Multidimensionales Datenmodell, Cognos

Größe: px
Ab Seite anzeigen:

Download "Multidimensionales Datenmodell, Cognos"

Transkript

1 Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010

2 Vereinfachte Sicht auf die Referenzarchitektur Extraktion Transformation Laden Data Warehouse Analyse Operative Datenbanken OLAP Server Praktikum Data Warehousing und Mining, Sommersemester

3 Fokus jetzt im Praktikum Unser Fokus jetzt Extraktion Transformation Laden Data Warehouse Analyse Operative Datenbanken OLAP Server Praktikum Data Warehousing und Mining, Sommersemester

4 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

5 Analysephase Unterschiedliche Ansätze: Data Mining Erster Block Suche nach unbekannten Mustern im Datenbestand Welche Eigenschaften zeichnen Kunden aus, die wieder bei uns einkaufen werden? Online Transactional Processing (OLTP) Vorheriger Block Zugriff auf vorhandenen Datenbestand Nutzung von Datenmanipulationssprachen ti (z.b. SQL) Wieviele Einheiten von Artikel X wurden vom Kunden Y im Zeitraum Z gekauft? Online Analytical Processing (OLAP) Jetzt Anpassung des Datenbestands an die Analyse Dynamischer, flexibler, interaktiver Zugriff auf eine Vielzahl von Werten In welchem Gebiet macht Warengruppe X den größten Umsatz? Praktikum Data Warehousing und Mining, Sommersemester

6 Tools: Data Access Anfragesprachen (z.b. SQL) Lesen von Daten Vorheriger Block Arithmetische Operationen auf Daten Zunächst keine Präsentationsmöglichkeit Reporting Tools (z.b. Cognos) Lesen der Daten Jetzt Anreicherung der Daten durch arithmetische Operationen Präsentation der Daten in Berichten Unterstützung von Ampelfunktionalität Praktikum Data Warehousing und Mining, Sommersemester

7 Anforderungen an Online Analytical Processing Geschwindigkeit Anfragen sollten in 5 Sekunden beantwortet sein Analysemöglichkeit Ermöglichung anwenderfreundlicher dli und intuitiver iti Analyse Sicherheit Sicherer Mehrbenutzerbetrieb Stabile Sicherungsmechanismen Multidimensionalität Multidimensionale i l Sicht auf die Daten Kapazität Hohe Skalierbarkeit der verwalteten Daten FASMI: Fast Analysis of Shared Multidimensional Information (Pendse/Creeth, 1995) Praktikum Data Warehousing und Mining, Sommersemester

8 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

9 Multidimensionales Datenmodell - Begriffe Hilfsmittel zur Veranschaulichung von Daten verschiedene Aspekte auf gleiche Weise zugreifbar Einsatz bei OLAP-Anwendungen Kennzahlen Elemente eines Würfels Dimensionen Kennzahl Beschreiben Daten Ermöglichen Zugriff auf Kennzahlen Dimension Können zu Hierarchien gehören Praktikum Data Warehousing und Mining, Sommersemester

10 Multidimensionales Datenmodell Beispiel Jahr Quartal Monat Tag Produkt. Zeit Umsatz Geographie Praktikum Data Warehousing und Mining, Sommersemester

11 Dimensioneni Einordnung Bewertung der Analysedaten durch Kenngrößen (z.b. Umsatz, Kosten) Untersuchung der Kenngrößen aus verschiedenen Perspektiven (z.b. Stadt, Bundesland, Zeitachse) Betrachtungsperspektive heißt Dimension i Eigenschaften Mindestens 2 Dimensionselemente Dimensionselemente i bilden Blätter eines Baums (sog. Klassifikationshierarchie) Praktikum Data Warehousing und Mining, Sommersemester

12 Dimensionen i Beispiel i Zeit Jahr Quartal Monat Tag. Klassifikationshierarchie Dimensionselement Praktikum Data Warehousing und Mining, Sommersemester

13 Arten von Klassifikationshierarchien i Einfache Hierarchien Höhere Hierarchieebenen enthalten die aggregierten Werte der jeweils niedrigeren Ebenen Oberster Knoten: Gesamtknoten Verdichtung aller Werte einer Dimension Parallele l Hierarchien Entstehen bei unterschiedlicher Art der Gruppierung Parallele Äste ohne Beziehung Betrachtung eines Teilaspekts der Hierarchie pro Ast Praktikum Data Warehousing und Mining, Sommersemester

14 Klassifikationshierarchie i - Beispiele i TOP TOP Land Jahr Bundesland Quartal Woche Stadt Monat Strasse Tag Einfache Hierarchie Parallele Hierarchie Praktikum Data Warehousing und Mining, Sommersemester

15 Würfel Weitere Begriffe Kanten von Dimensionen aufgespannt Kantenlänge entspricht Anzahl der Elemente in Dimension Eine oder mehrere Kennzahlen pro Würfelzelle Anzahl der Dimensionen heißt Dimensionalität Konsolidierungspfad Pfade im Klassifikationsschema i Praktikum Data Warehousing und Mining, Sommersemester

16 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

17 Konzeptionelle Modellierung Einsatz von Entity/Relationship-Modell oder UML Probleme: Modellierung der Konsolidierungspfade nicht möglich Entitäten besitzen keine Semantik Wir wollen aber: Höheren Automatisierungsgrad durch Verzicht auf universelle Anwendbarkeit Unterscheidung zwischen Klassifikationsstufen, beschreibenden Attributen und Kennzahlen nicht möglich Daher eigene Modellierungsmodelle Multidimensionales Entity/Relationship-Modell (ME/R) Multidimensionale Unified Modeling Language (muml) Ansatz von Totok (objektorientiert, notiert in UML) Hier: ME/R Praktikum Data Warehousing und Mining, Sommersemester

18 ME/R-ModellM Weiterentwicklung e t des E/R-Modells Anforderungen Spezialisierung: Alle eingeführten Elemente sind Spezialfälle von E/R- Konstrukten Minimale Erweiterung: Leicht erlernbar für erfahrene E/R-Modellierer Darstellung der multidimensionalen Semantik: Klassifikationsschema, Würfelstruktur muss abbildbar sein Eingeführte Konstrukte Entitätenmenge Dimension Level (Klassifikationsstufe) n-äre Faktenbeziehung Binäre Klassifikationsbeziehungsmenge Praktikum Data Warehousing und Mining, Sommersemester

19 Visualisierung i der ME/R - Konstrukte Fakt Klassifikationsstufe Klassifikationsbeziehung Kenngröße Quartal Monat Tag Einkauf Region Stadt Strasse Kosten Praktikum Data Warehousing und Mining, Sommersemester

20 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

21 Relationale Umsetzung des multidim. Modells Anforderungen Beibehaltung der Semantik z.b. Hierarchien Effiziente Umsetzung von Anfragen Effiziente Verarbeitung von Anfragen Einfache Wartung z.b. beim Nachladen von Daten Relationales OLAP (ROLAP) Praktikum Data Warehousing und Mining, Sommersemester

22 Relationale l Umsetzung: Faktentabelle Beispiel zeigt einen typischen Datensatz Kennzahlen, Dimensionen Spalten Zellen Tupel Zusätzlich existieren Hierarchien Z.B.: Artikel Produktgruppe Produktkategorie Wie kann der Datacube mit Hierarchien in einem DBMS gespeichert werden? Faktentabelle ohne Hierarchien Praktikum Data Warehousing und Mining, Sommersemester

23 Relationale l Umsetzung: Star-SchemaS Eine Relation pro Dimension Nicht normalisiert Redundanz Gefahr von Anomalien Nur wenige Joins notwendig Nachteile werden in Warehouses oft in Kauf genommen Praktikum Data Warehousing und Mining, Sommersemester

24 Relationale Umsetzung: Snowflake-Schema Verfeinerung des Star-Schemas Normalisiert, keine Redundanz Mehrere Dimension Tables pro Dimension Relation pro Ebene einer Hierarchie Viele Joins: 11 Tabellen bei Gruppierung nach Kategorie, Land und Jahr Praktikum Data Warehousing und Mining, Sommersemester

25 Relationale l Umsetzung: Semantikverluste Verluste in Faktentabelle Unterscheidung von Dimensionen und Kenngrößen nicht ersichtlich Dimensionstabelle Unterscheidung zwischen beschreibendem Attribut und Attribut der Klassifikationsebene nicht möglich Aufbau der Dimensionen geht verloren Lösung: Erweiterung des Systemkatalogs in relationalen DBMS Multidimensionales OLAP (MOLAP) Hybrides OLAP (HOLAP) Praktikum Data Warehousing und Mining, Sommersemester

26 Überblick: bli OLAP-Techniken Relationales OLAP (ROLAP): Relationale Datenbank Skalierbarkeit gegeben, aber oft langsam (viele Joins) Multidimensionales i l OLAP (MOLAP): Multidimensionale Datenbank Persistente Speicherung aggregierter Kennzahlen Oft schneller, aber curse of dimensionality Hybrides OLAP (HOLAP): Mischform, Tradeoff: Geschwindigkeit vs. Flexibilität Desktop OLAP (DOLAP): Lokale multidimensionale Analysen z.b. für Mobile User Memory-Based OLAP: Datenhaltung komplett im RAM (Beispiel: QlikView) Praktikum Data Warehousing und Mining, Sommersemester

27 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

28 Zeit Pivotiereni Produkt Geographie Produkt Produkt Zeit Geographie Zeit Geographie Praktikum Data Warehousing und Mining, Sommersemester

29 Roll-up und Drill-down Drill-down Produkt Produkt Januar Quartal Februar Quartal März Quartal Geographie Geographie Roll-up Praktikum Data Warehousing und Mining, Sommersemester

30 Slicing i und Dicingi Produkt Produkt Zeit Zeit Geographie Geographie Slicing: Einschränkung entlang einer Dimension Dicing: Einschränkung entlang zweier oder mehr Dimensionen Praktikum Data Warehousing und Mining, Sommersemester

31 Zusammenfassung: multidim. Operatoren Nutzen multidimensionale Struktur der Daten Erlauben einfache Modifikation von Anfragen zu inhaltlich ähnlichen Anfragen zu strukturell ähnlichen Anfragen Sind auf die Fragestellungen im Data Warehouse zugeschnitten Praktikum Data Warehousing und Mining, Sommersemester

32 Rückblick: k MDX (I) Praktikum Data Warehousing und Mining, Sommersemester

33 Rückblick: k MDX (II) Praktikum Data Warehousing und Mining, Sommersemester

34 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Cognos Report Studio Cognos Analysis Studio Internals Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

35 Der Business-Intelligence-Markt 2010 Magic Quadrant for Data Warehouse Database Management Systems, Gartner 2010 Magic Quadrant for Business Intelligence Platforms, Gartner 2010 Praktikum Data Warehousing und Mining, Sommersemester

36 Cognos Übernahme durch IBM 2008 ( Cognos, an IBM Company ) Cognos BI ermöglicht Erstellen von Ad-hoc-Anfragen Anfragen (Query Studio) Berichten (Report Studio) Multidimensionalen Anfragen (Analysis Studio) Backend Data Cube Relationale Daten Anmeldung Internet-Explorer URL: p Benutzername: <Benutzername> Passwort: <Passwort> Praktikum Data Warehousing und Mining, Sommersemester

37 Cognos - Startbildschirm Praktikum Data Warehousing und Mining, Sommersemester

38 Cognos-Komponenten Query Studio (für einfache Anfragen) In Echtzeit Visuell Report Studio (für komplexe Berichte) Visuell Ergebnisgenerierung i auf Befehl Bedingte Variablen Dynamische Berichte Layout individueller anpassbar Analysis Studio (für multidimensionale i l Sicht) In Echtzeit Visuell Praktikum Data Warehousing und Mining, Sommersemester

39 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Cognos Report Studio Cognos Analysis Studio Internals Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

40 Report Studio Erstellen komplexer Berichte Vielfältige Ausgabe- und Darstellungsoptionen Parameterabfrage bei Anfrageaufruf Praktikum Data Warehousing und Mining, Sommersemester

41 Report Studio - Aufbau Praktikum Data Warehousing und Mining, Sommersemester

42 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Cognos Report Studio Cognos Analysis Studio Internals Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

43 Analysis Studio Aufbau Praktikum Data Warehousing und Mining, Sommersemester

44 Sicht auf die Daten Blättern in der Hierarchie möglich Ähnlich MDX Tools in SQL Server Unterscheidung zwischen Fakten und Dimensionen Praktikum Data Warehousing und Mining, Sommersemester

45 Multidimensionale i l Operatoren Rechtsklick auf Spalten- bzw. Zeilennamen Kontextmenü erlaubt Drilldown und Drillup Slicing und Dicing (über Ausschließen ) Pivotieren wie im Report Studio Entsprechendes Icon im Menü anklicken Praktikum Data Warehousing und Mining, Sommersemester

46 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Cognos Report Studio Cognos Analysis Studio Internals Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

47 Cognos: Anfragesprachen MDX auch von Cognos unterstützt! Praktikum Data Warehousing und Mining, Sommersemester

48 Natives SQL vs. Cognos SQL Natives SQL Für einzelne Anfragen an Datenbank Cognos SQL Generische Cognos-Erweiterung von SQL Für mehrere Datenquellen Natives SQL ist Untermenge Praktikum Data Warehousing und Mining, Sommersemester

49 MDX-Unterstützung In Abfrageexplorer: SQL oder MDX möglich Praktikum Data Warehousing und Mining, Sommersemester

50 Natives MDX vs. Cognos SQL Praktikum Data Warehousing und Mining, Sommersemester

51 Erstellung von Berichten: Vorgehensweisen Intuitives Vorgehen: Zusammenklicken im Hintergrund Formulierung in Cognos SQL Generierung von nativem SQL/MDX für DB-Anfrage Optimierung der DB-Anfragen durch Benutzer möglich Alternativ: Einbindung existierender SQL-/MDX-Anfragen über Abfrageexplorer Erst danach Berichterstellung Praktikum Data Warehousing und Mining, Sommersemester

52 Agenda Online Analytical Processing (OLAP) Multidimensionales Datenmodell Konzeptionelle Modellierung Relationale Umsetzung des multidim. Modells Multidimensionale Operatoren Cognos Cognos Report Studio Cognos Analysis Studio Internals Hinweise zur Bearbeitung Praktikum Data Warehousing und Mining, Sommersemester

53 Hinweise i zur Bearbeitung Erreichen ec e der Tools oos Internet Explorer URL: Report Studio bevorzugt nutzen Performance! Daten des Data Cubes aus Package: DWM Multidimensional Ergebnis in Eigenem Ordner speichern Praktikum Data Warehousing und Mining, Sommersemester

54 Quellenangaben A. Bauer, H. Günzel: Data Warehouse Systeme Architektur, Entwicklung, Anwendung, dpunkt.verlag, J. Han, M. Kamber: Data Mining Concepts and Techniques, Morgan Kaufmann, Cognos Report Studio Professional Authoring User Guide, Praktikum Data Warehousing und Mining, Sommersemester

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Themenblock: Data Warehousing (I)

Themenblock: Data Warehousing (I) Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining Agenda Einführung Data Warehouses Online Transactional Processing (OLTP) Datenmanipulation mit SQL Anfragen mit SQL Online

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt. Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar

Mehr

Themenblock: Data Warehousing II

Themenblock: Data Warehousing II Themenblock: Data Warehousing II Praktikum: Data Warehousing und Data Mining Agenda Wiederholung: multidimensionale Operatoren Cognos Cognos Report Studio Cognos Analysis Studio Hinweise zur Bearbeitung

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Multidimensionales Datenmodell

Multidimensionales Datenmodell Multidimensionales Datenmodell Grundbegriffe fi Fakten, Dimensionen, Würfel Analyseoperationen fi Drill-Down, Roll-Up, Slice und Dice Notationen zur konzeptuellen Modellierung fi ME/R, ADAPT Relationale

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Inhalt. 4.1 Motivation. 4.2 Datenintegration. 4.3 Konzeptuelle Modellierung. 4.4 Anfragen an Data Warehouses. 4.5 Implementierungsaspekte

Inhalt. 4.1 Motivation. 4.2 Datenintegration. 4.3 Konzeptuelle Modellierung. 4.4 Anfragen an Data Warehouses. 4.5 Implementierungsaspekte 4. Data Warehouses Inhalt 4.1 Motivation 4.2 Datenintegration 4.3 Konzeptuelle Modellierung 4.4 Anfragen an Data Warehouses 4.5 Implementierungsaspekte 2 Literatur V. Köppen, G. Saake und K.-U. Sattler:

Mehr

Seminar Data Warehousing. Seminar. Data Warehousing. Thema: Speichermodelle für Data-Warehouse-Strukturen

Seminar Data Warehousing. Seminar. Data Warehousing. Thema: Speichermodelle für Data-Warehouse-Strukturen Seminar Data Warehousing Thema: Speichermodelle für Data-Warehouse-Strukturen Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Institut für Informatik Lehrstuhl für Datenbanken

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Michael Bauer Niederlassungsleiter Köln

Michael Bauer Niederlassungsleiter Köln Click to edit Master title style 1 Michael Bauer Niederlassungsleiter Köln Hamburg, 18. Juni 2009 2009 IBM Corporation Agenda Click to edit Master title style 2 zur Person Wo, Warum.., Was - CPM liefert

Mehr

Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP

Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP Kompakt-Intensiv-Training OLAP gilt als Schlüsseltechnologie auf dem Gebiet Business Intelligence. In unserer Schulung "Microsoft SQL-Server 2008 R2/2012

Mehr

Modellierung von OLAP- und Data- Warehouse-Systemen

Modellierung von OLAP- und Data- Warehouse-Systemen Andreas Totok Modellierung von OLAP- und Data- Warehouse-Systemen Mit einem Geleitwort von Prof. Dr. Burkhard Huch Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan 2011 Agenda Was ist arcplan Edge? Komponenten von arcplan Edge arcplan Edge Roadmap Live Demo arcplan

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

Business Intelligence

Business Intelligence Hochschule Darmstadt Business Intelligence Fachbereich Informatik Praktikumsaufgabe 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2007 Business Intelligence Aufgabenstellung 1.

Mehr

Inhaltsverzeichnis. vii.

Inhaltsverzeichnis. vii. vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt 2 1.2 OLTP versus OLAP 4 1.2.1 OLAP-versus OLTP-Transaktionen 5 1.2.2 Vergleich von OLTP und OLAP 6 1.2.3 Abgrenzung: DBMS-Techniken

Mehr

Business Intelligence Aufgabenstellung

Business Intelligence Aufgabenstellung Hochschule Darmstadt Business Intelligence (BI) Fachbereich Informatik Praktikum 2 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Sebastian Gobst Änderung: 15.06.2012 Datum: 30.05.2012 1. Einführung

Mehr

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier Realisierung von OLAP Operatoren in einem visuellen Analysetool Vortrag von Alexander Spachmann und Thomas Lindemeier Gliederung Ausgangssituation/Motivation Was ist OLAP? Anwendungen Was sind Operatoren?

Mehr

Business Intelligence Praktikum 2

Business Intelligence Praktikum 2 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 2 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.05.2014 1. Kurzbeschreibung Business Intelligence

Mehr

Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch

Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch Wann nutze ich welchen semantischen Layer im Kontext von SAP HANA? [B3] Francis Fink Uetliberg, 16.09.2014 www.boak.ch Obwohl mit der Verwendung von SAP HANA ein neuer semantischer Layer zum Einsatz kommt,

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Einführung. Kapitel 1 2 / 508

Einführung. Kapitel 1 2 / 508 Kapitel 1 Einführung 2 / 508 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern und Verwalten von Daten. Warum kein herkömmliches Dateisystem verwenden? Ausfallsicherheit und Skalierbarkeit

Mehr

OLAP und der MS SQL Server

OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP und der MS SQL Server OLAP-Systeme werden wie umfangreiche Berichtssysteme heute nicht mehr von Grund auf neu entwickelt. Stattdessen konzentriert man sich auf die individuellen

Mehr

Vertrautmachen mit Daten

Vertrautmachen mit Daten Kapitel III Vertrautmachen mit Daten 2004 AIFB / FZI 1 III Vertrautmachen mit Daten (see also Data Preparation ) 2004 AIFB / FZI 2 III Vertrautmachen mit Daten III.1 OLAP III.1.1 Einführung in OLAP Wie

Mehr

SQL Server 2008 Überblick. Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk

SQL Server 2008 Überblick. Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk SQL Server 2008 Überblick Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk SQL Server 2008 Sichere, vertrauenswürdige Datenplattform Optimierte und vorhersehbare

Mehr

Agenda. Hype oder Mehrwert. Herausforderungen. Methoden Werkzeuge. Kosten Nutzen. Definition Ziele

Agenda. Hype oder Mehrwert. Herausforderungen. Methoden Werkzeuge. Kosten Nutzen. Definition Ziele Agenda Definition Ziele Methoden Werkzeuge Herausforderungen Kosten Nutzen Hype oder Mehrwert Definition / Ziele Google Suche: define:business Intelligence Mit Business Intelligence können alle informationstechnischen

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl

C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl Ein Seminar der DWH academy Seminar C09 Einsatz SAP BW im Vergleich zur Best-of-Breed- Produktauswahl Befasst man sich im DWH mit der Auswahl

Mehr

Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein

Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert. Entität kann in einer oder mehreren Unterklassen sein 1 Definitionen 1.1 Datenbank Verwandt, logisch kohärent, zweckspezifisch, an reale Welt orientiert Integriert, selbstbeschreibend, verwandt 1.2 Intension/Extension Intension: Menge der Attribute Extension:

Mehr

Innovative Ansätze für den Gesundheitsmarkt. Mainz, 10. Mai 2011

Innovative Ansätze für den Gesundheitsmarkt. Mainz, 10. Mai 2011 Business Intelligence und Geovisualisierung Innovative Ansätze für den Gesundheitsmarkt Mainz, 10. Mai 2011 Prof. Dr. Anett Mehler-Bicher Prof. Dr. Klaus Böhm Inhalt Ausgangssituation und Motivation Motivation

Mehr

IT-basierte Kennzahlenanalyse im Versicherungswesen

IT-basierte Kennzahlenanalyse im Versicherungswesen Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen Kennzahlenreporting mit Hilfe des SAP Business Information Warehouse Diplomica Verlag Angelina Jung IT-basierte Kennzahlenanalyse im Versicherungswesen:

Mehr

OLAP mit dem SQL-Server

OLAP mit dem SQL-Server Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1

Mehr

Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings

Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings Wirtschaft Simon Schäfer Data Warehouse. Komponente der Business Intelligence und Qualitätsfaktor des Reportings Bachelorarbeit Bachelor Thesis Data Warehouse - Komponente der Business Intelligence und

Mehr

OLAP und Aggregierung

OLAP und Aggregierung Stärkung der SelbstOrganisationsfähigkeit im Verkehr durch I+K-gestützte Dienste Seminar Data Warehousing im Verkehrsbereich Sommersemester 2003 OLAP und Aggregierung von Jan Sandberger Betreuer: Heiko

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics Vorstellung IBM Cognos 10.2 Oliver Linder Client Technical Professional Business Analytics Agenda IBM Cognos 10.2 Architektur User Interfaces IBM Cognos Workspace IBM Cognos Workspace Advanced IBM Cognos

Mehr

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3 vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2

Mehr

Carl-Christian Kanne. Einführung in Datenbanken p.1/513

Carl-Christian Kanne. Einführung in Datenbanken p.1/513 Einführung in Datenbanken Carl-Christian Kanne Einführung in Datenbanken p.1/513 Kapitel 1 Einführung Einführung in Datenbanken p.2/513 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45 Vorwort 15 Teil I Grundlagen 19 i Einführung In das Thema Datenbanken 21 I.I Warum ist Datenbankdesign wichtig? 26 i.2 Dateisystem und Datenbanken 28 1.2.1 Historische Wurzeln 29 1.2.2 Probleme bei der

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Aufgabe 1: [Logische Modellierung]

Aufgabe 1: [Logische Modellierung] Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge Self Service BI - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge 04. Juli 2013 Cubeware GmbH zu Gast im Hause der Raber+Märcker GmbH Referent: Uwe van Laak Presales Consultant

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

SAP Business Intelligence

SAP Business Intelligence SAP Business Intelligence Helmut Roos Diplom-Ingenieur Unternehmensberater Grundlagen zu Netweaver 7.0 D-67067 Ludwigshafen +49 (621) 5 29 44 65 Data Acquisition Common Read / Write Interface Open Interface

Mehr

Produktinformation eevolution OLAP

Produktinformation eevolution OLAP Produktinformation eevolution OLAP Was ist OLAP? Der Begriff OLAP steht für Kurz gesagt: eevolution -OLAP ist die Data Warehouse Lösung für eevolution. Auf Basis verschiedener

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 6. Übung Juni 2015 Agenda Hinweise zur Klausur Zusammenfassung OPAL Übungen / Kontrollfragen

Mehr

Friedrich-Schiller-Universität Jena Fakultät für Mathematik Informatik Lehrstuhl für Datenbanken und Informationssysteme Betreut von: David Wiese

Friedrich-Schiller-Universität Jena Fakultät für Mathematik Informatik Lehrstuhl für Datenbanken und Informationssysteme Betreut von: David Wiese Friedrich-Schiller-Universität Jena Fakultät für Mathematik Informatik Lehrstuhl für Datenbanken und Informationssysteme Betreut von: David Wiese Seminar Data Warehousing Sommersemester 2005 vorgelegt

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Ausarbeitung Projekt Sven Elvers Business Intelligence: Analyse Betreuender Prüfer: Prof. Dr. Olaf Zukunft Fakultät

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1 Info Seite 1 Merkblatt DWH Mittwoch, 6. Januar 2016 13:55 Version: 1.0.0 Study: 3. Semester, Bachelor in Business and Computer Science School: Hochschule Luzern - Wirtschaft Author: Janik von Rotz (http://janikvonrotz.ch)

Mehr

Einführung in Data Warehouses

Einführung in Data Warehouses Kapitel l6 Einführung in Data Warehouses Vorlesung: Dr. Matthias Schubert Skript 2009 Matthias Schubert Dieses Skript basiert auf dem Skript zur Vorlesung Datenbanksysteme II von Prof. Dr. Christian Böhm

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Andrei Buhrymenka Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Für Unternehmen mit Business Intelligence Diplomica Verlag Andrei Buhrymenka Erfolgreiche Unternehmensführung

Mehr

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 16 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining operationale DB operationale DB operationale DB Data Warehouse operationale

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.10.2013 Business Intelligence Praktikum

Mehr

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 24. Juni 2014 Agenda Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen

Mehr

Data Warehouse und Data Mining

Data Warehouse und Data Mining Einführungsseminar Data Mining Seminarvortrag zum Thema: Data Warehouse und Data Mining Von gehalten am Betreuer: Dr. M. Grabert Einführung Problemstellung Seite 2 Einführung Unternehmen bekommen eine

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Information-Design-Tool

Information-Design-Tool Zusatzkapitel Information-Design-Tool zum Buch»HR-Reporting mit SAP «von Richard Haßmann, Anja Marxsen, Sven-Olaf Möller, Victor Gabriel Saiz Castillo Galileo Press, Bonn 2013 ISBN 978-3-8362-1986-0 Bonn

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

SQL/OLAP und Multidimensionalität in der Lehre

SQL/OLAP und Multidimensionalität in der Lehre SQL/OLAP und Multidimensionalität in der Lehre Vortrag auf der DOAG 2008 Prof. Dr. Reinhold von Schwerin Hochschule Ulm, Fakultät für Informatik 1. Dezember 2008 Prof. Dr. Reinhold von Schwerin SQL/OLAP

Mehr

Logische Modelle für OLAP. Burkhard Schäfer

Logische Modelle für OLAP. Burkhard Schäfer Logische Modelle für OLAP Burkhard Schäfer Übersicht Einführung in OLAP Multidimensionale Daten: Hypercubes Operationen Formale Grundlagen Zusammenfassung Einführung in OLAP Verfahren zur Analyse großer

Mehr

Modellierung und Implementierung einer End-to-End BI Lösung

Modellierung und Implementierung einer End-to-End BI Lösung IBM Software Group Modellierung und Implementierung einer End-to-End BI Lösung DB2 Information Management Software Martin Clement, mclement@de.ibm.com Otto Görlich, ogoerlich@de.ibm.com Stefan Sander,

Mehr

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining Data Warehousing Weitere Buzzwörter: OLAP, Decision Support, Data Mining Wichtige Hinweise Zu diesem Thema gibt es eine Spezialvorlesung im Sommersemester Hier nur grober Überblick über Idee und einige

Mehr

Seminar C16 - Datenmodellierung für SAP BW

Seminar C16 - Datenmodellierung für SAP BW C16: Datenmodellierung für SAP BW Ein Seminar der DWH academy Seminar C16 - Datenmodellierung für SAP BW Dieses Seminar soll einen umfassenden Einblick in die Datenmodellierung beim Einsatz von SAP BW

Mehr