Data Vault. Data Warehouse Agilität nicht nur durch Vorgehensweisen, sondern mit Methode. Dr. Bodo Hüsemann Informationsfabrik GmbH

Größe: px
Ab Seite anzeigen:

Download "Data Vault. Data Warehouse Agilität nicht nur durch Vorgehensweisen, sondern mit Methode. Dr. Bodo Hüsemann Informationsfabrik GmbH"

Transkript

1 Data Vault Data Warehouse Agilität nicht nur durch Vorgehensweisen, sondern mit Methode Dr. Bodo Hüsemann Informationsfabrik GmbH

2 Konzeption und Architektur Implementierung [ETL, Reporting, OLAP, Planung] Schulungen für BI und DWH [Tools, Vorgehensmodelle, Projektmanagement] A C B D Projektmanagement [klassisch und agil] Coaching, Beratung, Expertisen 2

3 Wie sieht Ihr Enterprise Data Warehouse aus? Quelle: unlustig.de 3

4 Agenda Agenda Gründe für Data Vault Data Vault Definition Modellierung eines Data Vault ETL Verarbeitung Data Vault-Architekturen Data Vault 2.0 Fazit 4

5 BI Total Cost of Change bei DWH Änderungen Effort (Total Cost of Change, TCC) Regressiontest Reengineering Impactanalysis New Features V1 V2 V3 V4 V5 Iteration Aufwand zur Umsetzung neuer Features ist prinzipiell konstant Gesamtaufwand pro Iteration steigt mit der DWH Größe Typische Ursachen - Mangelnde Entkopplung (ETL + DB + Gesamtarchitektur) - Fehlende Standardisierung und Automatisierung 5

6 Wozu Data Vault? Typische Anlässe in DWH-Projekten Performanceengpässe Komplexe Lade-Netze mit starker Kopplung Geringer Parallelisierungsgrad Hardware ist nicht ausgelastet Lange Entwicklungszyklen Erweiterungen erfordern Anpassung von existierendem Code und Reports Individualentwicklung und Standardlogik sind nicht gut separiert Geringer Automatisierungsgrad bei der Entwicklung Änderung bestehender Businesslogik aufwändig Migration abhängiger Komponenten lässt sich schwer zeitlich entkoppeln Single-Point of Truth wird zunehmend in Frage gestellt Neue Projekte erfordern zukunftsfähige Architektur EDWH ist ein langfristiges Investitionsgut (Laufzeit > 10 Jahre) 6

7 Agenda Agenda Gründe für Data Vault Data Vault Definition Modellierung eines Data Vault ETL Verarbeitung Data Vault-Architekturen Data Vault 2.0 Fazit 7

8 Übersicht Data Vault Data Vault ist eine Data Warehose Methodensammlung Ziel ist der Aufbau eines Enterprise Data Warehouse Entwickelt von Dan Linstedt ( ) Import nach Europa durch Ronald Damhof (2007) Erste niederländische User Group (2010) Veröffentlichung Data Vault 2.0 (2013) Deutschsprachige Data Vault User Group (2014) 8

9 Was ist Data Vault? Methoden zur Datenmodellierung Konzeptionelle Elemente der Modellierung Hub & Spoke basierend Prüfbare Entwurfsregeln Methoden zur Datenverarbeitung Standardisierungsansatz für Integrationslogik Realtime & Batch Unterstützung ETL-Templates und Automatisierungsansätze Architekturgrundsätze Trennung von Integrations- / Historisierungslogik und Businesslogik Voraussetzungen zur Virtualisierung des BI Layers Einbindung von Big Data Szenarien und NoSQL Datenbanken Agiler Entwicklungsprozess Unterstützung agiler Vorgehensweisen (SCRUM basiert) Iterativ, inkrementeller Entwicklungsansatz Kapselung und Entkopplung von Änderungen 9

10 Data Vault Konzept der Dekomposition 3NF Business Key Kontextinformationen Star Schema Beziehungen Fact Dimension Data Vault Hub Sat Link Sat Farbschema: Hultgren 10

11 Agenda Agenda Gründe für Data Vault Data Vault Definition Modellierung eines Data Vault ETL Verarbeitung Data Vault-Architekturen Data Vault 2.0 Fazit 11

12 Konzeptionelle Elemente eines Data Vault Modells Hub Ist der Stamm einer Entität (Integrationsanker): Surrogate-Key (SK) Business-Key (BK) Audit-Informationen (Quelle, Erstellungsdatum) Link Bildet die Beziehungen zwischen Hubs ab : Surrogate-Key (SK) Surrogate-Keys der verbundenen Hubs (FKs) Audit-Informationen (Quelle, Erstellungsdatum) Satellite Speichert die Detaildaten von Hubs und Links: Surrogate-Key der Hubs oder Links Detailattribute und Historie Audit-Informationen (Quelle, Erstellungsdatum) 12

13 Konzeptionelle Elemente: Hub Fachlicher Stamm einer Entität Hub Struktur Hub PK H_SID Business Key Source Timestamp Surrogate Key Audit Informationen Beispiel: PK H_Customer H_Cust_SID Cust_Nr Source Timestamp H_Customer H_Cust_SID Cust_Nr Source Timestamp 1 23 CRM CRM SALES DELIVERY DELIVERY

14 Konzeptionelle Elemente: Link Fachliche Beziehung zwischen Entitäten (Hubs) Link Struktur Link PK L_SID Surrogate Key FK1 H_SID 1 FK2 H_SID 2 Source Timestamp Unique Index Beispiel: PK FK1 FK2 L_Cust_Acct L_SID Cust_SID Acct_SID Source Timestamp Link_Cust_Acct L_SID Cust_SID Acct_SID Source Timestamp MANUFACT MANUFACT PLANNING DELIVERY DELIVERY

15 Konzeptionelle Elemente: Satellite Fachlicher Kontext von Hubs und Links inkl. Historisierung Satellite Struktur: Satellite PK,FK1 PK H_SID Timestamp Context 1... Context n Source Zusammengesetzter Historisierungsschlüssel Kontext Informationen Beispiel: PK,FK1 PK S_Customer Cust_SID Timestamp Name Phone_Nr Source S_Customer Cust_SID Timestamp Name Phone_Nr Source Linstedt MAN Hultgren MAN Damhof PLAN Inmon DELI Inmon DELI 15

16 Skizze für ein konzeptionelles Data Vault Modell S_Kundedetails KD_SID Vorname Nachname TS Src 1 Jürgen Maier CRM 2 Klaus Müller CRM 3 Josef Schmidt CRM H_Kunde KD_SID Kundennr TS Src CRM CRM CRM L_KD_KG H_Kundengruppe L_SID KD_SID KGR_SID TS Src CRM CRM CRM KGR_SID Kundengruppe TS Src 1 KG CRM 2 KG CRM 16

17 Schrittweise Erweiterung Customer Details Product Details Customer Employee Details Product L_Cus_Emp_Pro_Sal Employee L_Pro_Spl Sale Supplier Supplier Details 2. Iteration Sale Details Sale Additional 3. Iteration - Additive Erweiterung - Minimale Impact Analyse - Minimaler Regressionstest 17

18 Übersicht zu einem Data Vault Modell 18

19 Bezeichnung Modellierung von Relationen Kunde Kundengruppe gehört zu ID Nachname Vorname Nr Kundengruppen ID Kundennr Vorname Nachname Gehört zu Bezeichnung S_Kunde PK,FK2 KD_SK PK Timestamp Vorname Nachname Source S_Kd_Gruppe PK,FK1 KGR_SK PK Timestamp Bezeichnung Source H_Kunde PK KD_SK Kundennr Source Timestamp H_Kd_Gruppe PK KGR_SK ID Source Timestamp L_Kd_Grp PK KDGRP_SK FK1 KD_SK FK2 KGR_SK Source Timestamp Kunde PK Kundennr Vorname Nachname FK1 KGR_SK Kundengruppe PK KGR_SK Bezeichnung Kunde PK Kundennr Vorname Nachname Kundengruppe PK KGR_SK Bezeichnung Kd_Grp_ZO PK,FK1 KGR_SK PK,FK2 Kundennr 1:n n:m 19 Data Vault ER Modell Konzeptionell Relational

20 Entwurfsregeln und Rahmenwerk Hub Es gibt keine direkten Verbindungen zwischen Hubs (keine 1:n-Beziehungen) Hubs werden immer durch Links verbunden (auch reflexive Relationen) Hub keys sind invariant (SK und BK sind konstant) Link Links können mehr als nur zwei Hubs verbinden Links können auch andere Links in die Relation aufnehmen Links enthalten mindestens zwei Relationspartner Satellite Satellites verweisen auf Hubs oder Links Jeder Hub oder Link kann beliebig viele Satellites besitzen Der Zuschnitt der Satellites richtet sich oft nach der Änderungshäufigkeit der Attribute Surrogate Keys werden in Hubs und Links verwendet, Satellites übernehmen den SK ihres zugeordneten Hubs/Links 20

21 Agenda Agenda Gründe für Data Vault Data Vault Definition Modellierung eines Data Vault ETL Verarbeitung Data Vault-Architekturen Data Vault 2.0 Fazit 21

22 Data Vault ETL Verarbeitung Designziele Performance Standardisierung Automatisierung: Templates, Generatoren Toolunterstützung Verwaltung der Data Vault Objekte (Metadaten) Definition von Source/Target Mappings Generierung von DB Migrations- und Strukturskripte Generierung von ETL Code Tools RapidAce (Dan Linstedt, retired) Wherescape RED (ETL Tool with Data Vault) MID Innovator (Modeling) AnalytixDS BIReady Quipu (SQL based) PDI Data Vault framework (Pentaho) 22

23 ETL - Laden der Hubs (Schlüssel) Staging Daten Liste mit eindeutigen Business Keys Schlüssel existiert? nein Schlüssel zu Zieltabelle hinzufügen Hub ja Schlüssel überspringen INSERT INTO H_Hub(BK, timestamp, source) SELECT source.bk, sysdate, 'source' FROM source WHERE NOT EXISTS ( SELECT * FROM H_HUB WHERE H_HUB.BK=SOURCE.BK ) 23

24 ETL - Laden der Links (Relationen) Staging Daten Liste mit eindeutigen Businesskeys der Relation Lookup der Surrogate Keys für jeden Hub Datensatz existiert? nein Schlüssel zur Zieltabelle hinzufügen Link ja Schlüssel überspringen INSERT INTO L_LINK (H1_ID, H2_ID, timestamp, source) SELECT H1.ID, H2.ID, sysdate, 'source' FROM H_HUB1 H1, H_HUB2 H2, SOURCE SRC WHERE H1.BK=SRC.BK1 AND H2.BK=SRC.BK2 AND NOT EXISTS ( SELECT * FROM L_LINK WHERE H1_ID=H1.ID AND H2_ID=H2.ID ) 24

25 ETL - Laden der Satellites (Attribute) Staging Daten Businesskey + Attribute Lookup der Surrogate Keys für jeden Hub/Link Datensatz existiert und gleich? nein Finde aktuellste Satellitendaten Satellitendaten hinzufügen Satellit ja Schlüssel überspringen INSERT INTO S_SAT (H_ID, timestamp, source) SELECT sysdate, source FROM H_HUB1 H, SOURCE SRC, S_SAT SAT WHERE H.BK=SRC.BK1 AND SAT.H_ID=H.ID AND SAT is current AND 25

26 Übersicht des Ladeprozesses Staging Loads Data Vault Loads Data Mart Loads Staging Hubs Hub Satellites Links Link Satellites Dimensionen Fakten Nur 3 Synchronisationspunkte je Schnittstelle Beliebig viele Schnittstellen parallel In Data Vault 2.0 werden diese Synchronisationspunkte aufgehoben (s.u.)! 26

27 Agenda Agenda Gründe für Data Vault Data Vault Definition Modellierung eines Data Vault ETL Verarbeitung Data Vault-Architekturen Data Vault 2.0 Fazit 27

28 Klassische DWH Architekturen - Eigenschaften Sources Staging EDWH BI-Layer Single Point of Truth Analytical BI Integrationslogik 1:1 Historisierung OLAP external Fachlogik Standard Reporting Business-Regeln greifen vor der EDWH-Befüllung Integrationslogik und Fachlogik sind gekoppelt In der Regel manuell erstellter ETL-Code 28

29 Data Vault Architektur (vereinfacht) Sources Staging Data Vault BI-Layer Single Version of Facts Analytical BI 1:1 Integrationslogik Historisierung Fachlogik OLAP Hard Rules Soft Rules external Standard Reporting Business-Regeln greifen nach der EDWH-Befüllung Automatisch erstellte, massiv parallelisierbare ETL-Prozesse Hard rules : keine Änderung von Umfang, Inhalt oder Granularität Soft rules : Fachlogik mit Transformation, Änderung, Aggregation, Filter 29

30 Data Vault Architekturen: Raw- und Business-Vault Sources Staging Data Vault BI-Layer 1:1 Integrationslogik Single Version of Facts Soft Raw Vault Rules Analytical BI OLAP external Hard Rules Business Vault Standard Reporting Single Point of Truth Zentralisierung von Business-Logik in einer Business Vault (neben Raw Vault) BI Layer greift standardmäßig auf Business Vault zu Spezifische Fachlogik für Data Marts greift auf Raw Vault zu 30

31 Agenda Agenda Gründe für Data Vault Data Vault Definition Modellierung eines Data Vault ETL Verarbeitung Data Vault-Architekturen Data Vault 2.0 Fazit 31

32 Data Vault 1.0 / Data Vault 2.0 Weiterentwicklung von Data Vault durch Dan Linstedt Data Vault 1.0 Basis der Modellierung ETL Konzept Basisarchitektur Data Vault 2.0 Projekt-Methodik (SCRUM, CMMI, Six Sigma) Datenmodelloptimierungen für Big Data-Plattformen (Hadoop, Netezza) Big Data Architekturerweiterung Zusätzliche Implementierungsdetails (ETL, Metadaten) 32

33 Data Vault 2.0 Datenmodell: Hash Values Partitioning Change detection - Vollständig parallele ETL Beladung der Data Vault (Hubs + Links + Satelliten)! - ETL und Anfrageoptimierung durch Hash-Partitionierung - Performance-Optimierung zur Historisierung (Hash-basierte Änderungserkennung) - NoSQL Systeme: Optimale physikalische Datenverteilung (+ Join Optimierung) - Hash Kollisionen sind extrem unwahrscheinlich: Bei 6 Billionen neuen Hashes pro Sekunde ist im Mittel nach 100 Jahren mit einer Kollision zu rechnen (Modell: Birthday Paradox) 33

34 Data Vault Architekturen: Big Data Integration Sources Staging Data Vault BI-Layer Analytical BI 1:1 Historisierung OLAP H_Customer external Vorname Nachname Standard Reporting Join über Hashkey Ergebnisse Big Data (Volume, Velocity, Variety) HDFS S_Webprofile Map & Reduce Predictive Analytics Mass-Aggregation Anwendungsfälle für Hadoop 1 zusätzliche Datenquelle (Spezial-Parser zur relationalen Transformation) 2 Erweiterung DWH (Speicherung z.b. semi- oder unstrukturierter Information (JSON, XML, PDF) Spezialanalyse-Werkzeug (Massenanalyse) 3 34

35 Agenda Agenda Gründe für Data Vault Data Vault Definition Modellierung eines Data Vault ETL Verarbeitung Data Vault-Architekturen Data Vault 2.0 Fazit 35

36 Vorteile beim Einsatz von Data Vault Schnellere Anpassung des EDWH an neue Anforderungen Iterative / inkrementelle Entwicklung: Gute Impact-Isolation + starke Entkopplung Aufwand zur Erweiterung/Änderung (Total Cost of Change, TCC) bleibt konstant und ist unabhängig von der DWH Größe Kein Re-Engineering bestehender Bereiche notwendig Hoher Automatisierungsgrad ETL Standardisierung Verwendung von ETL-Templates/Generatoransätzen Parallelisierbarkeit Hoch-performante Lade-Prozesse Bessere Koordination innerhalb ETL-Entwicklungsteams Gute Integration von Big Data Technologie 36

37 Bleiben wir in Kontakt Dr. Bodo Hüsemann Informationsfabrik GmbH /

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04.

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04. Data Vault Modellierungsmethode für agile Data Warehouse Systeme Dr. Bodo Hüsemann Informationsfabrik GmbH DOAG BI, München, 17.04.2013 Die Informationsfabrik Die Informationsfabrik macht erfolgreiche

Mehr

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU BLUEFORTE GmbH Dirk Lerner 25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU 1 Elemente des Data Vault (Basic) HUB

Mehr

Agile DWH Modellierung mit Data Vault. Alexander Blech Matthias Wendt 2015-04-15

Agile DWH Modellierung mit Data Vault. Alexander Blech Matthias Wendt 2015-04-15 Agile DWH Modellierung mit Data Vault Alexander Blech Matthias Wendt 2015-04-15 Agile DWH Modellierung mit Data Vault Agenda OSP Dresden und die Ottogroup Data Vault Theorie DV im Einsatz für die Hermes

Mehr

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05.

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05. Vom Single Point of Truth zur Single Version of the Facts Data Warehousing zu Beginn des BigData-Zeitalters inspire IT - Frankfurt 11. 12.05.2015 Fahmi Ouled-Ali Kabel Deutschland Marian Strüby OPITZ CONSULTING

Mehr

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault

Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Die perfekte Kombination im Agilen Data Warehouse Oracle Engineered Systems mit Data Vault Herbert Rossgoderer Geschäftsführer Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH ISE

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Data-Vault-Automation aus dem Datenmodellierungstool. 1. Tagung der DDVUG am 24.Juni2014

Data-Vault-Automation aus dem Datenmodellierungstool. 1. Tagung der DDVUG am 24.Juni2014 Data-Vault-Automation aus dem Datenmodellierungstool 1. Tagung der DDVUG am 24.Juni2014 A G E N D A 1. MID & Innovator 2. Modell & Methode 3. Architektur & Automatisierung 4. Nutzen & Veränderung MID GmbH

Mehr

Data Vault Ein Leben zwischen 3NF und Star. Michael Klose, CGI Deutschland Oracle DWH Community, 18.03.2014

Data Vault Ein Leben zwischen 3NF und Star. Michael Klose, CGI Deutschland Oracle DWH Community, 18.03.2014 Data Vault Ein Leben zwischen 3NF und Star Michael Klose, CGI Deutschland Oracle DWH Community, 18.03.2014 CGI Group Inc. 2013 Referent: Michael Klose Manager BI Architektur & Strategie, CGI Deutschland

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

ITGAIN Fach- und Technikspezialist

ITGAIN Fach- und Technikspezialist ITGAIN Fach- und Technikspezialist KOMPETENZ GEWINNBRINGEND EINSETZEN. Copyright 2012 ITGAIN GmbH 1 SPoT Wir bringen Ihre Informationen auf den Punkt. Hamburg, 07.05.2012 FACTORY-ANSATZ FÜR ETL-PROZESSE

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Von Bäumen, Früchten und Gärtnern - warum agile Prinzipien auch im BI Umfeld funktionieren. Es begrüßt Sie Thomas Löchte

Von Bäumen, Früchten und Gärtnern - warum agile Prinzipien auch im BI Umfeld funktionieren. Es begrüßt Sie Thomas Löchte Von Bäumen, Früchten und Gärtnern - warum agile Prinzipien auch im BI Umfeld funktionieren Es begrüßt Sie Thomas Löchte Die Informationsfabrik Die Informationsfabrik macht erfolgreiche BI und DWH Projekte

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Best Practices: BI mit Open-Source-Tools

Best Practices: BI mit Open-Source-Tools Best Practices: BI mit Open-Source-Tools Alf Hellmund - GIUA 2009 Seite 1 Agenda Einleitung Best Practices Fazit Vorstellung & Motivation Vorteile Architektur & Entwurf Datenmodellierung ETL Reporting

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Performance by Design Wie werden performante ETL-Prozesse erstellt?

Performance by Design Wie werden performante ETL-Prozesse erstellt? Performance by Design Wie werden performante ETL-Prozesse erstellt? Reinhard Mense ARETO Consulting Bergisch Gladbach Schlüsselworte: DWH, Data Warehouse, ETL-Prozesse, Performance, Laufzeiten, Partitionierung,

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch In dieser Session wird IDAREF, ein Framework, dass auf logischer Ebene eine analytische

Mehr

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format.

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format. Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH Gerd Schandert, Neuss den 18.03.2014 Agenda 1. Vorstellung Auftraggeber 2. Förderung allgemein 3. Schichten im Data Warehouse 4.

Mehr

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI Hanau, 25.02.2015 1 Titel der Präsentation, Name, Abteilung, Ort, xx. Monat 2014 Der Aufbau der Group BI Plattform

Mehr

Bachelor of Eng. (Wirtschafts-Ing.-wesen)

Bachelor of Eng. (Wirtschafts-Ing.-wesen) Persönliche Daten Name Philipp Müller Geburtsdatum 21.11.1982 Berufsausbildung Studium Industriekaufmann Bachelor of Eng. (Wirtschafts-Ing.-wesen) Kompetenzen Methodisch Datenmodellierung Fachlich Allgemeines

Mehr

Vollständig generisches DWH für kleine und mittelständische Unternehmen

Vollständig generisches DWH für kleine und mittelständische Unternehmen Vollständig generisches DWH für kleine und mittelständische Unternehmen Marc Werner Freiberufler Berlin Schlüsselworte: Wirtschaftlichkeit, Kostenreduzierung, Metadaten, Core Data Warehouse, Slowly Changing

Mehr

Agile BI mit Agile BI Modeler & Agile Scorecard

Agile BI mit Agile BI Modeler & Agile Scorecard Agile BI mit Agile BI Modeler & Agile Scorecard Business Intelligence - so einfach wie möglich - so komplex wie nö7g Jon Nedelmann Darmstadt, 26.10.2012 Agile BI Tools Agile BI Modeler Ist eine Web- Anwendung

Mehr

Agile BI-Evolution bei Axel Springer SE

Agile BI-Evolution bei Axel Springer SE Agile BI-Evolution bei Axel Springer SE Nicole Jänchen Axel Springer SE Dr. Jens Bleiholder OPITZ CONSULTING Deutschland GmbH Till Sander OPITZ CONSULTING Deutschland GmbH TDWI Konferenz München, 23.-25.

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Das generierte Data Warehouse

Das generierte Data Warehouse Das generierte Data Warehouse DOAG BI Konferenz 2012 Gregor Zeiler BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1 Erwartungshaltungen und Hoffnungen

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Data Warehouse Architekturtrends

Data Warehouse Architekturtrends Data Warehouse Architekturtrends Dr. Bodo Hüsemann Informationsfabrik GmbH Münster Schlüsselworte Architektur, Business Intelligence, Data Warehouse, Realtime Data Warehouse, Operational BI, Selfservice

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl

C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl C09: Einsatz SAP BW im Vergleich zur Best-of-Breed-Produktauswahl Ein Seminar der DWH academy Seminar C09 Einsatz SAP BW im Vergleich zur Best-of-Breed- Produktauswahl Befasst man sich im DWH mit der Auswahl

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb. Thomas Mattick, BBF GmbH

Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb. Thomas Mattick, BBF GmbH Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb Thomas Mattick, BBF GmbH Vorstellung Thomas Mattick Projektauszug (BI) Auftragsabwicklung/Leistungsbewertung

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Seminar C16 - Datenmodellierung für SAP BW

Seminar C16 - Datenmodellierung für SAP BW C16: Datenmodellierung für SAP BW Ein Seminar der DWH academy Seminar C16 - Datenmodellierung für SAP BW Dieses Seminar soll einen umfassenden Einblick in die Datenmodellierung beim Einsatz von SAP BW

Mehr

Oracle 10g revolutioniert Business Intelligence & Warehouse

Oracle 10g revolutioniert Business Intelligence & Warehouse 10g revolutioniert Business Intelligence & Warehouse Marcus Bender Strategisch Technische Unterstützung (STU) Hamburg 1-1 BI&W Market Trends DWH werden zu VLDW Weniger Systeme, mehr Daten DWH werden konsolidiert

Mehr

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Modellgetriebene agile BI-Vorgehensweise

Modellgetriebene agile BI-Vorgehensweise Modellgetriebene agile BI-Vorgehensweise Thomas Neuböck Konrad Linner 12.11.2013 Inhalt Anforderungen und Lösungsansatz Agile Vorgehensweise Orientierung nach Fachthemen Architekturrahmen Modellorientierung

Mehr

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren Strategie und Self Service BI im Unternehmen Gegensätze miteinander kombinieren Claas Planitzer Düsseldorf Juni 2015 Agenda 5. Herausforderungen 1. Idealbild 2. Realität 3. Self Service 4. BI. Was ist

Mehr

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch Markus Ruf, Geschäftsführer mip GmbH Jens Kretzschmar, Senior

Mehr

Erfahrungsbericht Agile Entwicklung einer BI Anwendung für das Meldewesen

Erfahrungsbericht Agile Entwicklung einer BI Anwendung für das Meldewesen Erfahrungsbericht Agile Entwicklung einer BI Anwendung für das Meldewesen Thomas Löchte Geschäftsführer Informationsfabrik GmbH Wir produzieren INFORMATION. Konzeption und Architektur Implementierung [ETL,

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Oracle Warehouse Builder 3i

Oracle Warehouse Builder 3i Betrifft Autoren Art der Info Oracle Warehouse Builder 3i Dani Schnider (daniel.schnider@trivadis.com) Thomas Kriemler (thomas.kriemler@trivadis.com) Technische Info Quelle Aus dem Trivadis Technologie

Mehr

Andreas Emhart Geschäftsführer Alegri International Group

Andreas Emhart Geschäftsführer Alegri International Group Andreas Emhart Geschäftsführer Alegri International Group Agenda Vorstellung Alegri International Überblick Microsoft Business Intelligence Sharepoint Standard Business Intelligence Tool Excel Service

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Datenbanken: Datenintegrität. www.informatikzentrale.de

Datenbanken: Datenintegrität. www.informatikzentrale.de Datenbanken: Datenintegrität Definition "Datenkonsistenz" "in der Datenbankorganisation (...) die Korrektheit der gespeicherten Daten im Sinn einer widerspruchsfreien und vollständigen Abbildung der relevanten

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling 30. Juni 2006 - Technische Universität Kaiserslautern Paul R. Schilling ! " #$% & '( ( ) *+, - '. / 0 1 2("$ DATEN SIND ALLGEGENWÄRTIG Bill Inmon, father of data warehousing Unternehmen In einer vollkommenen

Mehr

EXASolution als Bestandteil einer BI / DWH- und Kampagnenmanagementlandschaft Ein Erfahrungsbericht aus der Praxis

EXASolution als Bestandteil einer BI / DWH- und Kampagnenmanagementlandschaft Ein Erfahrungsbericht aus der Praxis EXASolution als Bestandteil einer BI / DWH- und Kampagnenmanagementlandschaft Ein Erfahrungsbericht aus der Praxis Business Apéro Exasol / SHS VIVEON, Zürich Zürich, 15. November 2011 Dr. Jörg Westermayer

Mehr

Best Practices im Business-Reporting: So kombiniert man Hyperion Intelligence mit dem OWB. Referent: Jens Wiesner, Systemberater, MT AG

Best Practices im Business-Reporting: So kombiniert man Hyperion Intelligence mit dem OWB. Referent: Jens Wiesner, Systemberater, MT AG Best Practices im Business-Reporting: So kombiniert man Hyperion Intelligence mit dem OWB Referent: Jens Wiesner, Systemberater, MT AG MT AG managing technology Key-facts: 1994: Gründung als MT Software

Mehr

Solution for Business Intelligence. MID Insight 2013

Solution for Business Intelligence. MID Insight 2013 Solution for Business Intelligence MID Insight 2013 A G E N D A 1. Solution für Business Intelligence (BI) 2. Die Gründe und Hintergründe 3. Die Methode 4. Vorteile MID GmbH 2013 2 Solution für Business

Mehr

Dr.Siegmund Priglinger Informatica Österreich. 27.02.2007 spriglinger@informatica.com

Dr.Siegmund Priglinger Informatica Österreich. 27.02.2007 spriglinger@informatica.com Governance als Teil der IT Governance Dr.Siegmund Priglinger Informatica Österreich 27.02.2007 spriglinger@informatica.com 1 Agenda Informatica im Überblick Die Trends der Datenintegration versus der Haarschopf

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Unstrukturierte Daten spielen eine immer bedeutender Rolle in Big Data-Projekten. Zunächst gilt es

Mehr

Prozessunterstützung durch BPR-, BPM- und Workflow-Systeme

Prozessunterstützung durch BPR-, BPM- und Workflow-Systeme Prozessunterstützung durch BPR-, BPM- und Workflow-Systeme 27. April 2004 München Brigitte Stuckenberger Business Process Management verbindet technische und fachliche Sicht auf Geschäftsprozesse Unternehmensberatungen,

Mehr

ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich

ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich ODI 12c - Flexible Datenintegration in komplexen BI/DWH-Umgebungen Dr.-Ing. Holger Friedrich Agenda Einführung Key differentiators von ODI12c Effizienz Flexibilität Wartbarkeit & Beweglichkeit Schlussfolgerungen

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

Near Realtime ETL mit Oracle Golden Gate und ODI. Lutz Bauer 09.12.2015

Near Realtime ETL mit Oracle Golden Gate und ODI. Lutz Bauer 09.12.2015 Near Realtime ETL mit Oracle Golden Gate und ODI Lutz Bauer 09.12.2015 Facts & Figures Technologie-orientiert Branchen-unabhängig Hauptsitz Ratingen 240 Beschäftigte Inhabergeführt 24 Mio. Euro Umsatz

Mehr

Softwareentwicklung bei eevolution

Softwareentwicklung bei eevolution Softwareentwicklung bei eevolution Darstellung der Prozesse mit dem agilen Entwicklungsansatz Jan Freitag, COMPRA GmbH Jan Freitag Studium: IMIT Bachelor: 2005-2008 IMIT Master: 2008-2010 eevolution: Mitarbeit

Mehr

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

Big Data: Solaranlagen reparieren Waschmaschinen? 2014 IBM Corporation

Big Data: Solaranlagen reparieren Waschmaschinen? 2014 IBM Corporation Big Data: Solaranlagen reparieren Waschmaschinen? Agenda Kurze Vorstellung Der Kunde und der ursprüngliche Ansatz Bisherige Architektur Vorgeschlagene Architektur Neue Aspekte der vorgeschlagenen Architektur

Mehr

Scrum für Business Intelligence und Data-Warehouse Projekte

Scrum für Business Intelligence und Data-Warehouse Projekte Scrum für Business Intelligence und Data-Warehouse Projekte Thomas Löchte Informationsfabrik GmbH Münster Schlüsselworte Scrum, Agile BI, Agile DWH, Vorgehensmodell, Einleitung Agile Vorgehensweisen sind

Mehr

Innovative Ansätze der toolbasierten Budgetierung bei der Universität Wien. Alexander Hammer / Norbert Schlager-Weidinger

Innovative Ansätze der toolbasierten Budgetierung bei der Universität Wien. Alexander Hammer / Norbert Schlager-Weidinger Innovative Ansätze der toolbasierten Budgetierung bei der Universität Wien Alexander Hammer / Norbert Schlager-Weidinger Agenda Vorstellung Projektpartner Das Projekt Q_SIM Bedeutung Hintergründe Ziele

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Der sd&m-ansatz für serviceorientierte Architektur Quasar Enterprise

Der sd&m-ansatz für serviceorientierte Architektur Quasar Enterprise Der sd&m-ansatz für serviceorientierte Architektur Quasar Enterprise A Company of Prof. Dr. Bernhard Humm OOP 2006 sd&m Developer Day München, 18. Januar 2006 sd&m AG, 18.1.2006, Seite 1 Anwendungslandschaften

Mehr

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de Configuration Management mit Verbosy 17.04.2013 OSDC 2013 Eric Lippmann Kurzvorstellung NETWAYS Expertise OPEN SOURCE SYSTEMS MANAGEMENT OPEN SOURCE DATA CENTER Monitoring & Reporting Configuration Management

Mehr

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Sprecher: Uwe Nadler, Senior Managing Consultant 1 Marketing braucht unterschiedliche Informationen, um entsprechende

Mehr

It's time to rethink Datenbank-Design in der schönen neuen Welt

It's time to rethink Datenbank-Design in der schönen neuen Welt It's time to rethink Datenbank-Design in der schönen neuen Welt Java User Group Hessen 2015 Version: 1.1 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Ihr Sprecher

Mehr

SEA. Modellgetriebene Softwareentwicklung in der BA

SEA. Modellgetriebene Softwareentwicklung in der BA SEA Modellgetriebene Softwareentwicklung in der BA MDA bei der BA Ziele/Vorteile: für die Fachabteilung für die Systementwicklung für den Betrieb Wie wird MDA in der BA umgesetzt? Seite 2 MDA bei der BA

Mehr

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Sven Bosinger solution architect BI Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Agenda Kurze Vorstellung its-people Architektur als Erfolgsfaktor Verschiedene Architekturansätze

Mehr

DW42: DWH-Strategie, Design und Technik

DW42: DWH-Strategie, Design und Technik DW42: DWH-Strategie, Design und Technik Ein Seminar der DWH academy Seminar DW42 - DWH-Strategie, Design und Technik In diesem Seminar lernen Sie durch praxiserfahrene Referenten ein Data Warehouse spezifisches

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr