MatheBasics Teil 1 Grundlagen der Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "MatheBasics Teil 1 Grundlagen der Mathematik"

Transkript

1 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 1 Grundlagen der Mathematik Version 2016 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks, der Vervielfältigung, Veröffentlichung oder sonstiger Verwertung ist untersagt und wird strafrechtlich verfolgt. Alle Rechte vorbehalten. fernstudium guide /58 fernstudium-guide.de

2 Was haben wir vor? Mathe-Basics Teil 1 Mathe-Basics Teil 2 Kapitel 1 - Einführung in die Mathematik 1.1 Grundlegendes 1.2 Mathematische Aussagen Kapitel 2 - Elementares Mathewissen 2.1 Zahlenmengen 2.2 Elementare Rechenoperationen 2.3 Bruchrechnen 2.4 Terme 2.5 Der Betrag 2.6 Die Potenzrechnung 2.7 Die Wurzelrechnung 2.8 Der Logarithmus 2.9 Die Summen- und Produktformel Kapitel 3 - Terme, Klammern und Gleichungen 3.1 Klammern auflösen 3.2 Die Binomischen Formeln 3.3 Übungsaufgaben 3.4 Gleichungen lösen 3.5 quadratische Gleichungen lösen 3.6 Gleichungen höheren Grades lösen 3.7 lineare Ungleichungen lösen 3.8 Bruchgleichungen lösen 3.9 Bruchungleichungen lösen Kapitel 4 - spezielle Gleichungsformen 4.1 Betragsgleichungen lösen 4.2 Potenzgleichungen lösen 4.3 Übungen zu Potenzgleichungen 2/58 fernstudium-guide.de

3 Was haben wir vor? Mathe-Basics Teil 3 Mathe-Basics Teil 4 Kapitel 5 - Funktionen 5.1 Allgemeines 5.2 Elementare Funktionen Polynomfunktionen Die lineare Funktion Die quadratische Funktion Die Potenzfunktion Die Exponentialfunktion Die Logarithmusfunktion Sinus und Cosinus Klausurtypische Aufgaben 5.3 Gebrochen rationale Funktionen Polynomdivision Hornerschema 5.4 Klausurtypische Aufgaben Definitions- und Wertebereich Beschränktheit Monotonie Nullstellen, Polstellen, Asymptoten Grafische Analyse Grafische Analyse II Kapitel 6 - Folgen und Reihen 6.1 Allgemeines 6.2 Arithmetische Folgen 6.3 Geometische Folgen 6.4 Monotonie von Folgen 6.5 Beschränktheit von Folgen 6.6 geometrische und arithmetische Reihen 6.7 Konvergenz von Folgen Einführung Beispiele Grenzwertsätze Kapitel 7 - Grenzwerte von Funktionen 7.1 Einführung Grenzwert für x gegen unendlich Grenzwert für x gegen x0 - Fall Grenzwert für x gegen x0 - Fall Rechenregeln für Grenzwerte 7.3 Klausurtypische Aufgaben 7.4 Stetigkeit von Funktionen Kapitel 8 - Ökonomische Funktionen Kapitel 9 - Finanzmathematik 3/58 fernstudium-guide.de

4 Kapitel 1 - Einführung in die Mathematik 1.1 Grundlegendes 4/58 fernstudium-guide.de

5 1. Einführung in die Mathematik -> 1.1 Grundlegendes Mach' dir keine Sorgen wegen deiner Schwierigkeiten mit der Mathematik. Ich kann dir versichern, dass meine noch größer sind. Albert Einstein, Genie Wir dürfen jetzt nur nicht den Sand in den Kopf stecken! Lothar Matthäus, englischsprachiger Philosoph Wichtig: 1. Keine Panik - Mathe beißt nicht, sie will nur spielen! 2. Schritt für Schritt vorgehen! Denn wer sicheren Schrittes fortschreiten will, muss langsam gehen. 3. Mit Farben arbeiten! Schwarz-Weiß-Denken ist Out. 4. Die Ergebnisse überprüfen und die Probe machen - Probieren geht über Studieren! 5. Mathematik ist ein LERNfach! Und wenns mal eng wird...wer nicht fragt bleibt dumm... 5/58 fernstudium-guide.de

6 1. Einführung in die Mathematik -> 1.1 Grundlegendes Was wir zu Beginn wissen müssen: Häufig kommen griechische Buchstaben vor: α alpha β beta γ gamma δ delta ε epsilon ζ zeta η eta θ theta ι jota κ kappa λ lambda µ mü ν nü ξ xi ο omikron π pi ρ rho σ sigma τ tau υ ypsilon φ phi χ chi ψ psi ω omega Außerdem brauchen wir die folgenden Symbole: Beispiele: = ist gleich 3-2 = 10-9 ist ungleich 2 1 > größer als 2 > 1 < kleiner als 1 < 3 größer gleich x 2 0 kleiner gleich 5 5 oder 5 6 ungefähr gleich 1 / /58 fernstudium-guide.de

7 Kapitel 1 - Einführung in die Mathematik 1.2 Mathematische Aussagen 7/58 fernstudium-guide.de

8 1. Einführung in die Mathematik -> 1.2 Mathematische Aussagen Eine (mathematisch) Aussage ist ein Satz, der daraufhin überprüft werden kann, ob er wahr oder falsch ist. Beispiele: Es regnet München liegt an der Elbe Dieter Bohlen versteht was von guter Musik Schalke 04 war schonmal deutscher Fußballmeister Keine Aussage ist: Grüß dich oder Bitte ein Liter Milch. oder Kann Schalke 04 auch deutscher Meister werden? Wenn aus einer Aussage A eine weitere Aussage B logisch folgen muss, schreibt man A B Man sagt dann: Die Aussage A ist eine hinreichende Bedingung für die Aussage B. Beispiele: Wenn es regnet, dann ist die Strasse nass Wenn eine Zahl durch 4 teilbar ist, dann ist sie auch durch 2 teilbar Wenns mal beim Schuhekaufen länger dauert, dann kauft sicher kein Mann ein ;-) 8/58 fernstudium-guide.de

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Liste des (neu)griechischen Alphabets, sortiert nach Zeichen

Liste des (neu)griechischen Alphabets, sortiert nach Zeichen Liste des (neu)griechischen Alphabets, sortiert nach Zeichen A &Agr; x0391 iso-grk1 Griechischer Großbuchstabe Alpha Α x0391 xhtml-sym Griechischer Großbuchstabe Alpha a &agr; x03b1 iso-grk1 Griechischer

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

GRIECHISCH. GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern. Rabanus-Maurus- Schule Fulda 2003 B.

GRIECHISCH. GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern. Rabanus-Maurus- Schule Fulda 2003 B. GRIECHISCH GRIECHISCH eine Information über das Fach Altgriechisch für Schüler und Eltern Rabanus-Maurus- Schule Fulda 2003 B. Mersmann Griechisch oder Französisch? Das eine muss das andere nicht ausschließen.

Mehr

Wie lange ist die Seidenstraße?

Wie lange ist die Seidenstraße? KinderUni 2008 Wie lange ist die Seidenstraße? Wie lange ist die Seidenstraße? Eine spannende Reise von Konstantinopel nach Indien und China im Mittelalter Institut für Byzanzforschung 1 KinderUni 2008

Mehr

Alphabetisierung und Grundbildung

Alphabetisierung und Grundbildung 1 Master of Arts (Weiterbildung) Alphabetisierung und Grundbildung Aufbau-Studiengang (4 Sem.) und Fortbildungen Leipziger Buchmesse Sa., 20. März 2010, 14 15 Uhr Stefanie Schröder, M.A. PROFESS / BVAG

Mehr

β Ζ φ ε = δ δ = + = = = = = ρ ρ γ γ γ γ γ γ γ = = = = = = + + = = = + + = = = = $ σ r ( ) K r = = = O M L r M r r = = O M L r M r r = = = = = = = = ( ) ( ) = ( ) = ± ( ) ( ) = ± ( ) = ± (

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Investition und Finanzierung. Investition Teil 1

Investition und Finanzierung. Investition Teil 1 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Investition und Finanzierung Investition Teil 1 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks,

Mehr

Mathematik I. Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann. EDV-Bezeichnung - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen

Mathematik I. Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann. EDV-Bezeichnung - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen Mathematik I Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann Modulniveau Bachelor - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen Die Vorlesung behandelt die wichtigsten Grundlagen

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Einführung in die VWL Teil 2

Einführung in die VWL Teil 2 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Einführung in die VWL Teil 2 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks, der Vervielfältigung,

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER Kirsten Wüst Finanzmathematik Vom klassischen Sparbuch zum modernen Zinsderivat GABLER I Inhaltsverzeichnis VORWORT V INHALTSVERZEICHNIS VII ABBILDUNGSVERZEICHNIS XV TABELLENVERZEICHNIS XVII 1 ZINSFINANZINSTRUMENTE

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlung Mathematik Inhaltsverzeichnis 1 Bezeichnungen und Symbole 1.1 Zahlenmengen.................................. 1. Griechisches Alphabet............................. 1.3 Logische Symbole................................

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

Anschlussbelegungder9polSub DX,Y,Z,(N): 230VAnschlussEinbaustecker: Steckdosen: DurchöffnendeskleinenDeckelsaufderVorderseiteerreichenSiedir6,3A DiebeidenSteckdosenwerdenüberPin1und14derSoftwaregeschaltet

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Analysis. Merkur. Haarmann Wolpers. Verlag Rinteln

Analysis. Merkur. Haarmann Wolpers. Verlag Rinteln Haarmann Wolpers Analysis Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von Handelsschul-Direktor Dipl.-Hdl. Friedrich Hutkap Die Verfasser: Hermann Haarmann

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

Einführung in die BWL Teil 4

Einführung in die BWL Teil 4 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Einführung in die BWL Teil 4 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks, der Vervielfältigung,

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

eines Wortes in einer bestimmten Handschrift lässt sich also αυτου 18 και ο εν τω

eines Wortes in einer bestimmten Handschrift lässt sich also αυτου 18 και ο εν τω DAVID TROBISCH, DIE 28.AUFLAGE Die Handschriften DES NESTLE-ALAND Nestle-Aland demgegenüber nicht wiedergegeben. Ebenso wurde die Eine Orthografie Einführung vereinheitlicht und an den wissenschaftlichen

Mehr

Einführung in die BWL Teil 2

Einführung in die BWL Teil 2 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Einführung in die BWL Teil Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks, der Vervielfältigung,

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Mathematik für die Allgemeine Fachhochschulreife

Mathematik für die Allgemeine Fachhochschulreife Dr. Kuno Füssel, Reinhard Jansen, Dr. William Middendorf, Dietmar Mrusek Mathematik für die Allgemeine Fachhochschulreife 14. Auflage Bestellnummer 0234 Die in diesem Produkt gemachten Angaben zu Unternehmen

Mehr

./! % 5 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 /

./! % 5 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 / # + #! 0%1!! % & ) % #,./!. 21. 3 # 4 % 5 6, #!!/ 6 7 %1/. 89 8 :! 89 2 89 8 8 8 2 / ; 89 8 :!/ ; 1 & 6 8? 88 / 555/ 88 / 1 #Α, + 1 8 Χ1, Ε # 8 Β #Α 1 > # +,8 +. 8 ; & : 1 8 18 1

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Investition und Finanzierung. Finanzierung Teil 2

Investition und Finanzierung. Finanzierung Teil 2 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Investition und Finanzierung Finanzierung Teil 2 Version vom 24.06.2014 Änderung S. 29 ZM_1-ZM_0

Mehr

Wichtige mathematische Symbole

Wichtige mathematische Symbole Wichtige mathematische Symbole Die folgende Liste enthält wichtige Zeichen und Symbole, die vor allem in der Mathematik, aber z.t. auch in den angewandten Fachbereichen Verwendung finden. Der Schwerpunkt

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5

Inhaltsverzeichnis. Inhaltsverzeichnis. Vorwort zur 7. Auflage 5 Inhaltsverzeichnis Vorwort zur 7. Auflage 5 1 Potenzrechnung 11 1.1 Darstellung 11 1.1.1 Begriff 11 1.1.2 Vorzeichenregel 11 1.1.3 Addition und Subtraktion von Potenzen 12 1.1.4 Multiplikation von Potenzen

Mehr

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2.

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2. Fibonacci-Zahlen als Beispiel Für f = (f n ) = (0,,, 2, 3, 5, 8, 3, 2, 34,...) gilt Rekursion erzeugende Funktion f n2 = f n f n (n 0), f 0 = 0, f = f(z) = f n z n = z z z 2 Partialbruchzerlegung mit φ

Mehr

Bernd Kuppinger. Finanzmathematik. WlLEY

Bernd Kuppinger. Finanzmathematik. WlLEY Bernd Kuppinger Finanzmathematik WlLEY 5 Inhalt Einleitung 13 1 Es geht ums Geld 17 1.1 Zeit und Geld 17 1.2 Inflation und Deflation 18 1.3 Barwert und Endwert 21 1.3.1 Nominalwert und Äquivalenzprinzip

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Grundlagen der Leistungserstellung Teil 1

Grundlagen der Leistungserstellung Teil 1 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Grundlagen der Leistungserstellung Teil 1 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks,

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004

Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2000 2004 Höhere Mathεmatik für Informatiker Inoffizielles Skriptum zur Vorlesung Höhere Mathematik für Informatiker basierend auf Vorlesungen an der Universität Karlsruhe (TH) 2 24 ii Inhaltsverzeichnis I Eindimensionale

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs

W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs W. Schäfer/K. Georgi/G. Trippier Mathematik-Vorkurs Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr.

Mehr

Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr.

Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. 85478) Viele der im Kernlehrplan aufgeführten Kompetenzbereiche

Mehr

Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass.

Ein kausaler Zusammenhang entspricht einer speziellen wahren Implikation. Beispiel: Wenn es regnet, dann wird die Erde nass. Implikation Implikation Warum ist die Tabelle schwer zu schlucken? In der Umgangssprache benutzt man daraus folgt, also, impliziert, wenn dann, nur für kausale Zusammenhänge Eine Implikation der Form:

Mehr

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten.

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten. Kepler-Gymnasium Freudenstadt Mathematikcurriculum Klasse 9/10 Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt und (geklammert) Die grau geschriebenen

Mehr

Management Consultant

Management Consultant Fernstudium Guide Einführungsveranstaltung zum Management Consultant mit freundlicher Unterstützung der Golfmann Stahlberger Unternehmensberatung Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

5. MATHEMATIK, NATURWISSENSCHAFTEN UND ERNÄHRUNG 5.1 ANGEWANDTE MATHEMATIK

5. MATHEMATIK, NATURWISSENSCHAFTEN UND ERNÄHRUNG 5.1 ANGEWANDTE MATHEMATIK 72 I. Jahrgang: 1. und 2. Semester: 5. MATHEMATIK, NATURWISSENSCHAFTEN UND ERNÄHRUNG 5.1 ANGEWANDTE MATHEMATIK Zahlen und Maße: - die Bezeichnungen, den Aufbau und die Eigenschaften der Zahlenmengen (N,

Mehr

Formelsammlung für Automatisierungstechnik 1 & 2

Formelsammlung für Automatisierungstechnik 1 & 2 Formelsammlung für Automatisierungstechnik & 2 Aus Gründen der Vereinheitlichung, der gleichen Chancen bw. um etwaigen Diskussionen vorubeugen, sind als Prüfungsunterlagen für die Vorlesungsklausuren aus

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α

1.Kreiszahl π 1.1.Kreis α Länge des Kreisbogens b = 2π 360 α Grundwissen athematik 0.Klasse Gymnasium SOB.Kreiszahl..Kreis α Länge des Kreisbogens b r 360 α Fläche des Kreissektors A r 360 Das Bogenmaß b eines Winkels α ist die Länge der zugehörigen Bogenlänge b

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören!

AUFFRISCHERKURS 2. Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! AUFFRISCHERKURS 2 AUFGABE 1 Kreuze für jede der Zahlen bzw. Rechenausdrücke an, zu welchen der angegebenen Zahlenmengen sie gehören! Zahl keine davon ( ) AUFGABE 2 Löse alle vorhandenen Klammern auf und

Mehr

Planungsblatt Mathematik für die 4E

Planungsblatt Mathematik für die 4E Planungsblatt Mathematik für die 4E Woche 26 (von 09.03 bis 13.03) Hausaufgaben 1 Bis Mittwoch 11.03: Auf dem Planungsblatt stehen einige Aufgaben als Übung für die SA. Bereite diese Aufgaben vor! Vor

Mehr

LP Angewandte Mathematik ALW (Aufbaulehrgang wirtschaftliche Berufe)

LP Angewandte Mathematik ALW (Aufbaulehrgang wirtschaftliche Berufe) 5.1 ANGEWANDTE MATHEMATIK Ergänzende Bildungs- und Lehraufgabe zur Angewandten Mathematik Die Schülerin/Der Schüler - kennt die grundlegenden, allgemeinen mathematischen Strukturen; - kann selbständig

Mehr

L A T E X-Einführung 09.12.2011. Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki

L A T E X-Einführung 09.12.2011. Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki L A T E X-Einführung 09.12.2011 Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki Ablauf 1 Formelsatz 2 Projekte verwalten 3 Präsentationen mit LaTeX erstellen. 4

Mehr

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen...

ASK INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK. Inhalt. 1 Anforderungen... 2. 2 Aufgaben... 9. 3 Lösungen... 11. 4 Ausführliche Lösungen... ASK Hochschule Konstanz HTWG www.ask.htwg-konstanz.de INFORMATIONEN ZUM AUFNAHMETEST MATHEMATIK Inhalt 1 Anforderungen... 2 2 Aufgaben... 9 3 Lösungen... 11 4 Ausführliche Lösungen... 15 5 Musterprüfungen...

Mehr

3. Vorlesung Netzwerke

3. Vorlesung Netzwerke Dr. Christian Baun 3. Vorlesung Netzwerke Hochschule Darmstadt SS2012 1/26 3. Vorlesung Netzwerke Dr. Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de Dr. Christian Baun

Mehr

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript

Vorkurs Mathematik. Vorbereitung auf das Studium der Mathematik. Skript Vorkurs Mathematik Vorbereitung auf das Studium der Mathematik Skript Dr. Johanna Dettweiler Institut für Analysis 20. Oktober 2009 Inhaltsverzeichnis Einleitung 7 1 Aussagen und Mengen 9 1.1 Aussagen:

Mehr

Arithmetik/Algebra mit Zahlen und Symbolen umgehen

Arithmetik/Algebra mit Zahlen und Symbolen umgehen UNTERRICHTSVORHABEN 1 Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Thema: Umfang: 8 Wochen Jahrgangsstufe 9 Zehnerpotenzen/ Potenzschreibweise mit ganzzahligen

Mehr

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft

Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Hochschule Luzern Wirtschaft Vorbereitungskurse Mathematik für zukünftige Bachelor-Studierende an der Bei Studienbeginn am 19. September 2016 wird im Fach Mathematik die Beherrschung des Stoffes der kaufmännischen Berufsmatura vorausgesetzt.

Mehr

Dirk Hachenberger Mathematik für Informatiker

Dirk Hachenberger Mathematik für Informatiker Dirk Hachenberger Mathematik für Informatiker ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Inhaltsverzeichnis Vorwort

Mehr

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08

Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Mathematik für Physiker, Informatiker und Ingenieure I Skriptum des WS 2007/08 Prof. Dr. M. v. Golitschek Institut für Mathematik Universität Würzburg Literatur: Suchen Sie doch hin und wieder die Bibliotheken

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Das Orakel von Delphi Dave und Marvin Schülerprojekt 6a 2003/2004

Das Orakel von Delphi Dave und Marvin Schülerprojekt 6a 2003/2004 Das Orakel von Delphi Dave und Marvin Schülerprojekt 6a 2003/2004 Der Apollon, Krösus und die Seherin Pythia Delphi ist eine Stadt in Griechenland. Die Sage erzählt, dass dort in einer Schlucht ein Drache

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre Didaktik der Algebra und Gleichungslehre Algebra in den Jahrgangsstufen 5 bis 8 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Sommersemester 2008 Vollrath: Algebra in der Sekundarstufe

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

IGS Robert-Schuman-Schule Frankenthal

IGS Robert-Schuman-Schule Frankenthal Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für

Mehr

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik 2 - Ich kann's!: Ferien-Trainings-Heft

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Genial! Mathematik 2 - Ich kann's!: Ferien-Trainings-Heft Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: - Ich kann's!: Ferien-Trainings-Heft Das komplette Material finden Sie hier: School-Scout.de Klammerheftung, Rückenzeile leicht versetzt

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Übungen zur Einführung in L A TEX

Übungen zur Einführung in L A TEX Übungen zur Einführung in L A TEX 0.04.6-0.04.6 Maximilian Kirchner (mkirchner@uni-bonn.de) Bemerkung Die Umrandungen um die Aufgaben dienen nur der Übersichtlichkeit und sollen nicht in der Ausgabe auftauchen.

Mehr

Wirtschaftsmathematik für Dummies

Wirtschaftsmathematik für Dummies Christoph Mayer, Sören Jensen, Suteika Bort, beborah Rumsey, Mark Ryan und Mary Jane Sterling Wirtschaftsmathematik für Dummies Herausaegeben Von Christoph Mayer, Sören Jensen und Suteika Bort WILEY- VCH

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Formelsammlung für Regelungstechnik 1

Formelsammlung für Regelungstechnik 1 Formelsammlung für Regelungstechnik 1 Hochschule Heilbronn Wintersemester 2005/2006 Mechatronik und Mikrosystemtechnik Verfasser: Manuel Kühner (MM5) erstellt mit L A TEX Inhaltsverzeichnis 1 Griechische

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

13. Abzählen von Null- und Polstellen

13. Abzählen von Null- und Polstellen 13. Abzählen von Null- und Polstellen 77 13. Abzählen von Null- und Polstellen Als weitere Anwendung des Residuensatzes wollen wir nun sehen, wie man ot au einache Art berechnen kann, wie viele Null- bzw.

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege

Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen / Schwerpunkte Arithmetik/Algebra mit Zahlen und Symbolen umgehen Termumformungen Lineare Gleichungen mit zwei Variablen - Systeme linearer Gleichungen

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr