Data Warehousing. Relationale Datenbanken. Ulf Leser Wissensmanagement in der Bioinformatik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Data Warehousing. Relationale Datenbanken. Ulf Leser Wissensmanagement in der Bioinformatik"

Transkript

1 Data Warehousing Relationale Datenbanken Ulf Leser Wissensmanagement in der Bioinformatik

2 Inhalt dieser Vorlesung Relationale Datenbanken Relationales Modell und relationale Operatoren SQL Anfragebearbeitung Indexstrukturen ER-Modellierung Normalformen Wer das kennt Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

3 Relationale Datenbank Relationale Datenbank Management Systeme (RDBMS) Serverbasierte Software Ein RDBMS viele RDB Aufgaben Speicherverwaltung Transaktionsmanagement Anfragebearbeitung Userverwaltung Systeme Oracle, DB2, Informix, Sybase, NCR Terada, SQL-Server PostGreSQL, Interbase, mysql, Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

4 Schichtenmodell Externes Schema Externes Schema Externes Schema Sichten Konzeptionelles Schema Logisches Modell (Tabellen, Attribute, Anfragen Internes Schema Physisches Modell (Indexierung, Speicherung) Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

5 Client-Server Konzept JAVA (JDBC) JAVA (JDBC) JAVA (JDBC) Native (SQL*Plus, Native (SQL*Plus, Native OCI) (SQL*Plus, OCI) OCI) Listener Server Sekundärspeicher Andere Datenbank Konsistenz Multiplexing Parallelisierung Lastverteilung Authentifizierung Authorisierung. Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

6 Relationales Datenmodell Repräsentation aller Daten in Tabellen Zeilen/ Rows/ Tupel Tabellenname Attribute Datentypen Mitarbeiter P_ID Vorname Peter Stefanie Petra Andreas Spalten/Attribute Nachname Müller Meier Weger Zwickel Alter Adresse Berlin Berlin München München Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

7 Tabellen Mitarbeiter p_id vorname nachname alter adresse 1 Peter Müller Berlin 2 Stefanie Meier Berlin 5 Petra Weger München 7 Andreas Zwickel München Projekte Arbeitet_in proj_id p_id Anteil proj_id name kunde status DWH BMW Akquisition 2 ecommerce Metro Läuft 5 SAP RAG Abgeschlossen Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

8 Operationen Selektion Alle Zeilen von Mitarbeiter mit Alter>40 und Name= Müller Projektion Alle Mitarbeiter-Spalten Vorname, Nachname Kartesisches Produkt Alle Zeilen von Mitarbeiter verknüpft mit jeweils allen Zeilen von Arbeitet_in Komposition von Operationen Die Spalten Nachname und Proj_id aller Zeilen des kartesischen Produkts von Mitarbeiter und Arbeitet_in, bei denen Mitarbeiter.P_ID=Arbeitet_in.P_ID mit Anteil größer als 0.1 Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

9 SQL Grundkonzepte SELECT FROM WHERE M.nachname, A.arbeitet_in mitarbeiter M, arbeitet_in A M.p_id = A.p_id AND A.anteil > 0.1 SQL: Structured Query Language ANSI-SQL, SQL-92, SQL-3 Deklarativer Charakter: Was, nicht wie Vier Grundbefehle: Insert, Update, Delete, Select DDL versus DML Andere Sprachen: Tupel/Domänenkalkül, relationale Algebra, QBE Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

10 Insert Einfügen von Werten in Tabelle Prinzipiell ein Tupel pro Insert INSERT INTO mitarbeiter VALUES (1, Peter, Müller, 38, Berlin ); INSERT INTO projekte (proj_id, name, kunde) VALUES (1, Stammhaus-BMW, BMW ); Erweiterungen Bulk-Insert INSERT INTO SELECT Insert in mehrere Tabellen: INSERT INTO INTO INTO Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

11 Update Ändern von Werten in Tabellen Ändert mehrere Werte in einer Tabelle UPDATE projekte SET status = abgebrochen, kunde = kunde -insolvent WHERE kunde= Grundig Typisches Muster UPDATE tabelle SET = (SELECT FROM WHERE) WHERE id in (SELECT FROM WHERE) Erweiterungen UPSERT / MERGE Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

12 Delete Löschen von Tupeln in einer Tabellen DELETE FROM projekte WHERE status= abgeschlossen Typisches Muster DELETE FROM projekte WHERE id in (SELECT FROM WHERE) Löschen ist eine performancekritische Operation DELETE, DROP TABLE, TRUNCATE Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

13 Select Selektieren von Werten aus mehreren Tabellen SELECT FROM WHERE M.nachname, A.anteil mitarbeiter M, arbeitet_in A M.p_id = A.p_id AND a.anteil > 0.1 SELECT M.nachname, P.name, A.anteil FROM mitarbeiter M, projekte P, arbeitet_in A WHERE M.p_id = A.p_id AND A.proj_id = P.proj_id SELECT M.nachname, A.anteil FROM mitarbeiter M, arbeitet_in A WHERE M.p_id = A.proj_id? Ergebnis ist Tabelle Ausführung ist Sache des RDBMS - Optimierung Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

14 Varianten Subqueries Korreliert oder nicht Umschreiben möglich? Self-Join Begrenzte Rekursion SQL in FROM Klausel In-Line Views Nützlich bei Top-Ten / Sortieranfragen SELECT vorname, nachname FROM mitarbeiter M WHERE EXISTS ( SELECT A.p_id FROM arbeitet_in A WHERE A.p_id = M.p_id SELECT P1.name, P1.name FROM projekte P1, projekte P2 WHERE P1.vorgaenger=p2.proj_id AND P2.status= abgeschlossen SELECT X.nachname, X.status FROM ( SELECT M.nachname, p.status FROM mitarbeiter, projekte, arbeitet_in WHERE M.p_id=A.p_id AND A.proj_id=P.proj_id ) X WHERE X.status= Akquisition Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

15 Weitere Operationen Aggregation und GROUP BY SELECT FROM WHERE GROUP BY proj_id, COUNT(*), SUM(alter)/COUNT(*) mitarbeiter M, arbeitet_in A, projekte P M.p_id=A.p_id AND A.proj_id=P.proj_id P.proj_id? SELECT proj_id, P.name, COUNT(*) FROM mitarbeiter M, arbeitet_in A, projekte P WHERE M.p_id=A.p_id AND A.proj_id=P.proj_id GROUP BY P.proj_id ORDER BY SELECT FROM WHERE ORDER BY P.name, M.nachname mitarbeiter M, arbeitet_in A, projekte P M.p_id=A.p_id AND A.proj_id=P.proj_id P.name, M.nachname Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

16 Views Definition von benamten Queries CREATE VIEW proj_pers AS SELECT P.proj_id, P.name, M.P_id, M.name, M.alter, FROM mitarbeiter M, arbeitet_in A, projekte P WHERE M.p_id=A.p_id AND A.proj_id=P.proj_id Können viel Schreibarbeit sparen SELECT proj_id, COUNT(*), SUM(alter)/COUNT(*) FROM proj_pers GROUP BY proj_id Views werden i.d.r. syntaktisch expandiert Erweiterungen Materialisierte Sichten Rekursive Views Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

17 DDL DML: Data Manipulation Language DDL: Data Definition Language Definition von Tabellen, Indexen, Views, Administration: Tablespaces, Segmente, Rollen Benutzerverwaltung: User, Gruppen, Rechte, CREATE TABLE mitarbeiter ( p_id NUMBER, vorname VARCHAR2(100), nachname VARCHAR2(100), alter NUMBER(2) CHECK (alter>0 AND alter<150), adresse VARCHAR2(1000) ); Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

18 Anfrageübersetzung und -optimierung Prinzipieller Ablauf Parsen der Anfrage (Syntax) Überprüfen der Schemaelemente ( Semantik ) Expandieren von Views Berechnung von Ausführungsplänen Exponentiell viele Wahl des optimalen Ausführungsplans Regelbasierter Optimierer Kostenbasierter Optimierer Ausführung Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

19 Ausführungspläne SELECT FROM WHERE M.nachname, A.anteil mitarbeiter M, arbeitet_in A M.p_id = A.p_id AND a.anteil > 0.1 π(nachname, anteil) π(nachname, anteil) σ(anteil>0.1) NLJ(p_id=p_id) NLJ(p_id=p_id) σ(anteil>0.1) π(p_id,nachname) Arbeitet_in mitarbeiter Arbeitet_in mitarbeiter Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

20 Ausführungspläne Freiheitsgrade Algebraische Anfrageumformung Joinreihenfolge Joinmethode (Nested Loop, Sort-Merge, Hash ) Indexzugriff oder Full-Table-Scan (7% Regel) Operatorreihenfolge Kostenbasierter Optimierung Einbeziehung von Werteverteilungen, Tabellengrößen, Anzahl NULL-Werten, Histogrammen, Selektivität, Heuristische Ziele Minimierung von Zwischenergebnissen Minimierung von Sekundärspeicherzugriff Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

21 Balancierter B und B* Baum Knoten enthalten höchstens 2m Schlüssel Knoten enthalten mindestens m Schlüssel, die Wurzel mindestens 1 Schlüssel Knoten mit x Schlüsseln - x+1 Kinder Balancierter Baum: Alle Blätter haben gleiche Tiefe B*: Daten nur in Blättern K C F O T A B D E G H I J L M N P Q R S U V W Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

22 Indexstrukturen + Sehr schneller Zugriff auf einzelne Elemente (O(log(n)) + Schnelle Bereichsanfragen im B* Baum + Indexierung von Attributkombinationen - Elemente müssen geordnet werden können - B Bäume degenerieren bei vielen Duplikaten - Sequentieller Blockzugriff eventuell schneller (7%) - Zusammengesetzte Indexe duplizieren Tabellen - Indexaktualisierung kostet Zeit - Auch Indexe müssen gesperrt werden Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

23 ER-Modellierung Relationales Modell sehr semantikarm Modellieren in Tabellen und Joins wenig intuitiv Modellierungssprachen: ER, EER, UML, Entity-Relationship Modell Entities Mitarbeiter Projekte Attribute p_id vorname proj_id p_id Beziehungen nachname arbeitet_in kunde Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

24 Übersetzung in relationales Modell Entity Tabelle Attribute Attribute dieser Tabelle Beziehung 1:1 Verschmelzen der Tabelle oder FK-Beziehung 1:n Fremdschlüsselbeziehung m:n Brückentabelle mit zwei Fremdschlüsselbeziehungen professor Student Professor p_id name lehrt s_id P_id 1 10 student 2 10 lehrt s_id 1 name Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

25 Normalformen Attribute hängen funktional voneinander ab p_id Vorname, Nachname, Alter proj_id Kunde, Status, Schlüsselkandidaten Minimale Menge von Attributen, die alle anderen Attribute einer Tabelle funktional bestimmen Zerlegung nach funktionalen Abhängigkeiten Datenbankentwurf Armstrongkalkül Ziel: Redundanzfreies Schema Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

26 Normalformen (nicht exakt ) Relationenschema R, Primärschlüssel P Erste Normalform (1NF) Alle Attribute von R sind atomar (Adresse!) Zweite Normalform (2NF) R ist in 1NF Kein Attribut A hängt von P P funktional ab Schlecht: lehrt(p_id,s_id,termin,stud_name) Dritte Normalform (3NF) R in 1NF Kein Attribut A hängt von A P ab Schlecht: mitarbeiter(p_id,plz,ort) Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

27 Weitere Themen Transaktionsverarbeitung, ACID Sperrenverwaltung Datenintegrität, Constraints Theorie: Relationenkalkül, algebraische Umformungen, Armstrongkalkül, Backup & Recovery Block- / Buffer- / Speichermanagement, Caching Datenmodellerweiterungen: EER, NF2, objektrelationale und oo Systeme, XML Datenbanken Programmierung: Trigger, PL/SQL, JDBC, Ulf Leser: Data Warehousing, Vorlesung, Sommersemester

Crashkurs: Relationale Datenbanksysteme

Crashkurs: Relationale Datenbanksysteme Crashkurs: Relationale Datenbanksysteme 3.0.2004 Felix Naumann Überblick Vormittag Motivation Warum sind RDBMS und XML Systeme für die Informationsintegration wichtig? RDBMS Relational Database Management

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Datenbank. Datenbankmanagementsystem. Datenbanken. 16.10.2006 Felix Naumann. Datenbanken 1 Organisatorisches und Einführung

Datenbank. Datenbankmanagementsystem. Datenbanken. 16.10.2006 Felix Naumann. Datenbanken 1 Organisatorisches und Einführung Datenbanken 1 Organisatorisches und Einführung 16.10.2006 Felix Naumann Datenbanken 2 Anwendung Anwendung Datenbankmanagementsystem Datenbank 1 Überblick 3 Vorstellung der Arbeitsgruppe Organisatorisches

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen:

In die Zeilen würden die Daten einer Adresse geschrieben werden. Das Ganze könnte in etwa folgendermaßen aussehen: 1 Einführung in Datenbanksysteme Fast jeder kennt Excel und hat damit in seinem Leben schon einmal gearbeitet. In Excel gibt es Arbeitsblätter, die aus vielen Zellen bestehen, in die man verschiedene Werte

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

IBM Informix SQL. Seminarunterlage. Version 11.04 vom

IBM Informix SQL. Seminarunterlage. Version 11.04 vom Seminarunterlage Version: 11.04 Version 11.04 vom 27. April 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

SQL (Structured Query Language) Schemata Datentypen

SQL (Structured Query Language) Schemata Datentypen 2 SQL Sprachelemente Grundlegende Sprachelemente von SQL. 2.1 Übersicht Themen des Kapitels SQL Sprachelemente Themen des Kapitels SQL (Structured Query Language) Schemata Datentypen Im Kapitel SQL Sprachelemente

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Rückblick Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Data Definition Language zur Schemadefinition (z.b. CREATE TABLE zum Anlegen von Tabellen) Data

Mehr

Arbeiten mit ACCESS 2013

Arbeiten mit ACCESS 2013 Dipl.-Hdl., Dipl.-Kfm. Werner Geers Arbeiten mit ACCESS 2013 Datenbanken mit Datenmodellierung Tabellen, Abfragen, Formularen und Berichten Beziehungen Makros Datenaustausch SQL Structured Query Language

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Tag 4 Inhaltsverzeichnis

Tag 4 Inhaltsverzeichnis Tag 4 Inhaltsverzeichnis Normalformen Problem Formen (1-4) Weitere Formen Transaktionen Synchronisationsprobleme Überblick Autocommit Locking Savepoints Isolation levels Übungen RDB 4-1 Normalformen Problematik

Mehr

SQL. Fortgeschrittene Konzepte Auszug

SQL. Fortgeschrittene Konzepte Auszug SQL Fortgeschrittene Konzepte Auszug Levels SQL92 Unterteilung in 3 Levels Entry Level (i.w. SQL89) wird von nahezu allen DBS Herstellern unterstützt Intermediate Level Full Level SQL DML 2-2 SQL92 behebt

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Kapitel 7 Datenbank-Tuning

Kapitel 7 Datenbank-Tuning Kapitel 7 Datenbank-Tuning Flien zum Datenbankpraktikum Wintersemester 2012/13 LMU München 2008 Thmas Bernecker, Tbias Emrich 2010 Tbias Emrich, Erich Schubert unter Verwendung der Flien des Datenbankpraktikums

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 08. Exkurs: Datenbanken 1 Motivation Datenbanksysteme

Mehr

Datenbanken. Lernziele. Inhalt. Organisatorisches. Datenbank und Datenbanksystem. 1. Grundlagen Datenbanken. Wie entwerfe ich eine Datenbank?

Datenbanken. Lernziele. Inhalt. Organisatorisches. Datenbank und Datenbanksystem. 1. Grundlagen Datenbanken. Wie entwerfe ich eine Datenbank? SELECT s., s., sum(k.dauer) FROM s, a, Kurs k WHERE s.=a. AND a.=k. GROUP BY s. Lernziele Datenbanken ditact 2003 Salzburg Wie entwerfe ich eine Datenbank? Wie kann ich Daten einfügen, bearbeiten oder

Mehr

Datenadminstrator, Datenbankdesigner, Systemanalytiker (für die logische Sicht zuständig)

Datenadminstrator, Datenbankdesigner, Systemanalytiker (für die logische Sicht zuständig) 1 Grundlagen Begriffe Daten bekannte zutreffende Tatsachen über die Domäne/Miniwelt DBS Einsatz eines DBMS für eine Datenbank, DBS besteht aus folgenden Komponenten: 1. DBMS 2. Datenbank DBMS Software

Mehr

OM Datenbanken. OM Datenbanken. 8.1 Was ist ein Datenbanksystem? Motivation

OM Datenbanken. OM Datenbanken. 8.1 Was ist ein Datenbanksystem? Motivation 1 Inhalt: Relationale Datenbanken 8.1 Was ist ein Datenbanksystem? 8.2 Relationale Datenbanksysteme 8.3 Abbildung des objektorientierten Modells auf Tabellen 2 8.1 Was ist ein Datenbanksystem? Motivation

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Geordnete Form...36 Erfassung und Speicherung...37 Relationale Datenbanken...37 Einfache Tabellen...37 Objekte und Begriffe relationaler

Geordnete Form...36 Erfassung und Speicherung...37 Relationale Datenbanken...37 Einfache Tabellen...37 Objekte und Begriffe relationaler Inhaltsverzeichnis Einleitung...13 SQL: Die Abfragesprache für Datenbanken...17 Kennzeichnende Merkmale von SQL...17 SQL-Dialekte...18 Kurze Entwicklungsgeschichte...18 SQL/86 oder SQL/1...19 SQL/89 oder

Mehr

Listener: Bei Oracle erfolgt die Steuerung (konventionell) via listener.ora (Listener Konfiguration), tnsnames.ora (Client Konfiguration)

Listener: Bei Oracle erfolgt die Steuerung (konventionell) via listener.ora (Listener Konfiguration), tnsnames.ora (Client Konfiguration) Protokoll 1: Listener: Bei Oracle erfolgt die Steuerung (konventionell) via listener.ora (Listener Konfiguration), tnsnames.ora (Client Konfiguration) Abschnitt 2.1 (Ausführungen zum Shutdown / Startup)

Mehr

Relationale Datenbanken Kursziele

Relationale Datenbanken Kursziele Relationale Datenbanken Kursziele DB Grundlagen Daten-Modellierung Relationales Modell und DB => Praxis: Mit SQL als Anfragesprache Mit MySQL als DB RDB 1-1 Kursinhalt (Tage) 1. DB Einleitung / Entity-Relationship

Mehr

Tag 4 Inhaltsverzeichnis

Tag 4 Inhaltsverzeichnis Tag 4 Inhaltsverzeichnis Normalformen Problem Formen (1-4) Weitere Formen Transaktionen Synchronisationsprobleme Überblick Autocommit Locking Savepoints Isolation levels Übungen RDB 4-1 Normalformen Problematik

Mehr

Relationale Datenbanken

Relationale Datenbanken Datenbanksysteme Relationale Datenbanken Relationales Datenmodell Deklarationen Anfragen! Entwurf, z.b. mit Entity Relationship Model! Deklaration! Speichern der Daten! Hauptspeicher, Cache, virtueller

Mehr

Kapitel 7 Datenbank-Tuning. Folien zum Datenbankpraktikum Wintersemester 2010/11 LMU München

Kapitel 7 Datenbank-Tuning. Folien zum Datenbankpraktikum Wintersemester 2010/11 LMU München Kapitel 7 Datenbank-Tuning Flien zum Datenbankpraktikum Wintersemester 2010/11 LMU München 2008 Thmas Bernecker, Tbias Emrich unter Verwendung der Flien des Datenbankpraktikums aus dem Wintersemester 2007/08

Mehr

7. Übung - Datenbanken

7. Übung - Datenbanken 7. Übung - Datenbanken Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: DBS a Was ist die Kernaufgabe von Datenbanksystemen? b Beschreiben Sie kurz die Abstraktionsebenen

Mehr

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt Andreas Heuer Gunter Saake Kai-Uwe Sattler Datenbanken kompakt Inhaltsverzeichnis Vorwort v 1 Was sind Datenbanken 1 1.1 Warum Datenbanken 1 1.2 Datenbanksysteme 4 1.3 Anforderungen: Die Codd'schen Regeln

Mehr

Konstante Relationen

Konstante Relationen Konstante Relationen values-syntax erzeugt konstante Relation values ( [, Konstante] * )[, ( [, Konstante] * )]* Beispiel values (1, eins ), (2, zwei ), (3, drei ); Resultat ist eine

Mehr

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme Handout zur Vorlesung Vorlesung DBSP Unit Datenbanken SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: kratzke@fh-luebeck.de

Mehr

Einführung in SQL mit Oracle

Einführung in SQL mit Oracle Seminar Einführung in SQL mit Oracle von Prof. Dr. Rainer Schwenkert Hochschule München c Vervielfältigung nur mit Zustimmung des Autors Themenbereiche SQL-Historie Wichtige DDL- und DML-Anweisungen Der

Mehr

Datenbanksysteme Kapitel: SQL Data Definition Language

Datenbanksysteme Kapitel: SQL Data Definition Language Datenbanksysteme Kapitel: SQL Data Definition Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni - Prof.

Mehr

3. Architektur eines DBS (Oracle)

3. Architektur eines DBS (Oracle) 3. Architektur eines DBS (Oracle) aus Sicht des Datenbank Server Rechners Connectivity Komponente(n) des DBS (z.b. Oracle Listener) Installation ORACLE_HOME Instanz ORACLE_SID Datenbank Oracle: 1 (aktive)

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

Lothar Piepmeyer. Grundkurs Datenbanksysteme. Von den Konzepten bis zur Anwendungsentwicklung ISBN: 978-3-446-42354-1

Lothar Piepmeyer. Grundkurs Datenbanksysteme. Von den Konzepten bis zur Anwendungsentwicklung ISBN: 978-3-446-42354-1 Lothar Piepmeyer Grundkurs Datenbanksysteme Von den Konzepten bis zur Anwendungsentwicklung ISBN: 978-3-446-42354-1 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42354-1

Mehr

SQL-Anweisungen. SELECT (SQL Data Query Language)

SQL-Anweisungen. SELECT (SQL Data Query Language) SQL-Anweisungen SELECT (SQL Data Query Language) SELECT * SELECT * FROM "meine Tabelle"; SELECT feldname1, feldname2 SELECT feldname1, feldname2 FROM meinetabelle ORDER BY feldname2, feldname1 DESC; WHERE

Mehr

XML in der Oracle Datenbank "relational and beyond"

XML in der Oracle Datenbank relational and beyond XML in der Oracle Datenbank "relational and beyond" Ulrike Schwinn (Ulrike.Schwinn@oracle.com) Oracle Deutschland GmbH Oracle XML DB Ein Überblick 1-1 Agenda Warum XML in der Datenbank? Unterschiedliche

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Download:.../~rieche. gehalten am 2. Februar 2004. Stephan Rieche. Vortrag. Thema: Index Selection. von. Seminar Advanced Data Warehouse

Download:.../~rieche. gehalten am 2. Februar 2004. Stephan Rieche. Vortrag. Thema: Index Selection. von. Seminar Advanced Data Warehouse Seminar Advanced Data Warehouse Thema: Index Selection Vortrag von Stephan Rieche gehalten am 2. Februar 2004 Download:.../~rieche Inhalt des Vortrages 1. Einleitung - Was ist das Index Selection Problem?

Mehr

9. Einführung in Datenbanken

9. Einführung in Datenbanken 9. Einführung in Datenbanken 9.1 Motivation und einführendes Beispiel 9.2 Modellierungskonzepte der realen Welt 9.3 Anfragesprachen (Query Languages) 9.1 Motivation und einführendes Beispiel Datenbanken

Mehr

Labor 3 - Datenbank mit MySQL

Labor 3 - Datenbank mit MySQL Labor 3 - Datenbank mit MySQL Hinweis: Dieses Labor entstand z.t. aus Scripten von Prof. Dr. U. Bannier. 1. Starten des MySQL-Systems MySQL ist ein unter www.mysql.com kostenlos erhältliches Datenbankmanagementsystem.

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Logische Optimierung Ulf Leser Wissensmanagement in der Bioinformatik Inhaltsübersicht Vorlesung Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Programmierung 2 SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R IV-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Datenbankanfragen und -operationen mittels SQL

Datenbankanfragen und -operationen mittels SQL Datenbankanfragen und -operationen mittels SQL Über den verschiedenen Tabellen einer Datenbank werden Operationen ausgeführt, die immer wieder eine Tabelle als Ergebnis zurückgeben. Mathematisch modelliert

Mehr

Software-Engineering Einführung

Software-Engineering Einführung Software-Engineering Einführung 7. Übung (04.12.2014) Dr. Gergely Varró, gergely.varro@es.tu-darmstadt.de Erhan Leblebici, erhan.leblebici@es.tu-darmstadt.de Tel.+49 6151 16 4388 ES Real-Time Systems Lab

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013

Garten -Daten Bank. Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Garten -Daten Bank Was ist das? Dr. Karsten Tolle PRG2 SS 2013 Inhalt heute Kurz: Motivation und Begriffe SQL (am Beispiel MySQL und Workbench) create table(tabelle erzeugen) insert into(einfügen) select

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 29. April 2013 - MySQL 2 Sebastian Cuy sebastian.cuy@uni-koeln.de Aufgaben Anmerkungen Best practice: SQL Befehle

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 22. April 2013 - MySQL Sebastian Cuy sebastian.cuy@uni-koeln.de Datenbanken Was sind eigentlich Datenbanken? Eine

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 7 Einige interessante SQL und PL/SQL Erweiterungen für Administratoren Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 19 Seite

Mehr

Erstellen einer Datenbank. Datenbankabfragen

Erstellen einer Datenbank. Datenbankabfragen Erstellen einer Datenbank Datenbankabfragen Überblick Die fünf Stationen Semantisches Modell Logisches Modell Prüfung auf Redundanz Abfragen Softwaremäßige Implementierung Zur Erinnerung: Semantisches

Mehr

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik

Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik Taschenbuch der Wirtschaftsinformatik und Wirtschaftsmathematik von Wolfgang König, Heinrich Rommelfanger, Dietrich Ohse, Oliver Wendt, Markus Hofmann, Michael Schwind, Klaus Schäfer, Helmut Kuhnle, Andreas

Mehr

Dynamisches SQL. Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München

Dynamisches SQL. Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München Kapitel 4 Dynamisches SQL Folien zum Datenbankpraktikum Wintersemester 2009/10 LMU München 2008 Thomas Bernecker, Tobias Emrich unter Verwendung der Folien des Datenbankpraktikums aus dem Wintersemester

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #6. SQL (Teil 4)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #6. SQL (Teil 4) Vorlesung #6 SQL (Teil 4) Fahrplan Besprechung der Übungsaufgaben Einschub: Self Joins (relevant fürs Praktikum) Dynamische Intergritätsbedingungen, das Trigger - Konzept von Oracle Prozedurale Erweiterungen,

Mehr

6. Datenintegrität. Integritätsbedingungen

6. Datenintegrität. Integritätsbedingungen 6. Integritätsbedingungen dienen zur Einschränkung der Datenbankzustände auf diejenigen, die es in der realen Welt tatsächlich gibt. sind aus dem erstellten Datenmodell ableitbar (semantisch) und können

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten Fakultät für Informatik & Wirtschaftsinformatik Metadaten Metadaten sind Daten über Daten Data-Dictionary speichert Informationen über die Struktur der Daten, z.b.: Tabellen, Spalten, Datentypen Primär-

Mehr

Informatik Datenbanken SQL-Einführung

Informatik Datenbanken SQL-Einführung Informatik Datenbanken SQL-Einführung Gierhardt Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Auswahl-Abfragen mit SELECT 2 2.1 Selektion...................................... 2 2.2 Projektion.....................................

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

Datenmodellierung und Datenbanksysteme. Vorlesung. Informationswissenschaft und Informationssysteme. Hans Uszkoreit & Brigi1e Jörg

Datenmodellierung und Datenbanksysteme. Vorlesung. Informationswissenschaft und Informationssysteme. Hans Uszkoreit & Brigi1e Jörg Vorlesung Informationswissenschaft und Informationssysteme Hans Uszkoreit & Brigi1e Jörg Definitionen Data modeling in software engineering is the process of creating a data model by applying formal data

Mehr

Die Grundbegriffe Die Daten Die Informationen

Die Grundbegriffe Die Daten Die Informationen Die Grundbegriffe Die Daten sind diejenigen Elemente, die vom Computer verarbeitet werden. Die Informationen sind Wissenselemente, welche durch die Analyse von Daten erhalten werden können. Die Daten haben

Mehr

Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann

Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann Datenbanksysteme I Anfragebearbeitung und -optimierung 27.6.2011 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)

Mehr

Datenbanksysteme 1. Organisation. Prof. Stefan F. Keller. Ausgabe 2005. Copyright 2005 HSR SS 2005

Datenbanksysteme 1. Organisation. Prof. Stefan F. Keller. Ausgabe 2005. Copyright 2005 HSR SS 2005 Datenbanksysteme 1 Organisation Ausgabe 2005 Prof. Stefan F. Keller SS 2005 Copyright 2005 HSR Inhalt Einführung Relationales Datenmodell, Datenmodellierung DB-Entwurf, Normalisierung SQL-Data Definition

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

Datenbanksysteme I. FB Automatisierung und Informatik: Datenbanksysteme I

Datenbanksysteme I. FB Automatisierung und Informatik: Datenbanksysteme I Datenbanksysteme I Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 1 Inhalt 1. Grundlegende Begriffe der

Mehr

Wirtschaftsinformatik 2. Tutorium im WS 11/12

Wirtschaftsinformatik 2. Tutorium im WS 11/12 Wirtschaftsinformatik 2. Tutorium im WS 11/12 Entity/Relationship-Modell SQL Statements Tutorium Wirtschaftsinformatik WS 11/12 2.1 Datenmodellierung mit ERM (1) Datenmodellierung zur Erarbeitung des konzeptionellen

Mehr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr Raum: LF 230 Bearbeitung: 9.-11. Mai 2005 Datum Gruppe Vorbereitung Präsenz Aktuelle Informationen unter: http://www.is.informatik.uni-duisburg.de/courses/dbp_ss03/ Tabellen in IBM DB2 Tabellen Eine relationale

Mehr

Web Technologien Klassische Datenbanken am Beispiel von MySQL

Web Technologien Klassische Datenbanken am Beispiel von MySQL Web Technologien Klassische Datenbanken am Beispiel von MySQL Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00

Mehr

Speicherung von XML in (objekt-)relationalen Datenbanken. Burkhard Schäfer

Speicherung von XML in (objekt-)relationalen Datenbanken. Burkhard Schäfer Speicherung von XML in (objekt-)relationalen Datenbanken Burkhard Schäfer Übersicht Motivation Anforderungen Ansätze modellorientiert strukturorientiert Zusammenfassung Motivation Warum XML in Datenbanken

Mehr

4.1 SQL. Wichtige skalare Datentypen

4.1 SQL. Wichtige skalare Datentypen 4. Basierend auf dem Tupelkalkül und der relationalen Algebra wurden mit dem Aufkommen relationaler DBMS auch spezielle Sprachen entwickelt. SQL ist die derzeit am weitesten verbreitete Anfragesprache

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

Funktion definieren Gibt Summe der Gehälter zurück. Aufruf in einem SQL-Statement

Funktion definieren Gibt Summe der Gehälter zurück. Aufruf in einem SQL-Statement Funktion definieren Gibt Summe der Gehälter zurück Aufruf in einem SQL-Statement Dr. Christian Senger Einführung PL/SQL 1 Procedures & Transaktionen CREATE OR REPLACE PROCEDURE write_log ( log_code IN

Mehr