Informationsgehalt Speicherbedarf Kompression von Multimediadaten

Mehr

Java Einführung VARIABLEN und DATENTYPEN Kapitel 2

Java Einführung VARIABLEN und DATENTYPEN Kapitel 2 Java Einführung VARIABLEN und DATENTYPEN Kapitel 2 Inhalt dieser Einheit Variablen (Sinn und Aufgabe) Bezeichner Datentypen, Deklaration und Operationen Typenumwandlung (implizit/explizit) 2 Variablen

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128)

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. Parity-Bit. 7 Bit pro Zeichen genügen (2 7 = 128) Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen (2 7 = 128) 26 Kleinbuchstaben 26 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage

Mehr

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen

11/2/05. Darstellung von Text. ASCII-Code. American Standard Code for Information Interchange. ASCII-Tabelle. Parity-Bit. Länderspezifische Zeichen Darstellung von Text ASCII-Code 7 Bit pro Zeichen genügen ( 7 = 18) 6 Kleinbuchstaben 6 Großbuchstaben 10 Ziffern Sonderzeichen wie '&', '!', ''' nicht druckbare Steuerzeichen, z.b. - CR (carriage return

Mehr

Mathematik für Information und Kommunikation

Mathematik für Information und Kommunikation Mathematik für Information und Kommunikation Am Beispiel des Huffman- Algorithmus Thomas Borys und (Christian Urff) Huffman im Alltag MPEG Telefax JPEG MP3 ZIP avid Huffman avid Huffman [95-999] www.soe.ucsc.edu/people/faculty/huffman.html

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Motivation und Überblick

Motivation und Überblick Motivation und Überblick Drei große Bereiche der Vorlesung: Darstellung von Zahlen in Rechnern Verarbeitung von Binärdaten auf der Ebene digitaler Schaltungen Programmierung auf Maschinenebene und relativ

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2011 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS

DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS 1 DIGITALE VIDEO KOMPRESSION AM BEISPIEL DES JPEG-VERFAHRENS Um das digitale Schneiden von digitalisierten Bildern zu ermöglichen, ist es notwendig, die drastisch hohe Datenmenge, die für jedes Bild gespeichert

Mehr

Codierungstheorie. Code-Arten und Code-Sicherung

Codierungstheorie. Code-Arten und Code-Sicherung Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Proseminar Datenkomprimierung Dr. U. Tamm. Bildkompression WS 2002/03. Florian Strunk

Proseminar Datenkomprimierung Dr. U. Tamm. Bildkompression WS 2002/03. Florian Strunk Proseminar Datenkomprimierung Dr. U. Tamm Bildkompression WS 2002/03 Florian Strunk Problematik: Die Datencodierung und Kompression ist so alt wie die Geschichte des Computers. Seit dem es hochauflösende

Mehr

Modul 114. Zahlensysteme

Modul 114. Zahlensysteme Modul 114 Modulbezeichnung: Modul 114 Kompetenzfeld: Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen 1. Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche

Mehr

Mathematisches Praktikum - SoSe 2014

Mathematisches Praktikum - SoSe 2014 Mathematisches Praktikum - SoSe 2014 Prof. Dr. Wolfgang Dahmen Felix Gruber, M. Sc., Christian Löbbert, M. Sc., Yuanjun Zhang, M. Sc., Klaus Kaiser, M. Sc. Zusatzaufgabe 3 für Informatiker Bearbeitungszeit:

Mehr

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group

Verlustbehaftete Kompression. JPEG: Joint Photographic Experts Group Verlustbehaftete Kompression JPEG: Joint Photographic Experts Group ITU T8.1 definiert Zusammenarbeit von ITU, IEC, ISO Verfahren zur verlustbehafteten Bildkodierung (auch Verlustloser Modus vorhanden)

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik 2008 Martin v. Löwis Einführung in die Programmiertechnik Darstellung von Text 2008 Martin v. Löwis 2 Plain Text Abstraktion: Text wird durch eine Folge von Symbolen (Buchstaben, Zahlen, Interpunktion)

Mehr

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Datenkompression. Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg Vortrag am 25. Januar 200 Werner von Siemens Gymnasium Magdeburg Zeitansatz: 5h (inklusive Programmieraufgaben) Datenkompression Vortrag von Markus Durzinsky Student der Otto-von-Guericke-Universität Magdeburg

Mehr

7. Übung zur Vorlesung Grundlagen der Informatik

7. Übung zur Vorlesung Grundlagen der Informatik 7. Übung zur Vorlesung Grundlagen der Informatik 13.Interne Darstellung von Daten In der Vorlesung wurde bereits darauf hingewiesen, dass ein Rechner intern lediglich die Zustände 0 (kein Signal liegt

Mehr

Kompressionsverfahren

Kompressionsverfahren Kompressionsverfahren Quelle: Steinmetz, Ralf: Multimedia-Technologie: Einführung und Grundlagen, Springer, Verlag Verlustlose Kompressionsalgorithmen RLC Huffman Adaptive Huffman Kodierung Arithmetische

Mehr

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1

Bildkompression InTh, 2005, JPEG, Hak, Rur, 1 Bildkompression InTh, 25, JPEG, Hak, Rur, 1 Referenzen [1] D Salomon, Data Compression, Springer, 24 [2] Prof Dr A Steffen, Kurs SU, ZHW, 1999-24 [3] G Wallace, The JPEG Still Picture Compression Standard,

Mehr

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression Digitale Bildverarbeitung Bildkompression Einleitung Datenmenge für ein unkomprimiertes Bild Verwendungszweck des Bildes Bild soll weiterverarbeitet werden Bild soll archiviert werden Bild soll per E-Mail

Mehr

Zahlen und Zeichen (1)

Zahlen und Zeichen (1) Zahlen und Zeichen () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Dualzahlen

Dualzahlen Dualzahlen Ein Schüler soll sich eine Zahl zwischen und 6 denken. Nun soll der Schüler seinen Zahl in folgenden Tabellen suchen und die Nummer der Tabelle nennen in welcher sich seine Zahl befindet. 7

Mehr

Multimediatechnik / Video

Multimediatechnik / Video Multimediatechnik / Video Video-Kompression Zusammenfassung http://www.nanocosmos.de/lietz/mtv 2009 1 Motivation: Video-Kompression Unkomprimierte Datenmengen sind zu groß! TV: 20 MB/s = 72 GB/h (720x576x2x25)

Mehr

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104

Modulation. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Modulation Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 104 Datenfernübertragung I Über kurze Entfernungen können Daten über Kupferkabel übertragen werden, indem jedes Bit mit einer positiven

Mehr

ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder.

ffl Die Portable Bitmap Utilities (PBM) manipulieren monochrome Bilder. ffl Die Portable Greymap Utilities (PGM) manipulieren Grauwert-Bilder. Kapitel 9 Pixeldateiformate Es gibt diverse Formate, in denen die generierten Grafiken abgespeichert werden können Stellvertretend soll hier nur auf 2 Formate eingegangen werden; eines, bei dem die Pixel

Mehr

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet).

0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). Aufgabe 0 Im folgenden sei die Wortlänge gleich 8 (d. h.: es wird mit Bytes gearbeitet). 1. i) Wie ist die Darstellung von 50 im Zweier =Komplement? ii) Wie ist die Darstellung von 62 im Einer =Komplement?

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Kryptographie und Codierung für den Mathematikunterricht

Kryptographie und Codierung für den Mathematikunterricht Kryptographie und Codierung für den Mathematikunterricht Pädagogische Hochschule Karlsruhe University of Education École Supérieure de Pédagogie Institut für Mathematik und Informatik Th. Borys Was verstehst

Mehr

Inhalt. 4.5 Arbeit mit Zeigern (engl. Pointer)

Inhalt. 4.5 Arbeit mit Zeigern (engl. Pointer) Inhalt Inhalt: 4. Programmiersprache C 4.1 Programmaufbau in C 4.2 Basisdatentypen und einfache Anweisungen 4.3 Steuerfluss-Konstrukte 4.4 Arbeit mit indizierten Größen (Felder) 4.5 Arbeit mit Zeigern

Mehr

Codierung. H.-G. Hopf

Codierung. H.-G. Hopf Codierung H.-G. Hopf Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 2 Inhalt Informationsübermittlung Codierung von Zeichen GDI: Codierung / 3 Ideale Kommunikation Übertragungskanal

Mehr

Angewandte Informationstechnik

Angewandte Informationstechnik Angewandte Informationstechnik im Bachelorstudiengang Angewandte Medienwissenschaft (AMW) Fehlererkennung und -korrektur Dr.-Ing. Alexander Ihlow Fakultät für Elektrotechnik und Informationstechnik FG

Mehr

Wie rechnet ein Rechner?

Wie rechnet ein Rechner? 0 Motivation Jörg Roth 2 Wir gehen in dieser Vorlesung der Frage nach Wie rechnet ein Rechner? Als Softwareentwickler könnten wir in einem Programm z.b. folgende Anweisung schreiben: a = a+2*b; Wie wird

Mehr

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert Binäre Repräsentation von Information Bits und Bytes Binärzahlen ASCII Ganze Zahlen Rationale Zahlen Gleitkommazahlen Motivation Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Mehr

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell

J.P.E.G. Standard. J.P.E.G. Eigenschaften. J.P.E.G. System. JPEG Verschlüsselungsschritte. Farbmodell Inhaltsbasierte Bildsuche J.P.E.G = Joint Photographic Expert Group Informatica Feminale Universität Bremen, Aug. 2005 Maja Temerinac Albert-Ludwigs-Universität Freiburg J.P.E.G. Standard Standard zur

Mehr

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002

JPEG - Kompression. Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 JPEG - Kompression Steffen Grunwald, Christiane Schmidt, Stephan Weck TIT01EGR BA-Mannheim 21. Mai 2002 Inhaltsverzeichnis 1 Entwicklung von JPEG 2 1.1 Was heisst und was ist JPEG?................... 2

Mehr

2. Programmierung in C

2. Programmierung in C 2. Programmierung in C Inhalt: Überblick über Programmiersprachen, Allgemeines zur Sprache C C: Basisdatentypen, Variablen, Konstanten, Operatoren und Ausdrücke Anweisungen und Kontrollstrukturen (Steuerfluss)

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 2012/13 Repräsentation von Daten Repräsentation natürlicher Zahlen (Wiederholung) Repräsentation von Texten Repräsentation ganzer Zahlen Repräsentation rationaler Zahlen Repräsentation

Mehr

Informationsdarstellung 2.2

Informationsdarstellung 2.2 Beispiele für die Gleitkommadarstellung (mit Basis b = 2): 0,5 = 0,5 2 0-17,0 = - 0,53125 2 5 1,024 = 0,512 2 1-0,001 = - 0,512 2-9 3,141592... = 0,785398... 2 2 n = +/- m 2 e Codierung in m Codierung

Mehr

Kodierung. Bytes. Zahlensysteme. Darstellung: Zahlen

Kodierung. Bytes. Zahlensysteme. Darstellung: Zahlen 2 Einführung in die Informationstechnik VI Information und ihre Darstellung: Zahlen, Zeichen, Texte Heute 1. Information und Daten 2. Informationsdarstellung 1. Zahlen 1. Binärsystem 2. Dezimalsystem 3.

Mehr

» ASCII = American Standard Code for Information Interchange.» ASCII ist Standard in Windows und Unix (und Unix-Derivaten).» ASCII ist eigentlich ein

» ASCII = American Standard Code for Information Interchange.» ASCII ist Standard in Windows und Unix (und Unix-Derivaten).» ASCII ist eigentlich ein 1 2 » ASCII = American Standard Code for Information Interchange.» ASCII ist Standard in Windows und Unix (und Unix-Derivaten).» ASCII ist eigentlich ein 7-Bit-Zeichensatz, d. h. das erste Bit jedes Bytes

Mehr

, 2016W Übungstermin: Fr.,

, 2016W Übungstermin: Fr., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2016W Übungstermin: Fr., 28.10.2016 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

1. Daten, Information, Wissen. 2. Fortsetzung Informationsdarstellung. 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem. 2. Bilder. 3.

1. Daten, Information, Wissen. 2. Fortsetzung Informationsdarstellung. 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem. 2. Bilder. 3. Überblick GRUNDKURS INFORMATIK 1 DATEN - INFORMATION - WISSEN 1. Daten, Information, Wissen 2. Fortsetzung Informationsdarstellung 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem 2. Bilder 3. Audio

Mehr

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise)

Empfänger. Sender. Fehlererkennung und ggf. Fehlerkorrektur durch redundante Informationen. Längssicherung durch Paritätsbildung (Blockweise) Datensicherung Bei der digitalen Signalübertragung kann es durch verschiedene Einflüsse, wie induktive und kapazitive Einkopplung oder wechselnde Potentialdifferenzen zwischen Sender und Empfänger zu einer

Mehr

Übung 13: Quellencodierung

Übung 13: Quellencodierung ZHAW, NTM, FS2008, Rumc, /5 Übung 3: Quellencodierung Aufgabe : Huffmann-Algorithmus. Betrachten Sie die folgende ternäre, gedächtnislose Quelle mit dem Symbolalphabet A = {A,B,C} und den Symbol-Wahrscheinlichkeiten

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht Themen Sicherungsschicht Rahmenbildung Häufig bereitgestellte Dienste Fehlererkennung OSI-Modell: Data Link Layer TCP/IP-Modell: Netzwerk, Host-zu-Netz Aufgaben: Dienste für Verbindungsschicht bereitstellen

Mehr

Digitalisierung. analoges Signal PAM. Quantisierung

Digitalisierung. analoges Signal PAM. Quantisierung Digitalisierung U analoges Signal t U PAM t U Quantisierung t Datenreduktion Redundanzreduktion (verlustfrei): mehrfach vorhandene Informationen werden nur einmal übertragen, das Signal ist ohne Verluste

Mehr

, 2015W Übungstermin: Do.,

, 2015W Übungstermin: Do., VU Technische Grundlagen der Informatik Übung 2: Numerik, Codierungstheorie 183.579, 2015W Übungstermin: Do., 29.10.2015 Allgemeine Hinweise: Versuchen Sie beim Lösen der Beispiele keine elektronischen

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

2.1 Fundamentale Typen

2.1 Fundamentale Typen 2. Elementare Typen 2.1 Fundamentale Typen C++ stellt die wichtigsten Datentypen mit passender Form der Abspeicherung und zugehörigen Rechenoperationen zur Verfügung : Boolscher Datentyp (bool) für logische

Mehr

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012

Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Rechnernetze Übung 6 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Ziel: Nachrichten fehlerfrei übertragen und ökonomisch (wenig Redundanz) übertragen Was ist der Hamming-Abstand?

Mehr

Molekulare Bioinformatik

Molekulare Bioinformatik Molekulare Bioinformatik Wintersemester 203/204 Prof. Thomas Martinetz Institut für Neuro- und Bioinformatik Universität zu Luebeck 07.0.204 Molekulare Bioinformatik - Vorlesung 0 Wiederhohlung Die Entropie

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig

Mehr

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele

Organisation. Was kommt zum Test? Buch Informatik Grundlagen bis inkl. Kapitel 7.4 Wissensfragen und Rechenbeispiele Organisation Was kommt zum Test? Buch Informatik Grundlagen bis inkl Kapitel 74 Wissensfragen und Rechenbeispiele 3 Vorträge zur Übung Informationstheorie, Huffman-Codierung und trennzeichenfreie Codierung

Mehr

JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin

JPEG, MPEG & Co. Alex Titze Angewandte Informatik FHTW-Berlin Referat KIM Alex Titze Angewandte Informatik FHTW-Berlin 76900504811 Einleitung JPEG Geschichte & Überblick Komprimierungsablauf Farbformat DCT (Diskrete Cosinus Transformation) Quantisierung Koeffizientenkodierung

Mehr

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg

Code-Arten und Code-Sicherung. Literatur: Blieberger et.al.: Informatik (Kap. 3 und 4), Springer-Verlag R.-H. Schulz: Codierungstheorie, Vieweg Codierungstheorie Code-Arten und Code-Sicherung Inhaltsübersicht und Literatur Informationstheorie Was ist eine Codierung? Arten von Codes Informationsgehalt und Entropie Shannon'sches Codierungstheorem

Mehr

Java Kurs für Anfänger Einheit 2 Datentypen und Operationen

Java Kurs für Anfänger Einheit 2 Datentypen und Operationen Java Kurs für Anfänger Einheit 2 Datentypen und Operationen Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 16. Mai 2009 Inhaltsverzeichnis

Mehr

3. Informationsdarstellung

3. Informationsdarstellung Fakultät Informatik Institut Systemarchitektur Professur Datenschutz und Datensicherheit WS 204/205 3. Informationsdarstellung Dr.-Ing. Elke Franz Elke.Franz@tu-dresden.de 3 Informationsdarstellung Bitfolgen

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Grundlagen der Datenverarbeitung

Grundlagen der Datenverarbeitung Grundlagen der Datenverarbeitung Zeichendarstellung Christian Gürtler MultiAugustinum 9. November 2014 Christian Gürtler (MultiAugustinum) Grundlagen der Datenverarbeitung 9. November 2014 1 / 16 Inhaltsverzeichnis

Mehr

Ein (7,4)-Code-Beispiel

Ein (7,4)-Code-Beispiel Ein (7,4)-Code-Beispiel Generator-Polynom: P(X) = X 3 + X 2 + 1 Bemerkung: Es ist 7 = 2^3-1, also nach voriger Überlegung sind alle 1-Bit-Fehler korrigierbar Beachte auch d min der Codewörter ist 3, also

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems

Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Februar 2006: Multimedia Systems Name: Matrikel-Nr.:

Mehr

Zyklische Codes Rechnernetze Übung SS2010

Zyklische Codes Rechnernetze Übung SS2010 Zyklische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Binärcodes Blockcodes Lineare Codes Nichtlineare Codes Zyklische Codes Systematische Codes Durch

Mehr

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09 Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache Agenda für heute, 4. März, 2010 Zusammengesetzte if-then-else-anweisungen Datentypen Pascal ist eine streng typisierte Programmiersprache Für jeden Speicherplatz muss ein Datentyp t (Datenformat) t) definiert

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes:

Codes (1) Beispiele für die Bedeutung eines n-bit-wortes: Codes () Beispiele für die Bedeutung eines n-bit-wortes: Befehl (instruction) Zahl (number) Zeichen (character) Bildelement (pixel) Vorlesung Rechnerarchitektur und Rechnertechnik SS 24 Codes (2) ASCII

Mehr

Grundlagen der Informatik (BSc) Übung Nr. 5

Grundlagen der Informatik (BSc) Übung Nr. 5 Übung Nr. 5: Zahlensysteme und ihre Anwendung Bitte kreuzen Sie in der folgenden Auflistung alle Zahlensysteme an, zu welchen jeder Ausdruck als Zahl gehören kann! (Verwenden Sie 'x für Wahl, ' ' für Ausschluß

Mehr

Arithmetisches Codieren

Arithmetisches Codieren Arithmetisches Codieren 1. Motivation: Als Alternative zum arithmetischen Codieren bot sich damals als effizientester Algorithmus das Huffmann-Coding an. Dieses jedoch hatte einen entscheidenden Nachteil:

Mehr