Überblick über die Verfahren für Ordinaldaten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Überblick über die Verfahren für Ordinaldaten"

Transkript

1 Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische Entsprechung t Test für unabhängige Stichproben einfaktorielle Varianzanalyse Testmethoden für Ordinaldaten Odi Unterschiede bei abhängigen Stichproben Wilcoxon Test Friedman Test t Test für abhängige Stichproben Varianzanalyse mit Messwiederholung Zusammenhänge Spearman s Rho Kendall s Tau Produkt Moment Korrelation 2 1

2 Wiederholung Skalenniveaus 3 Nonparametrische Verfahren für Ordinaldaten wenn Ordinaldaten vorliegen (z.b. Rangplätze) wenn die Voraussetzungen für parametrische Testverfahren deutlich verletzt sind (z.b. sehr schiefe Verteilungen) und sehr kleine und/oder unterschiedlich große Stichproben vorliegen Beispiel für eine nicht normalverteilte Größe die Normalverteilung kann z.b. mit Hilfe des Kolmogorov Smirnov Tests geprüft werden ein signifikantes Ergebnis bedeutet hier, dass die Daten nicht normalverteilt sind die Teststärke ist deutlich geringer als bei parametrischen Verfahren! 4 2

3 Nonparametrische Verfahren für Ordinaldaten 5 Beispiel für nicht normalverteilte Daten Der Grund für das Ende einer Partnerschaft war/wäre 1 = stimme überhaupt nicht zu 5 = stimme voll und ganz zu Unterschiedliche Wohnorte Probleme mit den Verwandten des Partners ein Seitensprung die Meinung von Freunden das Verhalten des Partners 6 3

4 U Test nach Mann und Whitney nonparametrisches Verfahren für Vergleich von 2 unabhängigen Stichproben hinsichtlich ihrer zentralen Tendenz anhand der mittleren Ränge Beispiel: Reaktionszeiten in msec Sind die Reaktionszeiten beim Medikament größer? Daten sind eindeutig nicht normalverteilt nonparametrisch testen 7 was sind die mittleren Ränge? unterscheiden sich diese mittleren Ränge signifikant voneinander? 8 4

5 U Test nach Mann und Whitney Henry Mann und Donald Whitney (1947) kann ein oder zweiseitig testen Berechnung von U (Rangplatzüberschreitungen) für jeden Wert in Gruppe 1: wie viele Werte in Gruppe 2 haben größeren Rangplatz? Summe der Rangabweichungen = U Wert entsprechend Berechnung von U für Rangplatzunterschreitungen g (U wird nur benötigt, g, da für den Signifikanztest immer der kleinere der beiden Werte benutzt werden muss) 9 Rangplatzüberschreitungen (für jeden Wert in Gruppe 1 schauen, wie viele Werte in Gruppe 2 einen größeren Rangplatz haben): oder einfacher: (T 1 = Summe der Rangplätze in Gruppe 1) entsprechende Rangplatzunterschreitungen: 10 5

6 U Test nach Mann und Whitney Signifikanzprüfung in kleinen Stichproben: U Verteilung liefert kritischen Wert der kleinere Wert von U bzw U wird idzur Prüfung Püf herangezogen er muss gleich oder kleiner sein als der kritische Wert Signifikanzprüfung in großen Stichproben der U Wert ist hier annähernd normalverteilt daher wird der U Wert in einen z Wert umgerechnet und dieser geprüft: Standardfehler: Erwartungswert von U: 11 U Verteilung Alpha einseitig von 5%, zweiseitig von 2% 12 6

7 Problem beim U Test: Rangbindungen (Ties) haben zwei Personen den gleichen Wert, erhalten sie auch denselben Rang, d.h. sie teilen sich die beiden entsprechenden Ränge z.b.: die Ränge 10 und 11 in einer Rangfolge fallen auf zwei Personen, die beide denselben Wert haben sie erhalten beide den Rang 10,5 damit ist eine Trennung der beiden Gruppen natürlich nicht mehr möglich die Teststärke sinkt! bei zu vielen Ties: Korrekturverfahren anwenden 13 Rechenbeispiel Der Grund für das Ende einer Partnerschaft war/wäre 1 = stimme überhaupt nicht zu 5 = stimme voll und ganz zu Unterschiedliche Wohnorte Probleme mit den Verwandten des Partners ein Seitensprung die Meinung von Freunden das Verhalten des Partners Frauen Männer

8 Wilcoxon Test (Vorzeichenrangtest) nonparametrisches Verfahren zum Vergleich der zentralen Tendenz bei abhängigen Stichproben verwendet die Vorzeichen der aus den Differenzen gebildeten bl Rangwerte, um zu entscheiden, ab sich ein Unterschied zwischen den zwei Treatments ergibt (nicht zu verwechseln mit dem Vorzeichentest dem nonparametrischen Test für Anteile) 15 Wilcoxon Test (Vorzeichenrangtest) Beispiel: Vorgehen: 1. Differenzen bilden 2. Rangplätze für die absoluten Differenzen vergeben 3. Differenzen von 0 bleiben unberücksichtigt 4. Summe der Rangplätze der positiven Differenzen en bilden 5. Summe der Rangplätze der negativen Differenzen bilden (Ties bei den Personen 1, 4 und 6 sie haben alle eine Differenz von 2 bekommen daher alle den Rang 3 zugewiesen [Mittelwert der Ränge 2, 3, 4]) 16 8

9 Wilcoxon Test (Vorzeichenrangtest) Summe der Rangplätze der negativen Differenzen: Summe der Rangplätze der positiven Differenzen: laut Nullhypothese sollten T und T + gleich groß sein zur Prüfung auf Signifikanz wird auch hier der kleinere der beiden Werte herangezogen dieser sollte kleiner oder gleich dem kritischen Wert für T sein 17 T Verteilung Die Stichprobengröße in unserem Beispiel beträgt n = 8, da die Person mit der Differenz von 0 nicht berücksichtigt wird! 18 9

10 H Test nach Kruskal und Wallis zum Vergleich der zentralen Tendenz anhand der mittleren Ränge aus drei oder mehr unabhängigen Stichproben T j = Rangsummen pro Stichprobe j 19 Friedman Test (Rangvarianzanalyse) zum Vergleich der zentralen Tendenz, wenn eine Stichprobe in k Bedingungen getestet wird T j = Rangsummen pro Spalte für die k Bedingungen k = Anzahl der Messzeitpunkte dietestgröße istannähernd Chi Quadrat Quadratverteiltmitk k 1 1 Freiheitsgraden 20 10

11 Rangkorrelation nach Spearman zur Prüfung von Korrelationen bei ordinalen Daten die Daten müssen als Ränge vorliegen wenn das nicht der Fall ist, müssen die Werte jeder der beiden Stichproben in eine eigene Rangreihe gebracht werden Prüfgröße: Spearman s Rho ρ die Prüfgröße ist t verteilt und kann damit wie die normale Korrelation geprüft werden Problem: Spearman s Rhosetzt gleicheintervalle zwischen aufeinander folgenden Rangwerten voraus! schwierig zu prüfen besser: Kendall s Tau verwenden 21 Rangkorrelation nach Kendall Anwendung wie Spearman s Rho, allerdings ohne die Voraussetzung gleicher Rangintervalle also eine echte Rangkorrelation Prüfgröße: Kendall s Tau τ die Prüfgröße ist z verteilt 22 11

12 Sperman s Rho und Kendall s Tau im Vergleich testen beide den monotonen Zusammenhang zwischen zwei Variablen sind aber nicht bl beliebig b austauschbar und können stark voneinander abweichen Spearman s Rho entspricht der Produkt Moment Korrelation da hier die Differenzen von Rängen eingehen, muss gerechtfertigt sein, dass Rangdifferenzen tatsächlich gleich inhaltliche Differenzen abbilden Kendall s Tau basiert nur auf der Anzahl von Größer /Kleiner Relationen verwendet also rein ordinale Informationen 23 Rangkorrelation auch bei nicht linearen Zusammenhängen bietet sich eine Rangkorrelation an (solange die Monotonie Bedingung erfüllt ist) 24 12

13 Effektgrößen und Power Problem bei nonparametrischen Verfahren für Ordinaldaten: Effektgrößen sind schwer oder gar nicht bestimmbar damit sind auch keine Aussagen über die Power möglich eine grobe Abhilfe: Powerbestimmung wie bei korrespondierendem parametrischen Test als grobe Annäherung führt meist zu einer Überschätzung der Power kann nur angewendet werden, wenn der jeweilige Test als Alternative zu einem parametrischen Test gemacht wurde (also nicht bei echten Rangdaten) für eine grobe Abschätzung der Effektgrößen: den p Wert des nonparametrischen Tests in den Testwert (z.b. den t Wert) des entsprechenden parametrischen Verfahrens zurückrechnen (z.b. mit einem Programm) und anschließend für diesen die Effektgröße bestimmen 25 Zusammenfassender Überblick der Testverfahren 26 13

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko

Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Prüfen von Unterschiedshypothesen für ordinale Variablen: Mann-Whitney Test und Ko Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Post Hoc Tests A priori Tests (Kontraste) Nicht-parametrischer Vergleich von Mittelwerten 50 Ergebnis der ANOVA Sprossdichte der Seegräser 40 30 20 10

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Kategoriale und metrische Daten

Kategoriale und metrische Daten Kategoriale und metrische Daten Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/14 Übersicht Abhängig von der Anzahl der Ausprägung der kategorialen Variablen unterscheidet man die folgenden Szenarien:

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Forschungsstatistik II

Forschungsstatistik II Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg R. 06-06 (Persike) R. 06-3 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik II Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Online Statistik-Coaching

Online Statistik-Coaching Online Statistik-Coaching Modul 3 Statistisches Testen - Auswahl der passenden Methode - Durchführung mit SPSS - Interpretation und Darstellung Dipl.-Math. Daniela Keller www.statistik-und-beratung.de

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgaben zu Kapitel 8 Aufgabe 1 a) Berechnen Sie einen U-Test für das in Kapitel 8.1 besprochene Beispiel mit verbundenen Rängen. Die entsprechende Testvariable punkte2 finden Sie im Datensatz Rangdaten.sav.

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Ergebnisse VitA und VitVM

Ergebnisse VitA und VitVM Ergebnisse VitA und VitVM 1 Basisparameter... 2 1.1 n... 2 1.2 Alter... 2 1.3 Geschlecht... 5 1.4 Beobachtungszeitraum (von 1. Datum bis letzte in situ)... 9 2 Extraktion... 11 3 Extraktionsgründe... 15

Mehr

Methodik für Linguisten

Methodik für Linguisten Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Taubertsberg R. 0-0 (Persike) R. 0-1 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet0.sowi.uni-mainz.de/

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind

Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische Verfahren nicht erfüllt sind Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 6 Seite 1 Unterschiedshypothesen für maximal 2 Gruppen, wenn die Voraussetzungen für parametrische

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Einfaktorielle Varianzanalyse

Einfaktorielle Varianzanalyse Kapitel 16 Einfaktorielle Varianzanalyse Im Zweistichprobenproblem vergleichen wir zwei Verfahren miteinander. Nun wollen wir mehr als zwei Verfahren betrachten, wobei wir unverbunden vorgehen. Beispiel

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Weitere Korrelationskoeffizienten (1)

Weitere Korrelationskoeffizienten (1) Weitere Korrelationskoeffizienten () Welche Korrelationskoeffizienten man für die Analyse von Zusammenhängen benutzen kann, hängt entscheidend von dem Skalenniveau der beteiligen Variablen und der Fragestellung

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005 /

Mehr

Aufgaben zu Kapitel 8

Aufgaben zu Kapitel 8 Aufgaben zu Kapitel 8 Aufgabe 1 a) Berechnen Sie einen U-Test für das in Kapitel 8.1 besprochene Beispiel mit verbundenen n. Die entsprechende Testvariable punkte2 finden Sie im Datensatz Rangdaten.sav.

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Einführung in die Korrelationsrechnung

Einführung in die Korrelationsrechnung Einführung in die Korrelationsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Korrelationsrechnung

Mehr

SigmaStat Nina Becker, Christoph. Rothenwöhrer. Copyright 2004 Systat Software, Inc.

SigmaStat Nina Becker, Christoph. Rothenwöhrer. Copyright 2004 Systat Software, Inc. SigmaStat 3.11 Copyright 2004 Systat Software, Inc. http://www.systat.com Nina Becker, Christoph Rothenwöhrer Die Aufgabe der Statistik ist die Zusammenfassung von Daten, deren Darstellung, Analyse und

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Inhaltsverzeichnis Einfaktorielle Rangvarianzanalyse mit Messwiederholungen... 2 Lernhinweise... 2 Einführung... 3 Theorie (1-3)... 3 Teil 1 -

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Statistik für Psychologen

Statistik für Psychologen Peter Zöfel Statistik für Psychologen Im Klartext Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide Statistik für Psychologen

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

12 Rangtests zum Vergleich zentraler Tendenzen

12 Rangtests zum Vergleich zentraler Tendenzen 12 Rangtests zum Vergleich zentraler Tendenzen 12.1 Allgemeine Bemerkungen 12.2 Gepaarte Stichproben: Der Wilcoxon Vorzeichen- Rangtest 12.3 Unabhängige Stichproben: Der Wilcoxon Rangsummentest und der

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Tabelle 1: Mittelwerte der Messwerte aller Probanden je Messzeitpunkt nach Messverfahren. 03:00 Uhr 18,2 ±3,9 mmhg 19,5 ±4,1 mmhg 19,2 ±3,6 mmhg

Tabelle 1: Mittelwerte der Messwerte aller Probanden je Messzeitpunkt nach Messverfahren. 03:00 Uhr 18,2 ±3,9 mmhg 19,5 ±4,1 mmhg 19,2 ±3,6 mmhg 7 Anhang Tabelle 1: Mittelwerte der Messwerte aller Probanden je Messzeitpunkt nach Messverfahren Tonometrie nach Median der Selbstto- Median der Selbstto- Goldmann nometrie stationär nometrie ambulant

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Die ungeliebten Verwandten: nicht-parametrische Alternativen

Die ungeliebten Verwandten: nicht-parametrische Alternativen 1.1.1. Die ungeliebten Verwandten: nicht-parametrische Alternativen 1.1.1.1. Was zur Hölle? Ted richtet seine Waffe auf Dr. Bob Kelso: Nein, Bob! Das werde ich nicht tun! Nicht nach all dem, was ich durchmachen

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Psychologische Methodenlehre Statistik

Psychologische Methodenlehre Statistik RAINER LEONHART Psychologische Methodenlehre Statistik Mit 21 Abbildungen und 40 Tabellen Mit 64 Ubungsfragen Ernst Reinhardt Verlag Miinchen Basel Inhalt Vorwort 9 1 Einfuhrung in die Forschungsmethoden

Mehr

Kurzgefasste Statistik fur die klinische Forschung

Kurzgefasste Statistik fur die klinische Forschung J.Bortz G.A.Lienert Kurzgefasste Statistik fur die klinische Forschung Leitfaden fur die verteilungsfreie Analyse kleiner Stichproben 3., aktualisierte und bearbeitete Auflage Mit 13 Abbildungen und 97

Mehr

Stichwortverzeichnis. Ausgleichsgerade 177 Ausreißer 13, 40

Stichwortverzeichnis. Ausgleichsgerade 177 Ausreißer 13, 40 283 Stichwortverzeichnis a Alpha-Wert 76, 91 Alter 256 Alternativhypothese 68, 70 ANOVA siehe einfache Varianzanalyse, zweifache Varianzanalyse Anpassung 178 Anpassungstest siehe Chi-Quadrat-Anpassungstest

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

1.5 Berechnung von Rangzahlen

1.5 Berechnung von Rangzahlen 1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Skript zur Vorlesung Statistik 2

Skript zur Vorlesung Statistik 2 Weder die Autorin noch der Fachschaftsrat Psychologie übernimmt Irgendwelche Verantwortung für dieses Skript. Das Skript soll nicht die Lektüre der Prüfungsliteratur ersetzen. Verbesserungen und Korrekturen

Mehr

Statistische Tests zu ausgewählten Problemen

Statistische Tests zu ausgewählten Problemen Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten

Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten Kapitel 5 - Einfaktorielle Experimente mit festen und zufälligen Effekten 5.1. Einführung Einfaktorielle Varianzanalyse Überprüft die Auswirkung einer gestuften (s), unabhängigen Variable X, auch Faktor

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler Haupt Verlag Bern Stuttgart Wien Inhaltsverzeichnis Vorwort 13 1 Beschreibende Statistik 15 1.1 Mittelwerte 15 1.1.1 Minimum der Abstände 15 1.1.2 Der Mediän

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014

Signifikanzprüfung. Peter Wilhelm Herbstsemester 2014 Signifikanzprüfung Peter Wilhelm Herbstsemester 2014 1.) Auswahl des passenden Tests 2.) Begründete Festlegung des Alpha- Fehlers nach Abschätzung der Power 3.) Überprüfung der Voraussetzungen 4.) Durchführung

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Die widerspenstige Zähmung des Zufalls

Die widerspenstige Zähmung des Zufalls Kapitel 6: Signifikanztests Signifikanztests = Hypothesenprüfung Hypothese = Wenn dann -Beziehung Besteht ein Zusammenhang zwischen Variable X und Variable Y? Die widerspenstige Zähmung des Zufalls unabhängige

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr