STUDIUM. Mathematische Grundlagen für Betriebswirte

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "STUDIUM. Mathematische Grundlagen für Betriebswirte"

Transkript

1 STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es u ds Verstädis kopleer Verfhre der höhere Mthetik geht. Die Lösug der folgede Aufge erfordert thetisches Hitergrudwisse, ds Ihe i Rhe ittlerer Bildugsschlüsse Relschulschluss oder gleichgestellte Aschlüsse der Sekudrstufe i Mthetikuterricht verittelt wurde oder verittelt werde sollte. Für die Bereitug ist je ch Ketisstd Zeit ud Ruhe erforderlich. Mthetik erschließt sich leider icht i Schellverfhre! Es git i der strkte Welt der Mthetik Prolee, üer die Spitzethetiker uch i diese Moet chdeke ud die Lösug vielleicht ie oder erst Jhre später herusfide. Keie Agst, die Lösug der folgede Aufge eihltet kei Leeswerk. Flls Sie keie Zugg zu Lösugssätze he, durchdrige Sie zuächst it Ppier ud Bleistift die Beispiele Schritt für Schritt. Nicht ur die Beispiele lese ds rigt ichts! Gee Sie icht zu schell uf. Ds Buch hilft uch weiter. We Sie sich vor der eigee Lösug der Aufge die Lösug sehe, sid ds Prole ud der Üugseffekt für Sie verlore ds wäre schde. Vergleiche Sie lso ur gelöste Aufge ud kläre Sie d, wor evetuell die richtige Lösug scheiterte. Wir wüsche Ihe viel Erfolg! Sie Hoff Hugo Kruse Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ----

2 Testufge I. Vereifche Sie die folgede thetische Ausdrücke Tere: Beispiel: Die Vereifchug des Ters i die For erfolgte wesetlich uter Awedug folgeder thetischer Gesetzte Aioe ud Regel: Kouttivgesetz: Assozitivgesetz: c c Distriutivgesetz:. Vo Bedeutug ist hier uch ds. Bio zur Fktorisierug des Zählers... [... :. Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ----

3 Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ---- II. Vereifche Sie die folgede Poteztere: Beispiel: [ [ Die Tervereifchug erfolgte uter Awedug der folgede Potezregel: ; ; ; ; ; siehe uch Kpitel., r - s r s -...

4 Beispiel: III. Löse Sie die folgede Gleichuge: oder oder Gleichuge lösr. :., ±, ± ud. Dit sid oder, eie Lösug der Gleichug siehe uch Kpitel. Altertiv ist die Gleichug uch it der Lösugsforel für qudrtische p p p ud q i die Forel, ± q eisetze [ Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ----

5 IV. Löse Sie die liere Gleichugssstee Beispiel: Gesucht ist ei Zhlepr /, ds eie Lösug der Gleichug I ud II -- ist. Ds liere Gleichugssste I ist ch de Additios-, Sutrktios-, Eisetzugs- oder Gleichsetzugsverfhre lösr. Zuächst ds II I Sutrktiosverfhre vorereite: I II I II II Lösug i Gleichug II eisetze:. Dit ist ds Pr / / eie geeise Lösug der eide Gleichuge siehe uch Kpitel.. ud.. I II. I - II. I - II. I z II z III z. Ei Ölhädler liefert zwei Kude Liter Heizöl uf geeise Rechug. Nch eie Streit der Kude verlge diese getrete Rechuge. Der Hädler k ur och rekostruiere, dss ei Kude Liter ehr Öl erhielt. Bestie Sie die jeweilige Lieferege der Kude. Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ----

6 Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ---- Lösuge der Testufge I. Lösuge der Tervereifchuge.. [ [... :.

7 Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ---- II. Lösuge der Poteztere r - s r s - s r s r s r s r. [ [..

8 Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ---- III. Lösuge der Gleichuge. - : [ - [ Dit ist jede Zhl t it t eie Lösug der Gleichug oder.. Dies ist keie Lösug der Gleichug, weil d it der Wurzelter der Gleichug icht defiiert ist. Dit ist die Lösugsege der Gleichug leer.., ±. Mit < ist die Wurzel icht defiiert. Die Lösugsege der Gleichug ist deshl leer.., ±,, ud. Die eizige Lösug ist hier,, d, keie Lösug der Ausggsgleichug ist.

9 IV. Lösuge der liere Gleichugssstee. I II Nch Sutrktio I II folgt ud dit. Eisetze i I:.. I - II. Eisetzugsverfhre: I. I - II Widerspruch zu Eisetze i II:. Die. Gleichug it ultipliziere. II. Eisetze i I : >. Dit he die Gleichuge kei geeises Lösugspr /.. I z II z III z Aus I II ud II III folge die Gleichuge I*, II * it I* ud II* -. II* it ultipliziere ud vo I* sutrhiere: -. Die Lösug - i II* eisetze ud ch ustelle:. Die Lösuge für ud i I eisetze: z -. Dit ist ; ; z ; -; - eie geeise Lösug der drei Gleichuge.. Ei Ölhädler liefert zwei Kude Liter Heizöl uf geeise Rechug. Nch eie Streit der Kude verlge diese getrete Rechuge. Der Hädler k ur och rekostruiere, dss ei Kude Liter ehr Öl erhielt. Bestie Sie die jeweilige Lieferege der Kude. X ud seie die Lieferege der eide Kude. Dit gilt I ud II. Eisetze vo für i I. Nch Ustelle der Gleichug gilt:. Eisetze i II edigt. Dit etrge die Lieferege ud Liter Öl. Uklr ist ur och, welcher der eide Kude ehr Öl erhielt. Ds Prole ist ch de vorliegede Ifortioe icht lösr. Aus Hoff/Kruse: Mthetische Grudlge für Betrieswirte,. Auflge, NWB Verlg, ISBN: ----

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis.

Das Wurzelziehen (Radizieren) ist die Umkehrung des Potenzierens. Durch Berechnung der entsprechenden Wurzel entsteht wieder der Wert der Basis. . Wurzel Ds Wurzelziehe (Rdiziere) ist die Umkehrug des Potezieres. Durch Berechug der etsprechede Wurzel etsteht wieder der Wert der Bsis. poteziere Wurzel ziehe. Die Qudrtwurzel Ds Ziehe der Qudrtwurzel

Mehr

9. Jahrgangsstufe Mathematik Unterrichtsskript

9. Jahrgangsstufe Mathematik Unterrichtsskript . Jhrggsstufe Mthetik Uterrichtsskript. Die ioische Forel Beispiel: Auftrg: Bereche die Gestfläche der oe stehede Figur uf zwei verschiedee Arte!. Möglichkeit. Möglichkeit: Teilflächeerechug Mit Zhleeispiel

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Komplexe Zahlen Ac '16

Komplexe Zahlen Ac '16 Komplexe Zhle Ac '16 I der Mege der reelle Zhle ist die Gleichug x² = -1 icht lösr. Ahilfe schfft eie Zhlereichserweiterug vo der Mege uf die Mege der sogete komplexe Zhle. Die Mege der komplexe Zhle esteht

Mehr

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen

Grundlagen der Mathematik (LPSI/LS-M1) WiSe 2010/11 - Curilla/Koch/Ziegenhagen Fchbereich Mthemtik Algebr ud Zhletheorie Christi Curill Grudlge der Mthemtik LPSI/LS-M) Lösuge Bltt WiSe 00/ - Curill/Koch/Ziegehge Präsezufgbe P3)-d) Für jede der vier Mege gilt, dss die dri ethltee

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthemtik Repetitiosufge Poteze ud Potezgleichuge Ihltsverzeichis A) Voremerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufge Poteze mit Musterlösuge F) Aufge Potezgleichuge mit Musterlösuge

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 07 Torste Schreier e Wert eier etermite köe wir is zu eiem Formt vo mittels dem Verfhre vo Srrusestimme. Für Mtrize, die ei höheres Formt he, köe wir die etermite mit dem estimme. zu sollte Sie im erste

Mehr

A 2 Die Cramersche Regel

A 2 Die Cramersche Regel Die Crmersche egel Mtrixschreibweise eies liere Gleichugssystems Die Crmersche egel 5 Wir gehe vo der llgemei Gestlt eies liere Gleichugssystems us : Gegebe seie m (reelle oder komplexe) Zhle ik (i,,,

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Techikerschule Aufge für Klusure ud Aschlussprüfuge Epoetilgleichuge, Logrithmusgleichuge Grudlgewisse: Recheregel zur Epoetil- ud Logrithmusrechug. Hiweise ud Formelsmmlug siehe Seite - 5. Bereche Sie.

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen

Teilbarkeit. Christoph Dohmen. Judith Coenen. 17. Mai Christoph Dohmen, Diskrete Mathematik Teilbarkeit. Judith Coenen Diskrete Mthemtik Teilrkeit Christoph Dohme 7. Mi 2006 Diskrete Mthemtik Teilrkeit Ihltsverzeichis. Eileitug 2. Der größte gemeisme Teiler 3. Divisio mit Rest 4. Der Eukli sche Algorithmus 5. Ds kleiste,

Mehr

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen:

VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG. 1. Berechnen Sie von Hand und Beachten Sie dabei die Reihenfolge der Operationen: Üuge Motg -- VORKURS: MATHEMATIK RECHENFERTIGKEITEN, ÜBUNGEN MONTAG Block Die Musterlösuge werde Aed uf der Vorkurs-Hoepge ufgeschltet!. Bereche Sie vo Hd ud Bechte Sie dei die Reihefolge der Opertioe:

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Mathe Basics für's Studium

Mathe Basics für's Studium Mthe Bsics für's Studiu Grudlge zur Mthetikvorlesug eies etrieswirtschftliche Studius vo Stef Schidt Versio: J. Ihltsverzeichis Vorll... Ws ietet dieses Skript?... Für we ist dieses Skript?... TEIL Bsic

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

4 Deckungsrückstellung

4 Deckungsrückstellung eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6.

1. Grundlagen. 2. Potenzen, Wurzeln, Logarithmen. 3. Vektorrechnung. 4. Trigonometrische Funktionen. 5. Differentialrechnung. 6. Ihlte Brüceurs Mthemti Fchhochschule Hover SS 0 Dipl.-Mth. Coreli Reiterger. Grudlge. Poteze, Wurzel, Logrithme. Vetorrechug 4. Trigoometrische Futioe. Differetilrechug. Itegrlrechug 7. Mtrize, Liere Gleichugssysteme

Mehr

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2

D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Lösung 2 D-MATH, D-PHYS, D-CHAB Alysis II FS 28 Prof. Mfred Eisiedler Lösug 2 Hiweise. Gehe Sie log zum Kochrezept zur Treug der Vrible i liere Differetilgleichuge vor (siehe Abschitt 7.5.3 im Skript). 2. Bemerke

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

7 Ungleichungen und Intervalle

7 Ungleichungen und Intervalle Mthemtik. Klsse 7 Ugleichuge ud Itervlle Aufgbe 0 Löse Sie folgede Ugleichuge > + 8 < 5 + + 7. Itervlle Um gze Bereiche vo reelle Zhle zugebe, wird die Schreibweise mit Itervlle verwedet. Beispiele [,

Mehr

Fachbereich Mathematik

Fachbereich Mathematik OSZ Kfz-Techik Berufsoberschule Mthemtik Oberstufezetrum Krftfhrzeugtechik Berufsschule, Berufsfchschule, Fchoberschule ud Berufsoberschule Berli, Bezirk Chrlotteburg-Wilmersdorf Fchbereich Mthemtik Arbeits-

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

5.6 Additionsverfahren

5.6 Additionsverfahren 5.6 Additiosverfhre Prizip Die eide Gleihuge werde so umgeformt, dss ei der Additio der eide Gleihuge eie Vrile wegfällt. Es müsse h der Umformug lso i eide Gleihuge gleih viele x oder gleih viele y (er

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Rekursionsgleichungen. Übersicht. Vorlesung 6: Mastertheorem (K4) Joost-Pieter Katoen Übersicht Datestrukture ud Algorithme Vorlesug 6: (K) Joost-Pieter Katoe Lehrstuhl für Iformatik 2 Software Modelig ad Verificatio Group 1 Substitutiosmethode Rekursiosbäume http://moves.rwth-aache.de/teachig/ss-15/dsal/

Mehr

Projektmanagement Solarkraftwerke

Projektmanagement Solarkraftwerke Projektmaagemet Solarkraftwerke Solar Forum - St. Veit 2013 Mauel Uterweger 1 Ihalt des Impulsvortrages eie Überblick über Projektmaagemet bei Solarkraftwerke zu gebe gewoee Erfahruge aufgrud eies reale

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

f) n n 2 x x 4 für n gerade; x für n ungerade

f) n n 2 x x 4 für n gerade; x für n ungerade R. Brik http://brik-du.de Seite 7.09.0 Lösuge Poteze I Ergebisse: E E E Ergebisse ( ) = 9 ; ( ) = 7 ; ( ) = 8 ; = ; 7 = ; = 7 ; = 9 ; ( ) = 7 9 Ergebisse x x x x x x ) ( + ) = + ( + ) = + c) x + x = (

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VM Schuljhr 7/8 Zusmmefssug Folge ud Kovergez Ihltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 6 Für Experte 7 Defiitioe ud Beispiele für

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Funktion: Grundbegriffe A 8_01

Funktion: Grundbegriffe A 8_01 Fuktio: Grudegriffe A 8_ Eie Fuktio ist eie eideutige Zuordug: Jede Wert us der Defiitiosege wird geu ei Wert us der Werteege zugeordet. Ist f eie Fuktio ud sid ud y eider zugeordete Werte, d schreit kurz:

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Repetitionsaufgaben Potenzen und Potenzgleichungen

Repetitionsaufgaben Potenzen und Potenzgleichungen Ktole Fchschft Mthetik Repetitiosufgbe Poteze ud Potezgleichuge Ihltsverzeichis A) Vorbeerkuge B) Lerziele C) Poteze D) Potezgleichuge E) Aufgbe Poteze it Musterlösuge F) Aufgbe Potezgleichuge it Musterlösuge

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION

Ableitungsregeln. Produkte- und Quotientenregel. Ableitung einiger wichtiger Funktionen. Kettenregel. Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik DIFFERENTIATION Ableitugsregel (f + g) = f + g (cf) = c f, c R ( ) = (c) =, c R Dmit köe wir Polyome bleite: Beispiel. ( 5 + 3 + ) = ( 5 ) + 3( ) + () = 5 4 + 3 = 5 4 + 6 Produkte- ud

Mehr

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend

Wiederholung Analysis. Stetige Zufallsgrößen. Verteilungsfunktion. Intervallwahrscheinlichkeiten. ( ) da lim F( x) = 0. ist monoton wachsend Wiederholug Alysis Stetige Zufllsgröße F sei Stmmfuktio zu f f d= F F = f Bestimmtes Itegrl f ( d ) = F F Ueigetliche Itegrle f () tdt= F lim F f() t F = f() t dt ist mooto wchsed f () tdt= lim F F A=F()-F()

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV LS Retail Die Brachelösug für de Eizelhadel auf Basis vo Microsoft Dyamics NAV akquiet Focus auf das Wesetliche User Focus liegt immer auf der Wirtschaftlichkeit: So weig wie möglich, soviel wie ötig.

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen.

Terme. Kapitel 2. Terme. Wertebereich. Summensymbol. Summensymbol Rechnen. Summensymbol. Aufgabe 2.1. Summensymbol Rechnen. Terme Kpitel Terme Ei mthemtischer Ausdruck wie B R q q (q ) oder (x + )(x ) x heißt eie Gleichug. Die Ausdrücke uf beide Seite des -Zeiches heiße Terme. Sie ethlte Zhle, Kostte (ds sid Symbole, die eie

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

Thema: Integralrechnung (Grundlagen und Flächenberechnungen)

Thema: Integralrechnung (Grundlagen und Flächenberechnungen) Q GK Mathematik-Vh Vorereitug zur. Kursareit am..7 Thema: Itegralrechug Grudlage ud Flächeerechuge Checkliste Was ich alles köe soll Ich kee de Begri des krummliige Trapezes ud weiß, dass sei Flächeihalt

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer

Mathematik Vorkurs. Fachhochschule Konstanz Fachbereich Elektrotechnik & Informationstechnik Prof. Birkhölzer Mthemtik Vorkurs Fchhochschule Kostz Fchbereich Versio 5.8 Copright 0 Versio 5.8 Copright 0 Mthemtik Wozu, Wie, Ws?.... Mthemtik Wozu?..... Hitergrud: Aspekte der Mthemtik..... Mthemtische Aspekte im Alltg

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Aussagenlogik Schnelldurchlauf

Aussagenlogik Schnelldurchlauf Aussagelogik Schelldurchlauf Michael Leuschel Softwaretechik ud Programmiersprache Lecture 3 Teil 1: Sprache (Sytax) Bestadteile Atomare Aussage (atomic propositios) Etweder wahr oder falsch (Wahrheitswert,

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

A D A E B D D E D E D C C D E

A D A E B D D E D E D C C D E ie Kombiatori beschäftigt sich mit der Zusammestellug vo lemete eier Mege. s werde 2 Kugel ohe Zurüclege aus zwei Ure gezoge. ie erste Ure ethält 3 Kugel ; ; ud die zweite Ure 2 Kugel ;. ie erste Kugel

Mehr

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m.

Mathematik I für VIW - Prof. Dr. M. Ludwig. A x x n ist eine Abbildung von n in m. Mthemtik I für VIW - Prof. Dr. M. Ludwig.4 Liere Gleichugssysteme.4. Schreibweise, Liere Abbildug. A x = b, wobei m A... Koeffizietemtrix, T x ( x, x 2,, x ) T (, 2,, =... Vektor der Ubekte,... Azhl der

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog M. Sc. Adreas Hirsch WS 204/5 24.0.204 Höhere Mathematik I (Aalysis) für die Fachrichtug Iformatik Lösugsvorschlag

Mehr

Übungen zu den Potenzgesetzen

Übungen zu den Potenzgesetzen Üuge u de Potegesete Multiplitio ud Divisio vo Potee it gleicher Bsis. ) d p d q d p q. ). ) + + + p p + p p p + +. ) ²(³ + ) ³( + ) ³(² - ) ( + - ) ( + - ) - ( + ). ) (² + ³)² ( )² ( + )² ( )² (² + ³)²

Mehr

Übungen zu den Potenzgesetzen

Übungen zu den Potenzgesetzen Üuge u de Potegesete Multiplitio ud Divisio vo Potee it gleicher Bsis. d p d q d p q.. + + + p p+ p p p+ +. ²(³ + ) ³( + ) ³(² - ) ( + - ) ( + - ) - ( + ). (² + ³)² ( )² ( + )² ( )² (² + ³)² ( )² (d d

Mehr

Quadratwurzeln Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Quadratwurzeln

Quadratwurzeln Armin P. Barth -LERNZENTRUM, ETH ZÜRICH. Skript. Quadratwurzeln Qudrtwurzel Armi P. Brth -LERNZENTRUM, ETH ZÜRICH Skript Qudrtwurzel Qudrtwurzel Armi P. Brth -LERNZENTRUM, ETH ZÜRICH Qudrtwurzel spiele eie sehr wichtige Rolle i der Mthemtik. Drum versuche wir, i diesem

Mehr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr

ZAHLENFOLGEN Teil 1. Einführende Beispiele Arithmetische Folgen INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr ZAHLENFOLGEN Teil Eiführede Beispiele Arithmetische Folge Dtei Nr. 400 Friedrich Buckel Std: August 006 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de Ihlt Eiführede Beispiele. Erste Defiitio. Beispiele:

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen

Dr. Jürgen Senger MATHEMATIK. Grundlagen für Ökonomen D. Jüge Sege MTHEMTIK Gudlage fü Ökooe ÜBUNG 8.. - LÖSUNGEN. Gegee ist das lieae Gleichugssyste: 7 a. Es hadelt sich u ei ihoogees lieaes Gleichugssyste it Gleichuge ud Vaiale.. Ei lieaes Gleichugssyste

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Zusammenfassung: Komplexe Zahlen

Zusammenfassung: Komplexe Zahlen LGÖ Ks VM Schuljhr 07/08 Zusmmefssug: Komplexe Zhle Ihltsvereichis Komplexe Zhleeee che mit komplexe Zhle Polrform komplexer Zhle 4 Wurel komplexer Zhle 6 Formel vo Crdo 8 Nullstelle ud Fktorisierug vo

Mehr

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz

Binomialkoeffizienten und Binomischer Satz 1 Der binomische Lehrsatz Ihaltsverzeichis Biomialoeffiziete ud Biomischer Satz 1 Der biomische Lehrsatz wird als eie gaze Zahl vorausgesetzt, für die gilt: 0. a ud b werde als reelle Zahle vorausgesetzt, die icht Null sid. Bemerug:

Mehr

Werkstoffe der Elektrotechnik, WS 2011 / 2012 Lösungen zur Übung 2

Werkstoffe der Elektrotechnik, WS 2011 / 2012 Lösungen zur Übung 2 Werstoffe der letrotechi WS 11 / 1 Lösuge ur Übug Aufgbe 1: Wdh. De roglie-welleläge: ewegt sich ei Objet it icht verschwideder Ruhesse it de Ipuls p = v d ih eie Mteriewelle der Welleläge ugeordet werde:

Mehr

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische

Mehr

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden.

Wird der Potenzbegriff auf negative Exponenten erweitert, dann können auch sehr kleine Zahlen gut dargestellt werden. . Poteze mit gze Epoete Wird der Potezegriff f egtive Epoete erweitert, d köe ch sehr kleie Zhle gt drgestellt werde. Ws edetet 0? Die Defiitio wird so festgelegt, dss die isherige Potezgesetze gültig

Mehr

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1

118 7 Potenzreihen. eine Folge von (reellen) Funktionen mit Definitionsgebieten D(f j), j N, und. = M D(f j ) R. j=1 8 7 Potezreihe 7 Potezreihe 7. Fuktioefolge ud -reihe Puktweise ud gleichmäßige Kovergez vo Fuktioefolge Sei f j ) j= eie Folge vo reelle) Fuktioe mit Defiitiosgebiete Df j), j N, ud = Df j ) R. j= D bilde

Mehr

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016

Tutorium Mathematik in der gymnasialen Oberstufe 3. Veranstaltung: Berechnung von Wahrscheinlichkeiten 16. November 2016 Tutorium Mthemti i der gymsile Oerstufe 3. Verstltug: Berechug vo Whrscheilicheite 6. ovemer 6. Komitori Permuttio: Elemete werde i eie Reihefolge gestellt Vritio: us Elemete werde usgewählt ud i eie Reihefolge

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Übungen zur Analysis I WS 2008/2009

Übungen zur Analysis I WS 2008/2009 Mathematisches Istitut der Uiversität Heidelberg Prof. Dr. E. Freitag /Thorste Heidersdorf Übuge zur Aalysis I WS 008/009 Blatt 3, Lösugshiweise Die folgede Hiweise sollte auf keie Fall als Musterlösuge

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

Versuch 442: Titration von HCl und CH 3 COOH mit NaOH. Arbeitsanleitung

Versuch 442: Titration von HCl und CH 3 COOH mit NaOH. Arbeitsanleitung Istruetelle Bestiugsverfahre 05 Versuch 44: Titratio vo HCl ud CH COOH it NaOH Arbeitsaleitug Geräteliste: Koduktoeter LF 15, Leitfähigkeitsesszelle, agetrührer it Rührstab, 150 L Becherglas, 100 µl Eppedorf-Pipette.

Mehr

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya Grezwerte vo Folge -E Ma Lubov Vassilevskaya Berechug vo Grezwerte: Aufgabe Die Berechug vo Grezwerte ka oft ziemlich umstädlich sei. Die etwickelte Regel vereifache oft solche Berechuge. Diese Regel beruhe

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Tutoriumslösug - Übug 3 (Abgabe 3.05.05 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder Tutoraufgabe (Rekursiosgleichuge:

Mehr

Terme und Formeln Potenzen I

Terme und Formeln Potenzen I Terme ud Formel Poteze I Die Mrgrit philosophic ist die älteste gedruckte llgemeie Ezyklopädie us dem Jhr 0 i lteiischer Sprche. Ds Werk ethält ls Uiversits literrum ds gesmte Wisse des späte Mittellters.

Mehr