Lektion II Grundlagen der Kryptologie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lektion II Grundlagen der Kryptologie"

Transkript

1 Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

2 Grudbegriffe Kryptologie Kryptographie: Wisseschaft vom geheime Schreibe Chiffre (cipher): eie geheime Methode des Schreibes (Methode des Verschlüssels) Klartext (plaitext, cleartext): uverschlüsselter Text Chiffretext (ciphertext, cryptotext, cryptogram): verschlüsselter Text Chiffriere: verschlüssel (to ecode, to ecipher, to ecrypt) Dechiffriere: etschlüssel (to decode, to decipher, to decrypt) Schlüssel (key): kotrolliert die Ver- ud Etschlüsselug, er ist der Iformatiosträger für die Verschlüsselug des Klartextes bzw. Etschlüsselug des Chiffretextes Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Grudbegriffe Kryptologie Klartext Dechiffriere Schlüssel Schlüssel Chiffriere Chiffretext Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

3 Grudbegriffe Kryptologie Traspositioschiffre Die Traspostioschiffre ädert die Positio eies Nachrichteteil ierhalb der Nachricht Substitutioschiffre Die Substitutioschiffre ersetzt algorithmisch die Zeiche der Nachricht Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Kryptographische Systeme Ei Kryptosystem besteht aus: Klartextraum M Chiffretextraum C Schlüsselraum K Chiffriertrasformatioe E k :M->C Dechiffriertrasformatioe D k :C->M Die Cheffriertrasformatio E k wird somit aus dem Schlüssel k ek ud demalgorithmus E bestimmt Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

4 Kryptographische Systeme Chiffrier- ud Dechiffriertrasformatioe müsse für alle Schlüssel effiziet berechet werde köe. Die Systeme müsse leicht zu beutze sei. Es muß also leicht sei, eie Schlüssel sowie die Abbilduge E k ud D k zu fide. Die Sicherheit des Systems sollte auf der Geheimhaltug der Schlüssel ud icht auf der Geheimhaltug der Algorithme beruhe. Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Kryptographische Systeme Für absolute Geheimhaltug muß für kryptographische Systeme gelte: M ist icht aus C zu bestime, we k ubekat bleibt D k ist icht zu bestimme, auch falls M mit E k (M)=C bekat ist Für die Sicherstellug der Authetizität muß ebeso gelte: E k ist icht zu bestimme, auch falls M mit E k (M)=C bekat ist Es ka kei C gefude werde, welches mit D k (C ) eie gültige Klartext aus M liefert. Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

5 Kryptographische Systeme Diese Forderuge köe aäherd erfüllt werde, we: k absolut geheim gehalte wird Der Schlüsselraum K über sehr viele Elemete verfügt Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Traspositiochiffre Traspositioschiffrierug Traspositioschiffre orde die Buchstabe oder Bits des Klartextes ach irgedeiem Schema oder eier geometrische Figur um. Klartext: Stuttgart Chriffre: Kreuz-Traspositio Chiffretext: UTSTTRTGA Tiefe der Kreuz-Traspositio: 3 U T STTRT G A Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

6 Traspositiochiffre Klartext: Stuttgart Chriffre: Kreuz-Traspositio mit Tiefe 4 T T G STUA R T Chiffretext: TTGSTUART Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Traspositiochiffre Allgemeie Traspositio Die Grudlage der Traspositio ist eie mögliche Permutatio der Regel g: x = g(x) = Im Regelfall wird eie Matrix verwedet: S T U T T U S T g(x) T G A R R A T G T T Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

7 Substitutioschiffre Ma uterscheidet: Eifache Substitutio: Jeder Buchstabe des Klartextes wird durch eie Buchstabe des Chiffretextes ersetzt. Dabei wird eie bijektive Abbildug zwische Klartextud Chiffretextalphabet beutzt. Homophoe Substitutio: Jeder Buchstabe des Klartextes ka durch verschiedee Buchstabe des Chiffretextes ersetzt werde. Polyalphabetische Substitutio: Die Buchstabe des Klartextes werde i irgedeier Reihefolge (z. B. periodisch) durch verschiedee Abbilduge chiffriert. Polygramm Substitutio: Gaze Blöcke vo Buchstabe des Klartextes werde gemeisamersetzt. Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Substitutioschiffre Eifache Substitutioschiffrierug Klartext: Stuttgart Chriffre: Cäsar-Chiffre mit Schlüssel 3 S T U T T G A R T V W X W W J D U W Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

8 Substitutioschiffre Klartext: Stuttgart Chriffre: Cäsar-Chiffre mit Schlüssel 4 S T U T T G A R T W X Y X X K E V X Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Substitutioschiffre Homophore Substitutioschiffrierug Jeder Buchstabe des Klartextes ka durch verschiedee Buchstabe des Chiffretextes ersetzt werde. Klartext: Stuttgart Wertetabelle: S = 10, 45, 67 T = 22, 1 U = 2,3,4 G = 7,9,73 A = 21, 32, 43 R = 16, 17, 18 S t u t t g a r t Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

9 Substitutioschiffre Homophore Substitutioschiffrierug Problem: Erzeuge eies Schlüssels Lösug: Schlüsselwort k der Läge l(m) H A L O B A Y S M = HALLO k = BABYS C = Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Substitutioschiffre Polyalphabetische Substitutioschiffrierug Die Buchstabe des Klartextes werde i irgedeier Reihefolge (z. B. periodisch) durch verschiedee Abbilduge chiffriert. Verberge die Verteilug der Buchstabe Chiffrierug durch verschiedee (meist periodische) Substitutioe Mehrere Chiffretextalphabete Ist ur ei Chiffretextalphabet gegebe, so hadelt es sich um eie eifache Substitutio Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

10 Substitutioschiffre Polyalphabetische Substitutioschiffrierug Vigeére Chiffre Eie Folge vo Buchstabe (k i )ist der periodische Schlüssel (Codewort) Für jede Buchstabe vo M folgt eie Verschiebug um die Größe vo k i im i-te Alphabet der Größe, d.h. f i (a) = (a+k i ) mod Beispiel für gleiches Text- ud Chiffrieralphabet: Text M: T O P S E C R E T Codewort K: A Z U B I A Z U B Chiffretext C: T N K T N C Q Z U Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Substitutioschiffre Polyalphabetische Substitutioschiffrierug Vigeére Chiffre (Mit verschiedee Alphabete) Text: hallo K: ba 1. Postio i Ai ermittel 2. Verschiebe A1= q,w,e,r,t,z,u,i,o A2= a,s,d,f,g,h,j,k,l C= oardu Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

11 Substitutioschiffre Chiffre mit Polygrammsubstitutio Chiffre mit Polygrammsubstitutio ersetze Textblöcke Uketlichkeit der Buchstabeverteilug Beispiel: Play-Fair-Chiffre, Hill Chiffre Eglad WW2 Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Substitutioschiffre Polygramm Substitutioschiffrierug ersetzt Blöcke vo Klartext i Blöcke vo Chiffretext meist mit Hilfe eier Abbildugs-Matrix A Dechiffrierug mit ivertierter Matrix A -1 Beispiel: Hill-Chiffre M= KARL -> (11,1,18,12) -> 9,12,0,10 -> IL_J A = C = (11,1) 3 5 = (35,38)-> mod 26 - >(9,12) 3 2 (18,12) 3 5 = (78,114)-> mod 26 ->(0,10) Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

12 Substitutioschiffre Beispiel: Hill-Chiffre Dechiffrierug: M= IL_J -> (9,12,0,10 ) A -1 = C = (9,12) 17 9 = (375,261) -> mod(26) -> (11,1) (0,10) 17 9 = (200,90) -> mod(26) -> (18,12) Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Kryptoaalyse Kryptoaalyse ist die Aalyse ud Dechiffrierug vo kryptierte Nachrichte Ei Chiffre ist zu breche, we ma de Nachrichtetext oder de Schlüssel aus Chiffretexte ermittel ka ma de Schlüssel aus Nachrichte-Chiffretexte-Paare ermittel ka Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

13 Kryptoaalyse Dem Aalytiker ist der Chiffretext bekat: ChiffretextAgriff: Der Kryptoaalytiker ka de Klartext ur aus dem abgefagee Chiffretext bestimme. Dies setzt formale Ketis des Nachrichtetextes voraus. Bei eiem Chiffretext, der z.b. de Weg zu eiem versteckte Schatz beschreibt, sid Wörter wie Schatz, vergrabe, südlich, usw. zu erwarte. So köe Chiffre ud Schlüssel u.u. ermittelt werde. Der Chiffretext-Agriff ist die Häufigste Form vo kryptoaalytische Agriffe. Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Kryptoaalyse Dem Klar-Chiffre-Agriff: Die Ketis vo Klartext-Chiffretext-Paare ka zum Etschlüssel des gaze Textes hilfreich sei. So gibt es etwa bei Briefe feststehede Afags- ud Schlußformel. Bei verschlüsselte Programme ka der Kryptoaalytiker evetuell Programmsymbole wie begi, ed sofort erkee. Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

14 Kryptoaalyse Der Klartextvariatio-Agriff: Er erhält de Chiffretext zu vo ihm selbst gewähltem Klartext. Datebaksysteme sid gegeüber diese Versuche afällig, da ei Beutzer etwas i die Datebak eifüge ud da beobachte ka, wie sich der gespeicherte Chiffretext ädert. Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Kryptoaalyse Kryptoaalyse mit Hilfe vo Sprachaalyse Hilfreich bei lage Chiffretexte Hilfreich bei Substitutioschiffre Vergleich vo Erwartugswerte der Buchstabe mit tatsächlichem Vorkomme im Chiffretext Ei Text i Deutscher Sprache besteht durchschittlich zu 18% aus dem Buchstabe e, zu 11% aus dem Buchstabe ud zu 8% aus dem Buchstabe i. Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

15 Kryptoaalyse ei durchschittlicher deutscher text ohe eie tiefere si 55 Zeiche : e = 11 = 20% -> e? = 8 = 14% ->? i = 6 = 10,9 -> i? Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Kryptoaalyse ei durchschittlicher deutscher text ohe eie tiefere si ei durchschittlicher deutscher text ohe eie tiefere Si Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

16 Kryptoaalyse Vorgehe bei Substitutioschiffre Die Kasiski-Methode: 1. Periode erkee (Wiederholug vo Text) 2. Substitutiosalgorithmus erkee -Textaalyse 3. Schlüssel erschließe 4. Chiffre dechiffriere Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c) Übugsaufgabe 1 Beim Spiel 77 ist die Veröffetlichug der Gewizahl bis zur Ziehug der Lottozahle streg geheim. Kurz vor dieser Veröffetlichug müsse die Zahle vo Berli is Maizer Sedestudio übermittelt werde. Etwerfe Sie für de Trasport eie geeigete Chiffre ud formuliere sie de Algorithmus. (z.b. i eiem Nasi-Scheiderma-Diagramm) Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

17 Übugsaufgabe 2 Erkläre Sie kurz das Play-Fair Chiffre ud wede Sie ei Beispiel a. Aalysiere Sie das Chiffre auf seie Effiziez ud Sicherheit. Vorlesug Datesicherheit - BA Stuttgart M.Memmesheimer (c)

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV LS Retail Die Brachelösug für de Eizelhadel auf Basis vo Microsoft Dyamics NAV akquiet Focus auf das Wesetliche User Focus liegt immer auf der Wirtschaftlichkeit: So weig wie möglich, soviel wie ötig.

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

2 Amplitudenmodulation

2 Amplitudenmodulation R - ING Übertraggstechik MOD - 16 Aplitdeodlatio Der isträger bietet drei igalparaeter, die wir beeiflsse köe. Etspreched terscheide wir Aplitdeodlatio für die beeiflsste Aplitde, Freqezodlatio d Phaseodlatio

Mehr

Reengineering mit Sniffalyzer

Reengineering mit Sniffalyzer Reegieerig mit Siffalyzer Dr. Walter Bischofberger Wid River Ic. wbischofberger@acm.org http://www.widriver.com/siff 30.10.01 2001 Wid River Systems, Ic. 1 Das Siffgate Projekt Motivatio Schaffe eier Plattform

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB Neueruge Software Techologie GmbH 67433 Neustadt / Weistraße Ihalt I. Neueruge Versio 16 3 1. Pi Fuktio 3 2. Status für Nachtragspositioe 5 3. DBD Baupreise EFB 6 4. Programm Eistiegs Assistet 8 5. Voreistellugs-Assistet

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Elektrostatische Lösungen für mehr Wirtschaftlichkeit

Elektrostatische Lösungen für mehr Wirtschaftlichkeit Elektrostatische Lösuge für mehr Wirtschaftlichkeit idustrie für igeieure, profis ud techiker i etwicklug, produktio ud motage. www.kerste.de Elektrostatische Lösuge kerste ist seit über 40 Jahre der führede

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Credit Risk+ Itegratiossemiar zur BBL ud BWL Witersemester 2002/2003 Oksaa Obukhova lia Sirsikova Credit Risk+ 1 Ihalt. Eiführug i die Thematik B. Ökoomische Grudlage I. Ziele II. wedugsmöglichkeite 1.

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Fingerprinting auf Basis der Geometrischen Struktur von Videos

Fingerprinting auf Basis der Geometrischen Struktur von Videos 35.1 Figerpritig auf Basis der Geometrische Struktur vo Videos Dima Pröfrock, Mathias Schlauweg, Erika Müller Uiversität Rostock, Istitut für Nachrichtetechik, Richard Wager Str. 31, 18119 Rostock, {dima.proefrock,

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRAKTIKUM Versuch L-4 Komplexe Schaltwerke Fachbereich Iformatik Uiversität Kaiserslauter Seite 2 Versuch L-4 Versuch L-4 I diesem Versuch soll ei Rechewerk zur Multiplikatio vo zwei vorzeichelose

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

BILANZ. Bilanzbericht

BILANZ. Bilanzbericht BILANZ Bilazbericht Ihaltsverzeichis 1 Leistugsbeschreibug... 03 2 Itegratio i das AGENDA-System... 04 3 Highlights... 05 3.1 Gestaltug vo Bilazberichte... 05 3.2 Stadardbausteie idividuell apasse... 06

Mehr

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen 2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.

Mehr

cubus EV als Erweiterung für Oracle Business Intelligence

cubus EV als Erweiterung für Oracle Business Intelligence cubus EV als Erweiterug für Oracle Busiess Itelligece... oder wie Oracle-BI-Aweder mit Essbase-Date vo cubus outperform EV Aalytics (cubus EV) profitiere INHALT 01 cubus EV als Erweiterug für die Oracle

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

Seminar Kryptographie und Datensicherheit

Seminar Kryptographie und Datensicherheit Seminar Kryptographie und Datensicherheit Einfache Kryptosysteme und ihre Analyse Christoph Kreitz 1. Grundlagen von Kryptosystemen 2. Buchstabenorientierte Systeme 3. Blockbasierte Verschlüsselung 4.

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

NEL Suchspulen - für jeden Detektor! TOP Leistung von unabhängigen Experten bestätigt. Such Spulen. nel-coils.de Shop ww.nuggets24.

NEL Suchspulen - für jeden Detektor! TOP Leistung von unabhängigen Experten bestätigt. Such Spulen. nel-coils.de Shop ww.nuggets24. NEL Suchspule - für jede Detektor! TOP Leistug vo uabhägige Experte bestätigt Such Spule el-coils.de Shop ww.uggets24.com el-coils.de Metalldetektor OlieShop www.uggets.at www.uggets24.com NEL BIG Die

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Merge-Sort und Binäres Suchen

Merge-Sort und Binäres Suchen Merge-Sort ud Biäres Suche Ei Bericht vo Daiel Haeh Mediziische Iformatik, Prosemiar WS 05/06 Ihaltsverzeichis I. Eileitug 3 II. III. IV. i. Das Divide-ad-coquer -Verfahre Merge-Sort i. Eileitug ii. Fuktiosweise

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

unibasel VORLESUNG PROGRAMMIER- PARADIGMEN departement mathematik & informatik informatik.unibas.ch/lehre/fs16/prog#thorsten.

unibasel VORLESUNG PROGRAMMIER- PARADIGMEN departement mathematik & informatik informatik.unibas.ch/lehre/fs16/prog#thorsten. uibasel VORLESUNG PROGRAMMIER- PARADIGMEN departemet mathematik & iformatik iformatik.uibas.ch/lehre/fs16/prog#thorste.moeller 2 Team Dozet: Dr. Thorste Möller thorste.moeller@uibas.ch Chief Techical Officer

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Mit Ideen begeistern. Mit Freude schenken.

Mit Ideen begeistern. Mit Freude schenken. Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug

Mehr

Exkurs Kryptographie

Exkurs Kryptographie Exkurs Kryptographie Am Anfang Konventionelle Krytographie Julius Cäsar mißtraute seinen Boten Ersetzen der Buchstaben einer Nachricht durch den dritten folgenden im Alphabet z. B. ABCDEFGHIJKLMNOPQRSTUVWXYZ

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation 1 Joatha Azañó Fachartikel Abteilug Eergiemaagemet ud etzqualität CVM-ET4+ Erfüllt die Eergieeffiziez- Richtliie euer Multikaal-Leistugs- ud Verbrauchsaalyser Aktuelle Situatio Die gegewärtige Richtliie

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Einleitung. Aufgabe 1a/1b. Übung IV

Einleitung. Aufgabe 1a/1b. Übung IV Übug IV Eileitug Etity-Relatioship-Modell: Modellierug zu Aalyse- ud Etwurfszwecke (Phase 2 i Wasserfallodell). "diet dazu, de projektierte Awedugsbereich zu strukturiere." [Keper/Eickler: Datebaksystee]

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Kryptographie I Symmetrische Kryptographie

Kryptographie I Symmetrische Kryptographie Kryptographie I Symmetrische Kryptographie Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 2010/11 Krypto I - Vorlesung 01-11.10.2010 Verschlüsselung, Kerckhoffs, Angreifer,

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Vertiefugsstudium Modul XI: Volkswirtschaftslehre Lösugshiweise zur 1. Musterklausur

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücke, 2.05.205 Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma (buchma@cs.ui-saarlad.de) Foto: M. Strauch Aus de Videos wisse Sie......welche

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

IT-Sicherheit - Sicherheit vernetzter Systeme -

IT-Sicherheit - Sicherheit vernetzter Systeme - IT-Sicherheit - Sicherheit vernetzter Systeme - Kapitel 4: Grundlagen der Kryptologie Helmut Reiser, LRZ, WS 09/10 IT-Sicherheit 1 Inhalt 1. Kryptologie: Begriffe, Klassifikation 2. Steganographie 3. Kryptographie,

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Software geschenkt, Abrechnung für 0,5%

Software geschenkt, Abrechnung für 0,5% Deutsches Medizirechezetrum Profi tiere Sie als Neugrüder vo DMRZ.de Software geschekt, Abrechug für 0,5% * Ohe Grudgebühr, ohe Vertragsbidug Eifach abreche für 0,5% * *der Bruttorechugssumme zzgl. MwSt.

Mehr

FIBU Kontoauszugs- Manager

FIBU Kontoauszugs- Manager FIBU Kotoauszugs- Maager Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Highlights... 4 2.1 Buchugsvorschläge i der Buchugserfassug... 4 2.2 Vergleichstexterstellug zur automatische Vorkotierug... 5 2.3

Mehr

Die OÖGKK auf einen Klick Information und e-services für Unternehmen

Die OÖGKK auf einen Klick Information und e-services für Unternehmen PARTNERIN DER WIRTSCHAFT GEMEINSAM STARTEN IHR ERSTER MITARBEITER ERSTMALS DIENSTNEHMER ANMELDEN DIE E-SERVICES DER OÖGKK BEITRAGSGRUPPE ERMITTELN ELDA DAS ELEKTRONISCHE DATENAUSTAUSCHSYSTEM KRANKENSTANDSBESCHEINIGUNG

Mehr

BILANZ Bilanzbericht

BILANZ Bilanzbericht BILANZ Bilazbericht Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Gestaltug vo Bilazberichte... 5 3.2 Stadardbausteie idividuell apasse... 6 3.3

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Digitales Belegbuchen

Digitales Belegbuchen Digitales Belegbuche Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Belege scae ud sede... 5 3.2 Belege buche... 6 3.3 Schelle Recherche... 7 3.4

Mehr