2. Spiele in Normalform (strategischer Form)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2. Spiele in Normalform (strategischer Form)"

Transkript

1 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6 Invaranzsätze für Nash-Glechgewchte 2.7 Das Olgopolspel von Cournot 2.8 Exstenzsätze für Nash-Glechgewchte

2 DEF Spel n Normalform (oder: n strategscher Form) G=(N,S,U), wobe N={1,2,,n} Lste der Speler S=S 1 xs 2 x xs n Menge zulässger Strategekombnatonen (s 1,s 2,,s n ) Lste zulässger Strategen s für Speler S Strategekombnaton aus Scht von Speler : (s,s - ) Auszahlungen U (s,s - ), de jeder Strategekombnaton (s,s - ) enen Wert (z.b. Nutzen oder monetäre Auszahlung) zuordnen

3 Bem.: Bmatrxspel Zwepersonenspel n Normalform Matrxspel symmetrsches Spel n Normalform Bespele Gefangenendlemma Koordnatonsspel Battle of the Sexes Hawk-Dove / Chcken Matchng Pennes

4 2.1 Domnante Strategen DEF Ene Stratege s* von Speler domnert alle anderen sener Strategen s (streng oder strkt), falls se unabhängg von der Strategewahl s - der anderen Speler mmer strkt de höchste Auszahlung generert, d.h. U (s*,s - ) > U (s,s - ), für alle s s* und alle s -. Ene solche Stratege wrd (streng oder strkt) domnante Stratege genannt.

5 DEF Ene Stratege s* von Speler domnert all sene anderen Strategen s schwach, falls se unabhängg von der Strategewahl s - der anderen Speler mmer ene mndestens genauso hohe Auszahlung garantert we ene belebge alternatve Stratege s, d.h. U (s*,s - ) U (s,s - ), für alle s und alle s - und für mndestens ene Strategewahl š - der anderen Speler strkt besser st als jede andere hrer Strategen s, d.h. U (s*, š - ) > U (s, š - ), für alle s s*. Ene solche Stratege wrd schwach domnante Stratege genannt.

6 Bemerkungen Jede (streng) domnante Stratege st schwach domnant. Informaton: En Speler mt ener domnanten Stratege benötgt kenerle Informaton über de Auszahlungsfunkton sener Mtspeler. Ratonaltät: Für enen Speler mt ener domnanten Stratege spelt es kene Rolle, ob sene Mtspeler ratonal snd oder ncht. Für hn st optmal, de domnante Stratege zu verwenden. Strategsches Verhaltensprnzp I: Wähle n ener nterpersonellen Entschedungsstuaton mmer ene domnante Stratege, wenn ene solche exstert!

7 Domnant lösbare Spele DEF Spele, n denen jeder Speler ene domnante Stratege bestzt, heßen domnant lösbar. De zugehörge Strategekombnaton, n der jeder Speler sene domnante Stratege spelt, heßt Lösung oder Glechgewcht n domnanten Strategen.! Bespel: Das Gefangenen-Dlemma st domnant lösbar. Bemerkung Ncht jedes Spel st domnant lösbar! (z.b.: Koordnatonsspele - mt oder ohne Interessenkonflkt).

8 2.2 Domnerte Strategen DEF Ene Stratege ŝ von Speler wrd von ener anderen Stratege s schwach domnert, falls letztere unabhängg von der Strategewahl s - der anderen Speler mndestens genauso gut abschnedet we ŝ, d.h. U (s,s - ) U ( ŝ,s - ), (*) für alle s -, und gegen mndestens ene Strategewahl š - der anderen Speler strkt besser, d.h. U (s, š - ) > U ( ŝ, š - ). Stratege ŝ wrd von Stratege s (streng) domnert, wenn Letztere mmer strkt besser abschnedet, d.h. wenn Unglechung (*) mt > glt.

9 Bemerkungen Es gbt Spele mt domnerten, aber ohne domnante Strategen. Informaton: Auch de Ermttlung domnerter Strategen erfordert kenerle Informaton über de Auszahlungsfunkton der Mtspeler. Ratonaltät: Für enen Speler mt ener domnerten Stratege spelt es kene Rolle, ob sene Mtspeler ratonal snd oder ncht. Für hn st optmal, ene (streng) domnerte Stratege ncht zu verwenden. Strategsches Verhaltensprnzp II: Wähle n ener nterpersonellen Entschedungsstuaton ne ene (streng) domnerte Stratege!

10 2.3 Sukzessve Elmnerung domnerter Strategen Illustraton (! Preswettbewerb à la Bertrand, Dutta, S. 52) Sukzessve Elmnerung schwach vs. streng domnerter Strategen (De Rehenfolge der Elmnerung kann be schwach domnerten Strategen ene entschedende Rolle spelen.) Informaton/Ratonaltät: Voraussetzung für de sukzessve Elmnerung domnerter Strategen st de gegensetge Kenntns von Auszahlungsfunkton und ratonalem Handeln (Common Knowledge) Je mehr Runden sukzessver Elmnerung erforderlch snd, desto höher der Anspruch an de Ratonaltät der betelgten Speler.

11 Strategsches Verhaltensprnzp III: Elmnere n ener Konflktstuaton sukzessve (streng) domnerte Strategen, sofern dese vorhanden snd! Bemerkung Ncht jedes Spel kann mt Hlfe der sukzessven Elmnerung streng oder schwach domnerter Strategen verenfacht oder gelöst werden! (z.b.: Koordnatonsspele - mt oder ohne Interessenkonflkt).

12 2.4 Nash-Glechgewcht Stabltätsgedanke (s 1,,s n ) heßt Nash-Glechgewcht : für kenen der Speler (=1,,n) lohnt es sch von sener Strategewahl s abzuwechen, solange de jewels anderen Speler an hrer Strategewahl s - festhalten " Nash-GG als Verhaltensempfehlung selbstbestätgend oder egenstablserend

13 DEF Ene Stratege s * von Speler heßt beste Antwort auf de Strategewahl s - der anderen Speler, falls U (s *, s - ) U (s, s - ), für alle s. Bem.: Domnante Strategen und beste Antwort DEF Ene Strategenkombnaton (s * 1,...,s * n) heßt Nash-Glechgewcht, falls U (s *, s * -) U (s, s * -), für alle Strategen s von Speler und alle Speler.

14 Bemerkungen Termnologe n Jost: strategsch stable Stratege Informaton/Ratonaltät: Voraussetzung für de Ermttlung enes Nash-Glechgewchts st de gegensetge Kenntns von Auszahlungsfunkton und ratonalen Handelns (Common Knowledge) Exstenz und Endeutgket Nash-GG: Robusthet hnschtlch ndvdueller Abwechungen Strategsches Verhaltensprnzp IV: Wähle n ener nterpersonellen Entschedungsstuaton mmer ene strategsch stable Stratege!

15 Alternatve Motverungen Nash-Glechgewcht als Rezept Vorabkommunkaton Ratonale Introspekton (Nashs ratonalstc nterpretaton ) Fokal-Punkte Tral & Error (oder allgemener: Lerndynamken) Evolutonäre Ansätze (Nashs mass acton nterpretaton )

16 Bezehungen zwschen den Lösungskonzepten Domnante Strategen und Nash-Glechgewcht Jede Lösung n schwach oder strkt domnanten Strategen stellt en Nash- GG dar. De Umkehrung st.a. falsch (! Bespel). Gbt es ene Lösung n strkt domnanten Strategen, so st das zugehörge Nash-GG endeutg. Iteratve Elmnerung domnerter Strategen und Nash-GG: Jede Lösung teratver Elmnerung schwach (und auch strkt) domnerter Strategen stellt en Nash-GG dar. De Umkehrung st.a. falsch (! Bespel). Gbt es ene Lösung durch teratve Elmnerung strkt domnerter Strategen, so st das zugehörge Nash-GG endeutg.

17 Bespele Cournot-Duopol (Mengen-/Kapaztätswettbewerb)! Kap. 2.7 Bertrand-Duopol (Preswettbewerb) Preswettbewerb n dfferenzerten Gütern

18 2.5 Gemschte Strategen DEF gemschte Stratege Ene gemschte Stratege q für Speler st ene Wahrschenlchketsvertelung über der Menge sener renen Strategen s S. Se ordnet jeder renen Stratege s S ene Wahrschenlchket q (s ) zu: q : S s q [0,1] ( s ), wobe s S q ( s ) = 1. Notaton: Q Q = k k = k : = { x R 0 : x h = h = 1} 1 Q 1 L Q n

19 Erwartete Auszahlung be gemschten Strategen Gegeben ene gemschte Strategekombnaton q=(q 1,,q n ), wrd ene rene Strategekombnaton s=(s 1,,s n ) gerade mt Wahrschenlchket q(s)= q 1 (s 1 ) q n (s n ) gespelt. Entsprechend ergbt sch de erwartete Auszahlung von Speler für ene gemschte Strategekombnaton q=(q 1,,q n ) als Erwartungswert der Auszahlungen der zugehörgen renen Strategekombnatonen: n ~ U (q) = q( s) U ( s) = q j ( s j ) U ( s). s S s S j= 1

20 Gemschte Strategen und beste Antworten DEF Träger ener gemschten Stratege Se q ene gemschte Stratege. Als Träger der gemschten Stratege q bezechnet man alle renen Strategen s 1, s 2,..., s m de mt postver W ket gespelt werden, d.h. alle s k mt q(s k )>0. Fundamental-Lemma a) Ene gemschte Stratege q von Speler st genau dann ene beste Antwort auf de Strategewahl q - der anderen Speler, wenn jede rene Stratege m Träger von q ene beste Antwort auf q - darstellt. b) Ist Fall a) gegeben, so stellt jede gemschte Stratege über dem Träger von q ene beste Antwort auf q - dar.

21 Dre gute Gründe für gemschte Strategen: Domnanz: Ene gemschte Stratege kann rene Strategen domneren, selbst wenn dese von kener anderen renen Stratege domnert werden. Bluffen: De schlechteste erwartete Auszahlung ener echt gemschten Stratege fällt (für manche Entschedungsstuatonen) höher aus als de schlechteste Auszahlung jeder renen Stratege. Exstenz enes Nash-Glechgewchts: Lassen wr gemschte Strategen zu, so bestzt jedes (endlche) Spel mndestens en Nash-Glechgewcht.

22 Gemschte Strategen und Domnanz Domnante Strategen: Gbt es ene rene Stratege, de jede andere rene Stratege domnert, so domnert dese auch jede gemschte Stratege. Gbt es kene domnante rene Stratege, dann kann es auch kene domnante gemschte Stratege geben. Iteratve Elmnerung domnerter Strategen (IEDS): Spele ohne IEDS-Lösung n renen Strategen bestzen u.u. ene IEDS-Lösung n gemschten Strategen. Für Spele mt ener IEDS-Lösung n renen Strategen st dese auch de IEDS-Lösung n (unecht) gemschten Strategen.

23 Gemschte Strategen und Bluffen Bespelklasse Kontrollprobleme Wetere Bespele: Aufschlag bem Tenns Elfmeterscheßen Matchng Pennes Poker dverse Tresenspele

24 Gemschte Strategen und Nash-Glechgewcht DEF Ene Stratege q * von Speler heßt beste Antwort auf de Strategewahl q - der anderen Speler, falls Ũ (q *, q - ) Ũ (q, q - ), für alle q. DEF Ene Strategenkombnaton (q * 1,...,q * n) heßt Nash-Glechgewcht, falls Ũ (q *, q * -) Ũ (q, q * -), für alle Strategen q von Speler und alle Speler.

25 Satz von Nash (1951) Jedes (endlche) Spel bestzt mndestens en Nash-Glechgewcht n gemschten Strategen. Bemerkungen: De Erweterung auf gemschte Strategen löst das Exstenzproblem für endlche Spele! Verblebende Probleme: -) Endeutgket! Glechgewchtsauswahlproblem -) Starke Annahmen an Ratonaltät der Speler

26 Dre Interpretatonsmöglchketen für gemschte Strategen: Beschrebung ratonalen Verhaltens, welches zufällg erschent Häufgketen der verwendeten renen Stratege (+Anonymtät)! z.b. Steuerprüfungen, Dopng- und Verkehrskontrollen etc. Grenzfall von Stuatonen mt ensetg unvollständger Informaton (egene Auszahlung bekannt, ncht aber de der Mtspeler)! Harsany (1973)

27 2.7 Invaranzsätze für Nash-Glechgewchte DEF ordnal äquvalente Spele Zwe Spele, G = (N,S, U) und G = (N,S, U), heßen ordnal äquvalent, falls für alle renen Strategekombnatonen s, s und alle Speler glt: Lemma U ( s) U ( s ) U ( s) U ( s ). a) Für ordnal äquvalente Spele snd de besten Antworten auf rene Strategen, de Domnanzbezehungen zwschen renen Strategen und de Glechgewchte n renen Strategen dentsch. b) Für ordnal äquvalente Spele können de Glechgewchte n gemschten Strategen verscheden sen. Entsprechendes glt für beste Antworten und Domnanzbezehungen bzgl. gemschter Strategen.

28 DEF affn äquvalente Spele Zwe Spele, G = (N,S, U) und G = (N,S, U), heßen affn (oder kardnal) äquvalent, wenn für alle renen Strategekombnatonen s und alle Speler glt: wobe α > 0 und R. β U ( s) = α U( s) + β, Lemma Für affn äquvalente Spele snd de beste-antwort Korrespondenzen n gemschten Strategen, de Domnanzbezehungen n gemschten Strategen und de Glechgewchte n gemschten Strategen dentsch.

29 DEF lokale Verschebungen Zwe Spele, G = (N,S, U) und G = (N,S, U), heßen lokal verschoben, wenn für alle renen Strategekombnatonen ( s, s ) und alle Speler glt: wobe γ ( s ) R. U ( s, s ) = U ( s, s ) + γ ( s ), Lemma Für zwe lokal verschobene Spele snd de beste-antwort Korrespondenzen n gemschten Strategen, de Domnanzbezehungen n gemschten Strategen und de Glechgewchte n gemschten Strategen dentsch.

30 2.7 Das Olgopolspel von Cournot Beschrebung n Frmen Mengenwettbewerb Nachfragefunkton Analyse Reaktonsfunkton

31 2.8 Exstenzsätze für Nash-Glechgewchte Satz (Debreu, Glcksberg und Fan, 1952) Se G=(N,S,U) en Spel n Normalform. Ist für jeden Speler de Strategemenge S kompakt und konvex und de Auszahlungsfunkton stetg n s und quas-konkav n s, so exstert en Nash-Glechgewcht n renen Strategen. Satz (Wlson, 1971) Se G=(N,S,U) en endlches Spel n Normalform. Dann bestzt G normalerwese, mt Wahrschenlchket Ens, fast mmer ene ungerade Anzahl von Glechgewchten (n möglcherwese gemschten Strategen).

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 009 UNIVERSITÄT KARLSRUHE Blatt 4 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 16: (Success Run, Fortsetzung)

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Dr. Florian Englmaier 1 Übung Wettbewerbstheorie und -politik. Handout zu Übungsblatt 1: Einführung

Dr. Florian Englmaier 1 Übung Wettbewerbstheorie und -politik. Handout zu Übungsblatt 1: Einführung Dr. Floran Englmaer 1 Handout zu Übungsblatt 1: Enführung De Industreökonomk beschäftgt sch mt dem Marktverhalten und der nternen Organsaton von Unternehmen. (Preswettbewerb, Marktzutrttsverhalten, Produktdff.

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Entscheidungstheorie Teil 3. Thomas Kämpke

Entscheidungstheorie Teil 3. Thomas Kämpke Entschedngstheore Tel 3 Thomas Kämpke Sete Entschedngstheore Tel 3 Inhalt St. Petersbrg Paradoon (Bernoll 73) Präferenzfnktonen ttelpnktsmethode zr Bestmmng von Wertfnktonen über Intervallen (endmensonal)

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

3.1 Extensive Form, Spielbaum und Teilspiele

3.1 Extensive Form, Spielbaum und Teilspiele 3. Spele n extensver Form 3.1 Extensve Form, Spelbaum und Telspele 3.2 Strategen n extensven Spelen 4. Spele mt vollkommener Informaton 4.1 Telspelperfekte Nash-Glechgewchte 4.2 Das chan-store -Paradox

Mehr

Facility Location Games

Facility Location Games Faclty Locaton Games Semnar über Algorthmen SS 2006 Klaas Joeppen 1 Abstract Wr haben berets sehr häufg von Nash-Glechgewchten und vor allem von deren Exstenz gesprochen. Das Faclty Locaton Game betet

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Verteilungen eindimensionaler diskreter Zufallsvariablen

Verteilungen eindimensionaler diskreter Zufallsvariablen Vertelungen endmensonaler dskreter Zufallsvarablen Enführung Dskrete Vertelungen Dskrete Glechvertelung Bernoull-Vertelung Bnomalvertelung Bblografe: Prof. Dr. Kück Unverstät Rostock Statstk, Vorlesungsskrpt,

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert).

) ergeben die i i. Es gelten folgende allgemeinen Resultate (in informeller Sprache formuliert). V. Kolluson Im olgopolstschen Wettbewerb treffen mtunter mmer weder de glechen Frmen aufenander. Des eröffnet de Möglchket für stlles Zusammenspel, wel abwechendes Verhalten n späteren Zusammentreffen

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen. IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung

Mehr

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner

Proseminar Spieltheorie SS 2006 Ausarbeitung zum Vortrag Allgemeine Zwei-Personenspiele am Vortragender: Florian Leiner Prosemnar Speltheore SS 2006 Ausarbetung zum Vortrag Allgemene Zwe-Personenspele am 06.07.2006 Vortragender: Floran Lener Der Vortrag basert auf dem entsprechenden Kaptel wo-person general-sum games aus

Mehr

42020 KE Investitionsanreize - Gefangenendilemma

42020 KE Investitionsanreize - Gefangenendilemma Bespel: Investtonsanrez (Gefangenendlemma: Opportunstsches Verhalten lohnt sch ncht, de beste Lösung für bede Seten st wenn bede Seten sch bewegen) Ausgangspunkt: 1. Zuleferer und Abnehmer snd über enen

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum

Fallstudie 1 Diskrete Verteilungen Abgabe: Aufgabentext und Lösungen schriftlich bis zum Abgabe: Aufgabentext und Lösungen schrftlch bs zum 15. 6. 2012 I. Thema: Zehen mt und ohne Zurücklegen Lesen Se sch zunächst folgenden Text durch! Wr haben bsher Stchprobenzehungen aus Grundgesamtheten

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung

Die Annäherung der Binomialverteilung durch die Normalverteilung am Beispiel eines Modells der Schadenversicherung am Bespel enes Modells der chadenverscherung Für das Modell ener chadenverscherung se gegeben: s w s. n 4 chaden enes Verscherungsnehmers, wenn der chadenfall entrtt Wahrschenlchket dafür, dass der chadenfall

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT)

Eine kurze Einführung in die Dichtefunktionaltheorie (DFT) Ene kurze Enführung n de Dchtefunktonaltheore (DFT) Mchael Martns Lteratur: W. Koch, M.C. Holthausen A Chemst s Gude to Densty Functonal Theory Wley-VCH 2001 Dchtefunktonaltheore p.1 Enletung Im Falle

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

4. Optische Resonatoren

4. Optische Resonatoren 4. Optsche Resonatoren 4.. Modenselekton Bs jetzt haben wr nur den enfachsten Resonatortyp, den Fabry-erot Laser besprochen. In Abb. 4.. snd nochal de wchtsten Eenschaften deses Lasertyps darestellt. a)

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

1. Runde 2010. Aufgaben und Lösungen. Bundeswettbewerb Mathematik

1. Runde 2010. Aufgaben und Lösungen. Bundeswettbewerb Mathematik Bundeswettbewerb Mathemat Wssenschaftszentrum Postfach 2 14 48 53144 Bonn Fon: 228-9 59 15-2 Fax: 228-9 59 15-29 e-mal: nfo@bundeswettbewerb-mathemat.de www.bundeswettbewerb-mathemat.de Korreturommsson

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten?

Was erwarten wir als Ergebnis von freien Verhandlungen in einer Gruppe mit Koalitionsmöglichkeiten? Prof. Dr. Fredel Bolle 1 Prof. Dr. Fredel Bolle Vorlesung 1 Defnton: Kooperatves Spel En ooperatves Spel Γ st en Tupel (N,V), wobe der N = {1,...,m} mt m > 1 de Menge der Speler bezechnet und Was erwarten

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Äquivalenzen stetiger und glatter Hauptfaserbündel

Äquivalenzen stetiger und glatter Hauptfaserbündel Äquvalenzen stetger und glatter Hauptfaserbündel Chrstoph Müller Chrstoph Wockel Fachberech Mathematk Unverstät Darmstadt 31. Süddeutsches Kolloquum über Dfferenzalgeometre Glederung 1 De Problemstellung

Mehr

Aspekte zur Approximation von Quadratwurzeln

Aspekte zur Approximation von Quadratwurzeln Aspete zur Approxmaton von Quadratwurzeln Intervallschachtelung Intervallhalberungsverfahren Heron-Verfahren Rechnersche und anschaulche Herletung Zusammenhang mt Newtonverfahren Monotone und Beschränthet

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr