Der Zahlungsstrom (Cash Flow)

Größe: px
Ab Seite anzeigen:

Download "Der Zahlungsstrom (Cash Flow)"

Transkript

1 Der Zahlungsstrom (Cash Flow) 1. Begriff des Zahlungsstroms Abfolge von Zahlungen in der Zeit. Jedem Zeitpunkt t werden Zahlungen zugeordnet. - Positive Zahlungen bedeuten Einzahlungen - Negative Zahlungen bedeuten Auszahlungen Bei Nettozahlungströmen sind die zu einem Zeitpunt anfallenden Zahlungen saldiert. Zeitspannen auf der Zeitskala (Perioden) - werden als gleich lang angenommen - Periodenlänge ist frei wählbar - je kürzer die Perioden, desto genauer der Cash Flow Zahlungen können nur zu diesen Zeitpunkten erfolgen, nicht dazwischen. - führt diese Annahme zu Fehlern, muss Periodenlänge verkürzt werden. Zukünftige Zahlungen sind mit Risiko behaftet - Ergebnis individueller Prognosen und Planungen - Es können unerwartete Ereignisse eintreten - 4 Möglichkeiten bei risikobehafteten zukünftigen Zahlungsströmen: 1. Unsicherheit negieren und mit realistischen Zahlungen rechnen 2. vorsichtig geschätzte Zahlungen - Einzahlungen werden ein bisschen niedriger geschätzt - Auszahlungen werden ein bisschen höher eingeschätzt - Führt leicht zu sehr pessimistischen Ergebnissen 3. Szenariotechnik - man plant mit sehr widrigen, realistischen und unter vorteilhaften Bedingungen - wir erhalten verschiedene Zahlungströme um Risiken und Chancen abzuwiegen - die Beurteilung bleibt allerdings dem einzelnen überlassen 4. Rechnen mit zustandsabhängigen Ansprüchen (contingent claims) - Zahlungen werden als Zufallsvariable modelliert - Deren Höhe ist abhängig von bestimmten Umwelzustände - Den Umweltzuständen werden Wahrscheinlichkeiten zugeordnet (siehe Beispiel)

2 Man Unterscheidet Zahlungströme in: 1. Finanzierungen - Einzahlungen VOR Auszahlungen (man spricht vom zeitlichen Schwerpunkt) - Beispiel Kredit 2. Investitionen - Einzahlungen NACH Auszahlungen - Normalinvestition: beginnt mit Auszahlung, dann nur noch Einzahlungen Investition und Finanzierung im Grunde nicht trennbar! Zahlungsströme müssen das Entscheidungsproblem vollständig abbilden: - müssen alle entscheidungsrelevanten Zahlungen enthalten - dürfen keine irrrelvanten Zahlungen enthalten der entscheidungsrelevante Zahlungsstrom - ist die Differenz zwischen dem Zahlungsstrom, der ohne Durchführung des Projekts zu erwarten wäre, und dem Zahlungsstrom, der anfiele, wenn das Projekt durchgeführt werden sollte. - Ohne-Mit-Vergleich Zahlungen sind irrrelevant - wenn sie vor dem Entscheidungszeitpunkt liegen - gilt insbesondere für sunk costs, bereits in der Vergangenheit erbrachte Invest. - Siehe Beispiel S Zahlungen und andere betriebliche Rechengrößen In der Betriebswirtschaft gibt es verschiedene Rechengrößen, siehe Abgrenzungsschema: Bereich Fonds Rechengröße Finanz-/Investitionsrechnung Flüssige Mittel, Cash Auszahlungen, Einzahlungen Finanz-/Investitionsplanung Finanzermögen Ausgaben, Einnahmen Buchhaltung, Bilanzierung Gesamtvermögen Aufwendungen, Erträge Kostenrechnung, Kalkulation Betriebliches Vermögen Kosten, Leistungen Auszahlungen und Einzahlungen: Der Bestand an flüssigen Mitteln wird verändert (Geldbestände) - Auszahlung = Abfluss liquider Mittel (negativer Cash Flow) - Einzahlung = Zufluss liquider Mittel (positiver Cash Flow) Ausgaben und Einnahmen: Begriffe ebenfalls aus dem finanzwirtschaftlichen Bereich, im Gegensatz zu reinen Zahlungen werden hier sämtliche Veränderungen im Finanzvermögen erfasst. - Ausgaben = Auszahlungen +/- Abnahme/Zunahme von Verbindlichkeiten - Einnahmen = Einzahlungen +/- Zunahme/Abnahme von Forderungen

3 Aufwendungen und Erträge: Begriffe aus dem handels- und steuerrechtlichen Rechnungswesen. Einnahmen und Ausgaben werden verursachungsgerecht auf einzelne Perioden verrechnet. - Aufwendungen = periodisierte Ausgaben nach Maßgabe gesetzlicher Vorschriften - Erträge = periodisierte Einnahmen nach Maßgabe gesetzlicher Vorschriften Das Gesamtvermögen eines Kaufmanns wird verändert. Es ist also möglich dass er rein buchmäßig reicher wird, ihm aber kein Geld zufließt oder ein Unternehmen Gewinne schreibt, aber Konkurs anmelden muss, da zahlungsunfähig (die liquiden Mittel reichen nicht aus um Auszahlungsverplichtungen nachzukommen). Kosten und Leistungen: Begriffe aus technisch-güterwirtschaftlichem Bereich. Kosten und Leistungen sind nicht auf Zahlungen bezogen sondern sind materialistische Größen. - Kosten = Bewerteter, leistungsbezogener Güterverzehr - Leistungen = Ergebnis der betrieblichen Leistungserstellung Zur Verdeutlichung siehe Fälle bzw. Übersicht S. 36, 37 Bewertung von Zahlungsströmen unter Sicherheit In einem vollkommenen Kapitalmarkt ist zur Beurteilung eines Zahlungsstroms nur seine Höhe relevant. - Maßstab für die Höhe des Cash Flows ist der Barwert (Voraussetzung: gegebener Zinssatz r, um Kredite aufzunehmen und Geld anzulegen) 1. Der Kapitalwert Der Kapitalwert K 0 (=heute) einer Zahlungsreihe (t=0 n) ist die Summe aller auf den Jetztzeitpunkt bezogener Barwerte (auf t 0 abgezinster Zahlungen Z t ): - K 0 = Z 0 + Z 1 /q + Z 2 /q 2 + Z 3 /q 3 + Z n /q n q = 1+r - K 0 = t=0 n Z t /(1+r) n r = Zins Barwert Kapitalwert Ertragswert = eine auf t 0 abgezinste Zahlung oder Zahlungsreihe = Summe sämtlicher abgezinster Zahlungen eines Zahlungsstroms + Anfangszahlung (net present value) NPV = Summe sämtlicher abgezinster Zahlungen aber ohne Anfanszahlung (PV) Der Kapitalwert gibt den Gegenwartswerts eines Zahlungsstroms an (anhand des Zinssatzes).

4 Eine Investition oder Finanzierung ist also vorteilhaft wenn: - der Kapitalwert (NPV) positiv ist - bei Normalinvestition der Ertragswert > Investitionsbetrag ist. Daraus ergibt sich (siehe Beispiel S. 38) - eine Investition ist umso günstiger, desto niedriger der Kalkulationszins ist - eine Finanzierung ist umso günstiger, je höher der Zins ist Wenn in der Zahlungsreihe zu jedem Zeitpunkt die gleichen Zahlungen erfolgen, spricht man von Renten. - die Kapitalwertformel vereinfacht sich: - Barwert einer endlichen Rente: K 0 = Z * q n -1/q n (q-1) - Barwert einer unendlichen Rente: K 0 = Z / r Die MS-Exel-Anwendung ist meiner Meinung nach für Klausur irrelevant (siehe S. 40) Kapitalwert und Kalkulationszinssatz Das entscheidende Problem für die Ermittlung des Kapitalwerts ist die Wahl eines geeigneten Kalkulationszinssatzes. In einem vollkommenen Kapitalmarkt wäre der Markzinssatz r der richtige Kalkulationszinssatz. Ist die Bedingung eines vollkommenen Kapitalmarkts nicht erfüllt, so wird unterschieden: - wenn für die Durchführung einer Investition ein Kredit aufgenommen werden muss, müssen aus den Investitionrückflüssen mind. Kredit + Kreditzinsen bezahlt werden. Den Maßstab für den Kalkulationszinssatz bilden also Fremkapitalkosten. - wenn die Investition aus eigenen Mitteln finanziert wird, ist der Eigenkapitalskostensatz anzusetzen. Wir verwenden die entgangenen Zinsen der besten, durch die Investition gerade verdrängte, Alternativanlage. Die beste verdrängte Alternative kann sein: - der Zinssatz der mit einer Realinvestition hätte erzielt werden können - der Habenzins auf dem Kapitalmarkt - der sofortige Konsum der Mittel - bei Finanzierungen sind die Zinsen, die für die Alternative mit den besten Konditionen gezahlt werden müssen, als Kalkulationszinssatz anzusetzen. Grundsätzlich: - Je höher der Zinssatz ist, mit dem die Abzinsung erfolgt, - umso niedriger der Kapitalwert einer Investition. - desto höher der Kapitalwert einer Finanzierung Ein Zahlungsstrom ist einfach, wenn er nur ein Vorzeichenwechsel hat.

5 Bei einer Normalinvestition ist der Vorzeichenwechsel direkt nach der Anfangszahlung. Einfache Zahlungsströme sind im Bereich positiver Zinsen monoton fallend (Investitionen) oder monoton steigend (Finanzierungen). - d.h. sie haben nur einen Schnittpunkt mit Abszisse - siehe Abb. S. 43 Die Kapitalwertfunktion Zinsen und Zeit Wer einen Bankkredit aufnimmt zahlt für drei Dinge: - price of time er zahlt dafür, dass ihm der Kapitalgeber finanzielle Mittel für eine bestimmte Zeit überlässt. - price of risk er zahlt für das Risiko der Bank, möglicherweise keine Rückzahlungen zu bekommen. - price of service er zahlt für die ihm erbrachten Dienstleistungen der Bank. Der Faktor Zeit ist die zentrale Dimension von Zinsen. Wichtig ist: - zu welchen Zeitpunkten fallen die Zinsen an - für welche Zeitspannen die Zinsen gezahlt werden - für welche Laufzeiten die Zinsen vereinbart werden - wann die Zahlungsströme, für die die Zinsen gelten, beginnen Man unterscheidet zwischen Zinszahlungen die am Ende einer Periode bezahlt werden - nachschüssige oder dekursive Zinsen und Zinszahlungen die am Beginn einer Periode erfolgen - vorschüssige oder antizipative Zinsen. Die Umrechnung nachschüssiger (r) in vorschüssige Zinsen (r v ) - r v = r / (1+r) - siehe Beispiel S. 44 Zinsen werden zwecks Vergleichbarkeit normalerweise in Prozent pro Jahr (p.a. = per annum) angegeben. Sind Zahlungsströme allerdings nicht jährlich, sonder halbjährlich, monatlich etc. ausgewiesen so müssen sie angepasst werden um den Wert nicht zu verändern. Wird der Zins nicht angepasst und z.b. ein Kredit statt mit jährlich 8% mit halbjährlich 4% verzinst, erhalten wir statt der 108% die eine 8% Verzinsung verursachen würde, mehr als 108%. Ein finanzwirtschaftlicher korrekter unterjähriger Zins ist der konforme Zins. - r m = m [(1+r) 1/m -1] - m gibt an wie viel mal pro Jahr eine Verzinsung erfolgt - siehe zur Verdeutlichung Beispiel u. Tabelle S. 46

6 umgekehrt kann aus einem unterjährigen Nominalzins der Effektivzins errechnet werden. - siehe auch hier S. 46 In der Realität hängt der Zinssatz von Laufzeiten ab. Die Zinskurve oder Zinsstruktur stellt den Zusammenhang zwische einer normalen Zinsstruktur. - flachen Zinsstruktur die Zinsen sind für alle Fristigkeiten gleich. - fallende Zinsstruktur wenn die Zinsen für kurze Fristen höher wie für lange Fristen sind, selten der Fall, man spricht von einer inversen Zinsstruktur. Siehe zur Verdeutlichung der Zinsstruktur die Tabelle S. 47. Auf S. 48 wird erklärt wie die Zinskurve in die Kapitalwertformel eingebaut werden kann. Meiner Meinung nach für Erstklausur völlig unrelevant. Die Zinskurve zeigt, welcher Zins für einen Kredit bei verschiedenen Laufzeiten zu zahlen ist, der heute aufgenommen wird. Zinssätze für Zahlungsströme die heute beginnen, nennt man Kassa-Zinssätze oder spot-rates. Zinssätze für Zahlungsströme, die in der Zukunft beginnen, aber heute vereinbart werden, nennt man Termin-Zinssätze oder forward-rates. Zur Kennzeichnung werden dem Zinssatz r, 2 Indexziffern angefügt. - die erste Ziffer gibt den Zeitpunkt an, an dem der Zahlungsstrom beginnt - die zweite Ziffer zu welchem Zeitpunkt er endet - z.b. r 03 (beginnt heute, Spot rate für Drei-Jahresgelder) Die daraus folgende Formel um die Termin-Zinsrate zu errechnen ist für Klausur ebenso wenig relevant wie das dazugehörige Beispiel.

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe Finanzmathematik Kapitel 4 Investitionen Prof. Dr. Harald Löwe Sommersemester 2012 1. Abschnitt INVESTITIONSRECHNUNG Voraussetzungen Investition als Zahlungsstrom Vom Investor zur leistende Zahlungen (Anschaffungen,

Mehr

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben

5. Finanzwirtschaft 5.1 Inhalt und Aufgaben 5. Finanzwirtschaft 5.1 Inhalt und Aufgaben Die Funktionalbereiche der Unternehung und die Eingliederung der Finanzwirtschaft: Finanzwirtschaft Beschaffung Produktion Absatz Märkte für Produktionsfaktoren

Mehr

Ak. OR Dr. Ursel Müller. BWL III Rechnungswesen/ Investition und Finanzierung

Ak. OR Dr. Ursel Müller. BWL III Rechnungswesen/ Investition und Finanzierung Ak. OR Dr. Ursel Müller BWL III Rechnungswesen/ Investition und Finanzierung Übersicht Methoden der Investitionsrechnung 3 klassische finanzmathematische Methoden der Investitionsrechnung Der Kapitalwert

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t Kapitalwertmethode Art: Ziel: Vorgehen: Dynamisches Investitionsrechenverfahren Die Kapitalwertmethode dient dazu, die Vorteilhaftigkeit der Investition anhand des Kapitalwertes zu ermitteln. Die Kapitalwertverfahren

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche

Mehr

Übungsblatt 13 - Probeklausur

Übungsblatt 13 - Probeklausur Aufgaben 1. Der Kapitalnehmer im Kapitalmarktmodell a. erhält in der Zukunft einen Zahlungsstrom. b. erhält heute eine Einzahlung. c. zahlt heute den Preis für einen zukünftigen Zahlungsstrom. d. bekommt

Mehr

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben:

Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe 8.1 Ein Auto wird auf Leasingbasis zu folgenden Bedingungen erworben: Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 22, Tel. 394 jutta.arrenberg@th-koeln.de Übungen zur Vorlesung QM II Unterjährliche Renten Aufgabe

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge

Mehr

Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011

Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011 Kolloquium zum Modul Finanzierungs- und entscheidungstheoretische Grundlagen der BWL SS 2011 Teil II: Investitionstheoretische Grundlagen (KE 3 und KE 4) 1 Überblick 2 Dominanzkriterien 3 Finanzmathematische

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

III. Dynamische Investitionsrechnung

III. Dynamische Investitionsrechnung III Bewertung von Investments Dynamische Investitionsrechnung Investition und Finanzierung - Wintersemester 2012/13 1 Die dynamische Investitionsrechnung betrachtet Zahlungsströme... Im Vergleich zum traditionellen

Mehr

Grundlagen der Investitionsrechnung

Grundlagen der Investitionsrechnung Rechnungslegung und Prüfung II Schwerpunktfach Unternehmensprüfung Seminarreihe Unternehmensbewertung Grundlagen der Investitionsrechnung Klaus Wenzel, WP/StB Corporate Finance-/Unternehmensberatung Düsseldorf,

Mehr

Finanzwirtschaft. Teil II: Bewertung

Finanzwirtschaft. Teil II: Bewertung Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und

Mehr

Lehrveranstaltung 5 Dynamische Investitionsrechnung I

Lehrveranstaltung 5 Dynamische Investitionsrechnung I Dynamische Investitionsrechnung I 5-1 Lehrveranstaltung 5 Dynamische Investitionsrechnung I Gliederung 1. Allgemeines zu finanzmathematischen Verfahren 2. Kapitalwertmethode 3. Methode des internen Zinsfusses

Mehr

Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor

Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor 1. Kapitel: Grundkonzeption der Unternehmensbewertung Fall 1: Barwert, Ertragswert und Rentenbarwertfaktor Sachverhalt: Herr Glück kauft im Dezember 2012 von seinem Weihnachtsgeld (5 000 Euro) Lose der

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Einsendearbeit 2 (SS 2012)

Mehr

Expertengruppe A: Die Annuitätenmethode

Expertengruppe A: Die Annuitätenmethode Expertengruppe A: Die Annuitätenmethode Besprecht und berechnet in eurer Gruppe das Musterbeispiel und löst anschließend das neue Beispiel. Kapitalwertmethode (= Goodwill = Net Present Value NPV) Kapitalwert

Mehr

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

Finanzmathematik mit Excel

Finanzmathematik mit Excel Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr

Investition und Finanzierung. Investition Teil 1

Investition und Finanzierung. Investition Teil 1 Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft Investition und Finanzierung Investition Teil 1 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der Entnahme, des Nachdrucks,

Mehr

Ak. OR Dr. Ursel Müller. BWL III Rechnungswesen / GRZ der Investitions- und Finanzierungstheorie

Ak. OR Dr. Ursel Müller. BWL III Rechnungswesen / GRZ der Investitions- und Finanzierungstheorie Ak. OR Dr. Ursel Müller BWL III Rechnungswesen / GRZ der Investitions- und Finanzierungstheorie Übersicht I. Die entscheidungsorientierte moderne Betrachtungsweise 1. Die kapitalmarktorientierte Sicht

Mehr

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

Lösungshinweise zur Einsendearbeit des A-Moduls Investition und Finanzierung, Kurs 40520, SS

Lösungshinweise zur Einsendearbeit des A-Moduls Investition und Finanzierung, Kurs 40520, SS Einsendearbeit des A-Moduls Investition und Finanzierung, Kurs 40520, SS 2015 1 Kurs 40520: Investition Lösungshinweise zur Einsendearbeit (SS 2015) Inhaltlicher Bezug: KE 1, 2, 3 und 4 Aufgabe 1 (Fisher-Modell)

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

0 1 2 T. - Annuitäten, die den gleichen Barwert wie ein in t=t gegebener Geldbetrag haben

0 1 2 T. - Annuitäten, die den gleichen Barwert wie ein in t=t gegebener Geldbetrag haben 2.4 Die Annuität 1.Annuität 2.Annuität T. Annuität 0 1 2 T Bei der Ermittlung der Annuität wird eine beliebige Zahlungsreihe in eine uniforme, äquidistante Zahlungsreihe umgeformt, die äquivalent zur Ausgangszahlungsreihe

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

Einführung in die Betriebswirtschaftslehre

Einführung in die Betriebswirtschaftslehre Ernst-Moritz-Arndt- Rechts- und Staatswissenschaftliche Fakultät Lehrstuhl für Betriebswirtschaftslehre, insbesondere Marketing Daniel Hunold Skript zur Übung Einführung in die Betriebswirtschaftslehre

Mehr

B. Teil 1. Investition

B. Teil 1. Investition B. Teil 1 Investition A. Grundlegendes Zahlungsströme, Finanzwirtschaftliche Ziele Finanzplanung Beschaffung von Fremdkapital Kreditfinanzierung B. Investition Kapitalwertmethode IRR Beschaffung von Eigenkapital

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann Barwertbestimmung und Effektivzins bei Anleihen von Fanny Dieckmann Inhalt Definitionen Anleihenstruktur Anleihenbewertung Barwertbestimmung Renditebestimmung Bewertung von Sonderformen Literaturverzeichnis

Mehr

Fakultät für Wirtschaftswissenschaft

Fakultät für Wirtschaftswissenschaft Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 3, 4, 5 und 6, SS 2012 1 Fakultät für Wirtschaftswissenschaft 2. Einsendearbeit zum Kurs 00091: Kurseinheit: Finanzierungs- und entscheidungstheoretische

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzierung - Vorlesung 7 03.12.2013 - Prof. Dr. Rainer Elschen Prof. Dr. Rainer Elschen - 145 - 2.4 Bestimmung von Investitionsprogrammen Prof. Dr. Rainer Elschen - 146 - Investitionsprogrammentscheidung

Mehr

Vorlesung BWL IIa: Investition und Finanzierung

Vorlesung BWL IIa: Investition und Finanzierung Vorlesung BWL IIa: Investition und Finanzierung Priv.-Doz. Dr. Dr. Aurelio J. F. Vincenti Vertretungsprofessur BWL, Unternehmensfinanzierung Fachbereich Wirtschaftswissenschaften Universität Kassel Wintersemester

Mehr

IV. JAHRGANG. Finanzierungs und Investitionsentscheidungen

IV. JAHRGANG. Finanzierungs und Investitionsentscheidungen IV. JAHRGANG Finanzierungs und Investitionsentscheidungen Finanzplanung Einführung Auszahlungen zukünftiger Perioden werden der Zahlungskraft des Unternehmens gegenübergestellt. Auszahlungen Personalausgaben

Mehr

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate

1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate. b) 12800,00 8,75 % 2 Jahre, 9 Monate 1. Wie viel EUR betragen die Kreditzinsen? Kredit (EUR) Zinsfuß Zeit a) 28500,00 7,5% 1 Jahr, 6 Monate b) 12800,00 8,75 % 2 Jahre, 9 Monate c) 4560,00 9,25 % 5 Monate d) 53400,00 5,5 % 7 Monate e) 1 080,00

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen Übungskatalog WS 13/14 1 Einführung in die Investitionsrechnung Aufgabe 1.1) Definieren Sie den Begriff Investition unter Verwendung des Begriffs Kapitalverwendung und zeigen Sie die Bedeutsamkeit einer

Mehr

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren?

b) Wie hoch ist der Betrag nach Abschluss eines Studiums von sechs Jahren? Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 39 14 jutta.arrenberg@fh-koeln.de Übungen zur Mathematik für Prüfungskandidaten und Prüfungskandidatinnen Unterjährliche

Mehr

Verfahren der Investitionsrechnung

Verfahren der Investitionsrechnung Verfahren der Investitionsrechnung Aufgabe 1: (Einführung in die Kapitalwertmethode) a. Erläutern Sie bitte kurz die Ziele der Kapitalwertmethode? b. Entwickeln Sie für die nachfolgenden Beispiele die

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

Klassische Finanzmathematik (Abschnitt KF.1 )

Klassische Finanzmathematik (Abschnitt KF.1 ) Die Finanzatheatik ist eine Disziplin der angewandten Matheatik, die sich insbesondere it der Analyse und de Vergleich von Zahlungsströen und die theoretisch Erittlung des Geldwertes von Finanzprodukten.

Mehr

Der Kapitalwert einer Investition

Der Kapitalwert einer Investition Der Kapitalwert einer Investition 2 2.1 Grundlagen 2.1.1 Aufstellung vollständiger Finanzpläne Der finanzielle Nutzen, den ein Wirtschaftssubjekt aus einem Investitionsobjekt zieht, kann in möglichst hohen

Mehr

Investition und Finanzierung

Investition und Finanzierung w w w. a c a d e m y o f s p o r t s. d e w w w. c a m p u s. a c a d e m y o f s p o r t s. d e Investition und Finanzierung L E SEPROBE online-campus Auf dem Online Campus der Academy of Sports erleben

Mehr

Kreditmanagement. EK Finanzwirtschaft

Kreditmanagement. EK Finanzwirtschaft EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften christian.keber@univie.ac.at Kreditmanagement 1 Kreditmanagement

Mehr

11. April 2011. Geldtheorie und -politik. Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4)

11. April 2011. Geldtheorie und -politik. Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4) Geldtheorie und -politik Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4) 11. April 2011 Überblick Barwertkonzept Kreditmarktinstrumente: Einfaches Darlehen, Darlehen mit konstanten Raten,

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzierung Inhalte der Klausur Aufgabe Thema Punkte Aufgabe Thema Punkte 1 Investition und Finanzierung allgemein 10 2 Dynamische Verfahren der Investitionsrechnung 20 3 Ersatzinvestitionen

Mehr

Investition & Finanzierung. 2. Investitionsrechnung unter Sicherheit

Investition & Finanzierung. 2. Investitionsrechnung unter Sicherheit Investition & Finanzierung 2. Investitionsrechnung unter Univ.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) 1 Unter Cashflows verstehen wir Ein- sowie Auszahlungen. Wir konzentrieren uns vollkommen auf diese

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen Übungskatalog WS 13/14 1 Einführung in die Investitionsrechnung Aufgabe 1.1) Definieren Sie den Begriff Investition unter Verwendung des Begriffs Kapitalverwendung und zeigen Sie die Bedeutsamkeit einer

Mehr

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6)

2. Mai 2011. Geldtheorie und -politik. Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) Geldtheorie und -politik Die Risiko- und Terminstruktur von Zinsen (Mishkin, Kapitel 6) 2. Mai 2011 Überblick Bestimmung des Zinssatzes im Markt für Anleihen Erklärung der Dynamik von Zinssätzen Überblick

Mehr

Übungsklausur der Tutoren *

Übungsklausur der Tutoren * Übungsklausur der Tutoren * (* Aufgabenzusammenstellung erfolgte von den Tutoren nicht vom Lehrstuhl!!!) Aufgabe 1 - Tilgungsplan Sie nehmen einen Kredit mit einer Laufzeit von 4 Jahren auf. Die Restschuld

Mehr

Finanzwirtschaft im Grundstudium

Finanzwirtschaft im Grundstudium Prof. Dr. Siegfried Trautmann Lehrstuhl für Finanzwirtschaft / FB 03 Johannes Gutenberg-Universität 55099 Mainz Finanzwirtschaft im Grundstudium (SS 2005) Lösungsskizze zur Klausur A Lösung zu Aufgabe

Mehr

lebensbegleitenden Finanzmathematik

lebensbegleitenden Finanzmathematik Martin Hödlmoser Das lxl der lebensbegleitenden Finanzmathematik Kredit-, Darlehens-, Leasingraten Rendite von Veranlagungen (Sparbücher, Wertpapiere,...) Zinsverrechnungsmodalitäten Tilgungspläne Grundzüge

Mehr

Übungsblatt 5. Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet.

Übungsblatt 5. Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet. Übungsblatt 5 Für die Abgabe dieses Übungsblattes müssen auch die Nebenrechnungen durchgeführt werden. Sonst wird dieses Übungsblatt nicht gewertet. 1. Ein Unternehmen ist A. ein Betrieb, der nach dem

Mehr

Prüfungskommission. für Wirtschaftsprüfer. Wirtschaftsprüfungsexamen gemäß 5-14 a WPO

Prüfungskommission. für Wirtschaftsprüfer. Wirtschaftsprüfungsexamen gemäß 5-14 a WPO Prüfungskommission für Wirtschaftsprüfer Wirtschaftsprüfungsexamen gemäß 5-14 a WPO 1. Aufsichtsarbeit aus dem Gebiet Angewandte Betriebswirtschaftslehre, Volkswirtschaftslehre 2. Halbjahr 2011 Termin:

Mehr

1.2 Dynamische Methoden des Investitions-Controlling

1.2 Dynamische Methoden des Investitions-Controlling 1.2 Dynamische Methoden des Investitions-Controlling Die dynamischen Methoden des Investitions-Controlling sind Methoden, die dem zeitlichen Ablauf der Investitions- und der anschließend folgenden Desinvestitionsvorgänge

Mehr

Mathematik-Klausur vom 4.2.2004

Mathematik-Klausur vom 4.2.2004 Mathematik-Klausur vom 4.2.2004 Aufgabe 1 Ein Klein-Sparer verfügt über 2 000, die er möglichst hoch verzinst anlegen möchte. a) Eine Anlage-Alternative besteht im Kauf von Bundesschatzbriefen vom Typ

Mehr

LS Servicebibliothek 2: BONDS RENTENHANDEL

LS Servicebibliothek 2: BONDS RENTENHANDEL LS Servicebibliothek 2: BONDS RENTENHANDEL Mit aktuellen News kann der Rentenhandel spannend werden. 20 Schweizer Franken: Arthur Honegger, französischschweizerischer Komponist (1892-1955) Warum ist außerbörslicher

Mehr

Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013

Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe SoSe 2013 Finanzmathematik (TM/SRM/SM) Tutorium Finanzmathematik Teil 1 1 Zinseszinsrechnung Bei den Aufgaben dieses

Mehr

Übungsserie 6: Rentenrechnung

Übungsserie 6: Rentenrechnung HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Wirtschaftsmathematik I Finanzmathematik Mathematik für Wirtschaftsingenieure - Übungsaufgaben Übungsserie 6: Rentenrechnung 1. Gegeben ist eine

Mehr

Techniker Fernstudium

Techniker Fernstudium Techniker Fernstudium Fach: BWL für Dr. Robert Eckert Schulen AG München Dr. Gert Landauer Folie 1 - LANDAUER COACHING - Dr. Gert Landauer Finanzierung / Investition Eckert - 11 / 2014 Finanzierung Folie

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

Grundlagen der Betriebswirtschaftslehre S c r i p t

Grundlagen der Betriebswirtschaftslehre S c r i p t 1 Grundlagen der Betriebswirtschaftslehre S c r i p t 2 ( Teil 7 ) [ Dr. Lenk ] 10.2 Dynamische Verfahren...4 10.2.1 Finanzmathematische Begriffe...4 10.2.1.1 Barwert...4 10.2.1.2 Endwert...10 10.2.1.3

Mehr

UNIVERSITÄT HOHENHEIM

UNIVERSITÄT HOHENHEIM UNIVERSITÄT HOHENHEIM INSTITUT FÜR LANDWIRTSCHAFTLICHE BETRIEBSLEHRE FACHGEBIET: PRODUKTIONSTHEORIE UND RESSOURCENÖKONOMIK Prof. Dr. Stephan Dabbert Planung und Entscheidung (B 00202) Lösung Aufgabe 7

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende

Mehr

ein durch die zeitliche Produktionsfunktion R( I)

ein durch die zeitliche Produktionsfunktion R( I) Aufgabe : Ein Investor in einer Zwei-Zeitpunkt-Welt hat im Zeitpunkt t ein Anfangsvermögen von 300 Euro. Bei einem Sachinvestitionsvolumen von I im Zeitpunkt t kann im Zeitpunkt t ein durch die zeitliche

Mehr

Die dynamische Verfahren der Investitionsrechnung

Die dynamische Verfahren der Investitionsrechnung Die dynamische Verfahren der Investitionsrechnung 1. Die Grundlagen (Buch S. 85) 2. Die Kapitalwertmethode (Buch S. 116) (Berechnung der Summe des Barwertes) Beispiel : In t 0 t 1 t 2 t 3 Investitionsobjekt

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzierung - Vorlesung 6 - Prof. Dr. Rainer Elschen Prof. Dr. Rainer Elschen -92 - Die Interne Zinsfußmethode (1) Entscheidungsgröße: Interner Zinsfuß r Entscheidungsregel: r Max u.d.b.

Mehr

Finanzwirtschaft Teil III: Budgetierung des Kapitals

Finanzwirtschaft Teil III: Budgetierung des Kapitals Finanzmärkte 1 Finanzwirtschaft Teil III: Budgetierung des Kapitals Kapitalwertmethode Agenda Finanzmärkte 2 Kapitalwertmethode Anwendungen Revolvierende Investitionsprojekte Zusammenfassung Kapitalwertmethode

Mehr

Musterprüfung. Masterprüfungszentrale Xpert Business

Musterprüfung. Masterprüfungszentrale Xpert Business Musterprüfung Prüfung Xpert Business Finanzwirtschaft" Lösungsvorschlag Masterprüfungszentrale Xpert Business Volkshochschulverband Baden-Württemberg e. V. Raiffeisenstraße 14 70771 Leinfelden-Echterdingen

Mehr

Dynamische Investitionsrechnung Umsetzung und Beispiele. Teil 3

Dynamische Investitionsrechnung Umsetzung und Beispiele. Teil 3 Dynamische Investitionsrechnung Umsetzung und Beispiele Teil 3 Eingrenzung: Es werden ausschliesslich die Methoden der Pflichtliteratur ab Seite 135 bis Beispiel 12 besprochen. Kapitalwertverfahren (NPV

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 29. Juni 2015 Erinnerung Bewertung eines Bonds mit Kupon k, Nominal N, Laufzeit t n: n Π(t) = N k δ(t i 1, t i ) P (t, t i ) + N P (t,

Mehr

Integration betriebsspezifisch relevanter Kosten- und Nutzenarten ins betriebliche Rechnungswesen

Integration betriebsspezifisch relevanter Kosten- und Nutzenarten ins betriebliche Rechnungswesen Integration betriebsspezifisch relevanter Kosten- und Nutzenarten ins betriebliche Rechnungswesen Was ist das Rechnungswesen? Informationsinstrument für:es Unternehmens für: Management Aufsichtsrat Eigentümer

Mehr

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.

Finanzmathematik. Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000. Finanzmathematik Dr. Bommhardt. Das Vervielfältigen dieses Arbeitsmaterials zu nicht kommerziellen Zwecken ist gestattet. www.bommi2000.de Das Tilgungsrechnen Für Kredite gibt es drei unterschiedliche

Mehr

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui

Übungsaufgaben zur Einführung in die Finanzmathematik. Dr. Sikandar Siddiqui Übungsaufgaben zur Einführung in die Finanzmathematik Übungsaufgaben Aufgabe 1: A hat B am 1.1.1995 einen Betrag von EUR 65,- geliehen. B verpflichtet sich, den geliehenen Betrag mit 7% einfach zu verzinsen

Mehr

11 Verbindlichkeiten 371

11 Verbindlichkeiten 371 11 Verbindlichkeiten 371 Verbindlichkeiten 11.1 Überblick Verbindlichkeiten eines Unternehmens werden in folgende Bereiche unterteilt. Verbindlichkeiten gegenüber Kreditinstituten Erhaltene Anzahlungen

Mehr

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme

Mehr

Betriebswirtschaftslehre für Juristen (Finanzbereich Kapitel 8)

Betriebswirtschaftslehre für Juristen (Finanzbereich Kapitel 8) Prof. Dr. Robert Gillenkirch/Dipl.-Kfm. René Thamm Betriebswirtschaftslehre für Juristen (Finanzbereich Kapitel 8) Vorlesung und Übung im Sommersemester 2008 Materialien zur Veranstaltung 1. Ein zahlungsbezogenes

Mehr

IAS 7 KAPITALFLUSSRECHNUNG

IAS 7 KAPITALFLUSSRECHNUNG IAS 7 KAPITALFLUSSRECHNUNG Zielsetzung Grundlage zur Beurteilung der Fähigkeit liquide Mittel zu erwirtschaften Informationen über Bewegungen der liquiden Mittel durch eine Kapitalflussrechnung 2 Anwendungsbereich

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Aufgabe 1: Instrumente des Konzerncontrolling. Dipl.-Ök. Christine Stockey

Aufgabe 1: Instrumente des Konzerncontrolling. Dipl.-Ök. Christine Stockey Aufgabe 1: Instrumente des Konzerncontrolling Dipl.-Ök. Christine Stockey Aufgabe 1a, 6 Punkte Welche Arten von auf Jahresabschlüssen basierenden Kennzahlen kennen Sie? 13.07.2010 Aufgabe 1: Instrumente

Mehr

Option Analysis of Plattform Decisions. Raeed Mayrhofer

Option Analysis of Plattform Decisions. Raeed Mayrhofer Option Analysis of Plattform Decisions Raeed Mayrhofer Softwareplattform ist ein Bündel von Funktionen, das das Ausführen von Applikationen ermöglicht bildet gemeinsam mit Hardware und Know-how die IT-Infrastruktur

Mehr

Universität Duisburg-Essen

Universität Duisburg-Essen T U T O R I U M S A U F G A B E N z u r I N V E S T I T I O N u n d F I N A N Z I E R U N G Einführung in die Zinsrechnung Zinsen sind die Vergütung für die zeitweise Überlassung von Kapital; sie kommen

Mehr

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W

6. Zinsrechnen () 1. / 3 Jahr? / 4 Jahr? (A) 12,00 W (B) 16,00 W (D) 81,00 W (E) 108,00 W (C) 50,00 W (D) 200,00 W (A) 24,00 W (B) 48,00 W 6. Zinsrechnen 382 Wie viele Zinsen bringt ein Kapital in HoÈ he von 8.000,00 a bei einem Zinssatz von 6 % p.a. in 90 Tagen? (A) 90,00 W (B) 120,00 W (C) 180,00 W (D) 210,00 W (E) 240,00 W 383 Zu welchem

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zinskurve Forward-Rates Zeitwert des Geldes Zinsgeschäfte und der zugehörige Cashflow

Mehr

Übungsblatt 07. Es gibt eine Reihe weitere Kausalitäten, die hier nicht abschliessend genannt werden können. Wichtig ist, daß die Antwort Sinn macht.

Übungsblatt 07. Es gibt eine Reihe weitere Kausalitäten, die hier nicht abschliessend genannt werden können. Wichtig ist, daß die Antwort Sinn macht. Übungsblatt 07 Aufgabe 1 Jeder Investor will stets mindestens sein eingesetztes Kapital zuzüglich einer Verzinsung zurück bekommen. Mathematisch ergibt sich aus der Formel: Je höher die Verzinsung, desto

Mehr

8.4 Zeitliche Abgrenzungen

8.4 Zeitliche Abgrenzungen 8.4 Zeitliche Abgrenzungen 8.4.1 Übersicht Der soll die Feststellung des Erfolges für das abgelaufene Wirtschaftsjahr ermöglichen und ist Grundlage der Besteuerung. Zur zeitlich genauen Ermittlung des

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Aufgabe 1: Investitionscontrolling. Dipl.-Kfm. Thomas Hahn

Aufgabe 1: Investitionscontrolling. Dipl.-Kfm. Thomas Hahn Aufgabe 1: Investitionscontrolling Dipl.-Kfm. Thomas Hahn Aufgabe 1 Die Morgengenuss GmbH plant die Anschaffung einer Produktionsanlage für die Herstellung neuer Kaffeeautomaten. Konrad Troller schlägt

Mehr

4. Berücksichtigung von Fremdfinanzierung

4. Berücksichtigung von Fremdfinanzierung 4. Berücksichtigung von Fremdfinanzierung Fremdfinanzierte IPs Berücksichtigung von Zahlungsflüssen aus einem Kredit Nettomethode Kreditaufnahme Alternativverzinsung bei Fremdfinanzierung M2 Angabe Um

Mehr

Rentabilität als Entscheidungskriterium für Investitionen

Rentabilität als Entscheidungskriterium für Investitionen Rentabilität als Entscheidungskriterium für 2. Energieeffizienztisch des Netzwerkes Südbayern am 27. Juli 2011 Thomas Gobmaier Gefördert durch: Testveranstaltung in Karlsruhe, 16. Oktober 2009 kurz nach

Mehr

Der Kapitalwert C 0 ist die durch das Projekt verursachte Vermögensänderung bezogen auf t=0.

Der Kapitalwert C 0 ist die durch das Projekt verursachte Vermögensänderung bezogen auf t=0. 86 II.5.3 Kapitalwert-Methode II.5.3.1 Def. : Prinzip Der Kapitalwert C 0 ist die durch das Projekt verursachte Vermögensänderung bezogen auf t=0. Im Unterschied zum Endwert, der die Vermögensänderung

Mehr

Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths

Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths KOOTHS BiTS: Finanzmärkte, WS 2004/2005 Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Geld- und Kreditschöpfung 3. Rentenmärkte

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA m+1 re = r m + i 2 Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich

Mehr

Auswahl an Musteraufgaben für KLR- Teil: Wirtschaftlichkeitsanalysen

Auswahl an Musteraufgaben für KLR- Teil: Wirtschaftlichkeitsanalysen Name: Seite 1 (inkl. Musterlösung) (inkl. Musterlösung) Auswahl an Musteraufgaben für KLR- Teil: Wirtschaftlichkeitsanalysen A. Multiple-Choice Prüfen Sie folgende Aussagen auf ihre Richtigkeit und kennzeichnen

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung.

Unter einer Rente versteht man eine regelmässige und konstante Zahlung. Anwendungen aus der Finanzmathematik a) Periodische Zahlungen: Renten und Leasing Unter einer Rente versteht man eine regelmässige und konstante Zahlung Beispiele: monatliche Krankenkassenprämie, monatliche

Mehr

Definition Gegenwartswert (Barwert) Der Wert des Geldes ist, über den man in der Gegenwart verfügen kann, ist grösser als der Wert des Geldes, den man in der Zukunft erhalten/zahlen wird. Diskontierung

Mehr

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden BspNr: G0010 Themenbereich Finanzmathematik - Rentenrechnung Ziele vorhandene Ausarbeitungen Arbeiten mit geom. Reihen TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische

Mehr