Physik für Mediziner im 1. Fachsemester
|
|
- Hannah Amsel
- vor 2 Jahren
- Abrufe
Transkript
1 Physik für Mediziner im 1. Fachsemester #12 10/11/2010 Vladimir Dyakonov
2 Konvektion Verbunden mit Materietransport Ursache: Temperaturabhängigkeit der Dichte In Festkörpern ohne Bedeutung Der Mechanismus: Erwärmung von unten oder innen Abkühlung von oben Thermische Ausdehnung -> Auftrieb Heißes Material steigt auf kühlt an Oberfläche ab sinkt als kaltes Material ab
3 Wärmetransport Räumliche Temperaturdifferenzen führen zu Wärmetransport von Gebieten höherer Temperatur in Gebiete tieferer Temperatur 3 Prozesse des Wärmetransports: Konvektion Wärmeleitung Heizstab Zeit Wärmestrahlung Konvektion, Wärmeleitung sind an Materie gebunden (Gas, Flüssigkeit, Festkörper) Wärmestrahlung auch im Vakuum möglich
4 Wärmeleitung Zeit Heizstab Wärmeleitzahl λ : Eisen = 80 W/mK Kupfer = 393 W/mK Kein Materietransport
5 Wärmeleitung Wärmestrom: Q T1 T = d = j " A = A#! d t L P 2 Wärmeleitfähigkeit ist das Vermögen eines λ Stoffes, = Wärmeleitvermögen thermische Energie (W/m.K) mittels oder Wärmeleitung Wärmeleitzahl Zeit A in Form = Querschnittsfläche von Wärme zu transportieren dq/dt = der Wärmestrom Einheit: [J/(m s K)] bzw. [W/(m K)] Wärmereservoir 1 Wärmereservoir 2 dt T1! T2 T L =! " j = "! " x dx
6 Wärmeleitung Materialkonstante λ ist von der Temperatur abhängig Elektrisch leitende Metalle sind auch gute Wärmeleiter (Gitterschwingungen + freie Elektronen) Vollständige Unterdrückung der Wärmeleitung ist nur möglich, wenn keine Materie vorhanden ist (oder: Wärmedämmstoffe) Gute Wärmeleiter " Wm #1 K #1 Wärmedäm mstoffe " Wm #1 K #1 Duraluminium 166 Sandstein 2,0 Gusseisen! Messing Beton Kork! 1,3 0,05 Neusilber 23 Glaswolle 0,04 Stahl 45 Wasser 0,6 V2A Stahl 14 Luft 0,02
7 Wärmeleitung in Flüssigkeiten Wärmeleitfähigkeit von Flüssigkeiten ist im allgemeinen sehr klein Experiment mit Reagenzglas
8 Wärmeleitung in Flüssigkeiten Leidenfrost sches Phänomen: Wärme der heißen Unterlage überträgt sich in die aufliegende Wasserschicht des Tropfens und breitet sich dann im Tropfen weiter aus, was aber eine gewisse Zeit benötigt. Ist die Unterlage deutlich heißer als der Siedepunkt des Tropfens, verdampft nur die untere Schicht des Tropfens, während der obere Teil noch recht kühl ist.
9 Wärmestrahlung Körper geben/nehmen immer Wärme durch transversale EM-Strahlung ab/auf (auch im Vakuum, da nicht an Materie gebunden). Wärmestrahlung hat folgende Eigenschaften: Wärmestrahlung ist abhängig von der Temperatur Oberfläche und Oberflächenbeschaffenheit eines Körpers Wärmestrahlung wird absorbiert, abhängig von Material und Dicke Wärmestrahlung wird reflektiert, abhängig von der Oberfläche Wärmestrahlung ist abhängig vom betrachteten Frequenzbereich
10 Wärmestrahlung Strahlungsleistung des schwarzen Körpers Emission des (schwarzen) Körpers kann durch spektrale Energiedichte ρ(ν,t)dν beschrieben werden. (=Energie des Strahlungsfeldes pro Volumen und pro Frequenzintervall) #(!, T ) d! = 8" h! / c d! h! / kt e $ K 6000 K Planck sches Strahlungsgesetz 4000 K h ist das Planck sche Wirkungsquantum h = Js 3000 K Hz
11 Wärmestrahlung Beobachtungen: Abgestrahlte Leistung: P = Strahlungsleistung; Energie/Zeit A = Fläche T = Temperatur des Körpers Emission:! P ~ e"at 4 P ~ A P ~ T 4 Stefan-Boltzmann-Gesetz! σ = Stefan-Boltzmann-Konstante (=5,67*10-8 W m -2 K -4 ) e(t) = Emissionsgrad (Oberflächenbeschaffenheit); liegt zwischen 0 und 1
12 Wärmestrahlung Gesamtemission des Schwarzen Strahlers Mit steigender Temperatur wächst die Fläche unter der Kurve im Planckschen Strahlungsgesetz stark an K 3000 K 3000 K Hz Hz
13 Wärmestrahlung T T 0 Wärmeübertrag für zwei schwarze Strahler: P ~ e"a(t 4 # T o 4 ) Vermeidung des Wärmeübertrags per Wärmestrahlung durch Verspiegelung!
14 Emissionsmaximum Das Maximum der emittierten Strahlung verschiebt sich mit steigender Temperatur zu höheren Frequenzen (zu kürzeren Wellenlängen). Berechnung des Frequenzmaximums liefert das Wiensche Verschiebungsgesetz " Verschiebung 10 Hz max = 5.88! 10! K T 6000 K 5000 K Wilhelm Wien ( ) : Professor für Physik, Würzburg, Nobelpreis K 4000 K Hz
15 Wärmestrahlung Infrarotbereich
16 Wärmelehre Versuche
17 W1 Kalorimetrie Bestimmung der spezifischen Wärmekapazität von Wasser Prinzip: Eine vorher gewogene Menge Wasser wird mit einem elektrischen Heizstab erwärmt und die Temperaturänderung in Abhängigkeit von der Zeit gemessen. Energiebilanz: Vom Wasser aufgenommene Wärme = von der Heizung abgegebene Wärme Stoppuhr Radius r Apparatur
18 W1 Kalorimetrie Bestimmung der spezifischen Wärmekapazität von Wasser Prinzip: Eine vorher gewogene Menge Wasser wird mit einem elektrischen Heizstab erwärmt und die Temperaturänderung in Abhängigkeit von der Zeit gemessen. Energiebilanz: Vom Wasser aufgenommene Wärme = von der Heizung abgegebene Wärme Spezifische Wärmekapazität von Wasser Temperatur/ C ! Zeit/s ( m W " c W ) " (# 2 $# 1 ) = P " ( t 2 $ t 1 ) Temperatur Masse Wasser: m W C Wasser: c W Anfangstemperatur: ϑ 1 Endtemperatur: ϑ 2 Heizleistung P Anfangszeitpunk t 1 Endzeitpunkt t 2
19 W1 Kalorimetrie Bestimmung der spezifischen Wärmekapazität eines Metalls Prinzip: Ein Metallkörper wird im Wasserbad auf 100 C erhitzt und dann in eine bekannte Menge Wasser geworfen. Aus dem Verlauf der Temperatur des Wassers wird die Anfangstemperatur des Wassers und die Mischtemperatur bestimmt.
20 W1 Kalorimetrie Bestimmung der spezifischen Wärmekapazität eines Metalls Energiebilanz: Vom Metall angegebene Wärme = vom Wasser aufgenommene Wärme m M " c M (# 3 $# 2 ) = ( m W " c W ) " (# 2 $# 1 ) Masse Metall m M c Metall c! M T(Anfang) Metall ϑ 3 T(Ende) Metall ϑ 2 Masse H 2 0 m W C von H 2 0 c W Anfangstemp. H 2 0 ϑ 1 Endtemp. H 2 0 ϑ 2 Temperatur/ C
21 W1 Kalorimetrie Bestimmung der spezifischen Verdampfungswärme von Wasser Energiebilanz: Verdampfung von Wasser, Vom Heizstab abgegebene Wärme = vom Wasser Zeit aufgenommene t über Masse m Wärme Zeit Heizstab Zeit/s t/s t Waage m/g Masse m/g Spez. Verdampfungswärme Von Wasser q VW Masse des Wassers m W q VW " m W = P " ( t 2 # t ) 1 Heizleistung P Startzeitpunkt t 1 Endzeitpunkt t 2
Energieumsatz bei Phasenübergang
Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf
Konvektion ist der Transport von Wärme in und mit einem Stoff. Die Moleküle transportieren die Wärme mit sich.
6. Wärmetransportphänomene 10_Thermodynamik_Waermetransport_BAneu.doc - 1/11 Wärmetransport tritt in einem System immer dann auf, wenn es Orte mit unterschiedlicher Temperatur gibt, d.h., wenn es sich
3.8 Wärmeausbreitung. Es gibt drei Möglichkeiten der Energieausbreitung:
3.8 Wärmeausbreitung Es gibt drei Möglichkeiten der Energieausbreitung: ➊ Konvektion: Strömung des erwärmten Mediums, z.b. in Flüssigkeiten oder Gasen. ➋ Wärmeleitung: Ausbreitung von Wärmeenergie innerhalb
24. Transportprozesse
4. Transportprozesse 4.1. Diffusion Gas- und Flüssigkeitsteilchen befinden sich in ständiger unregelmäßiger Bewegung (Gas: BROWNsche Bewegung). unwahrscheinliche Ausgangsverteilungen gleichen sich selbständig
Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1
Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)
Physik / Wärmelehre 2. Klasse Wärmetransport
Wärmetransport Wärmetransport bedeutet, dass innere Energie von einem Ort zum anderen Ort gelangt. Wärmeübertragung kann auf drei Arten erfolgen: zusammen mit der Substanz, in der sie gespeichert ist (Wärmeströmung),
G u t a c h t e n. Gutachten über physikalische Eigenschaften der easytherm Infrarot Wärmepaneele.
Ao.Univ.-Prof. Dr. G. Pottlacher INSTITUT FÜR EXPERIMENTALPHYSI A-800 Graz, Petersgasse 6 Telefon: (036) 873 / 8 Telefax: (036) 873 / 8655 Graz, 09..200 G u t a c h t e n An die Firma easytherm Infrarot
www.leipzig-medizin.de
Die mittlere kinetische Energie der Teilchen eines Körpers ist ein Maß für (A) die absolute Temperatur des Körpers (B) die Dichte des Körpers (C) die spezifische Wärmekapazität (D) das spezifische Wärmeleitvermögen
Physikalisches Grundpraktikum. Wärmeleitung
Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:
Theorie - Begriffe. Gleichgewichtszustand. Stationäre Temperaturverteilung. Wärmemenge. Thermoelement
Theorie - Begriffe Gleichgewichtszustand Ein Gleichgewichtszustand ist ein Zustand in dem sich der betrachtete Parameter eines Systems nicht ändert, aber es können dennoch permanent Vorgänge stattfinden(dynamisches
Eine kurze Einführung von Prof. Dipl.-Ing. Eckhard Franke
Fachhochschule Flensburg Institut für Medieninformatik und Technische Informatik Eine kurze Einführung von Prof. Dipl.-Ing. Eckhard Franke Thermografie: Temperaturmessung im Infrarot-Bereich Grundlagen
Musso: Physik I Teil 20 Therm. Eigenschaften Seite 1
Musso: Physik I Teil 0 Therm. Eigenschaften Seite 1 Tipler-Mosca THERMODYNAMIK 0. Thermische Eigenschaften und Vorgänge (Thermal properties and processes) 0.1 Thermische Ausdehnung (Thermal expansion)
D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2
Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung
Infrarotaufnahmen im Physikunterricht
Universität Leipzig Fakultät für Physik und Geowissenschaften Bereich Didaktik der Physik Infrarotaufnahmen im Physikunterricht Bachelorarbeit Name des Studenten: Anne Neupert Matrikelnummer: 1264832 Studiengang:
Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2
Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-
Physikalisches Praktikum I. Temperaturmessung mit der Wärmebildkamera
Fachbereich Physik Physikalisches Praktikum I W12 Name: Temperaturmessung mit der Wärmebildkamera Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser
t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit
W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene
Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum:
Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch W8 - Wärmeleitung von Metallen Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen
STATIONÄRE WÄRMELEITUNG
Wärmeübertragung und Stofftransport VUB4 STATIONÄRE WÄRMELEITUNG Bestimmung der Wärmeleitfähigkeit λ eines Metallzylinders durch Messungen der stationären Wärmeverteilung Gruppe 1 Christian Mayr 23.03.2006
1 Grundwissen Energie. 2 Grundwissen mechanische Energie
1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt
Thermodynamik Wärmeempfindung
Folie 1/17 Warum fühlt sich 4 warmes wesentlich heißer an als warme? Und weshalb empfinden wir kühles wiederum kälter als kühle? 7 6 5 4 2 - -2 32 32 Folie 2/17 Wir Menschen besitzen kein Sinnesorgan für
Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH
3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge
Technische Thermodynamik
Kalorimetrie 1 Technische Thermodynamik 2. Semester Versuch 1 Kalorimetrische Messverfahren zur Charakterisierung fester Stoffe Namen : Datum : Abgabe : Fachhochschule Trier Studiengang Lebensmitteltechnik
Temperatur. Gebräuchliche Thermometer
Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!
Wärmedämmungsexperiment 1
Wärmedämmungsexperiment 1 Ziel dieses Experiments ist die Messung der Wärmeleitfähigkeit verschiedener Materialien durch Umwandlung der übertragenen Wärmeenergie in Bewegung. Die Menge der Wärmeenergie
(9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt
Meteorologie und Klimaphysik Meteo 137 (9) Strahlung 2: Terrestrische Strahlung Treibhauseffekt Wiensches Verschiebungsgesetz Meteo 138 Anhand des Plankschen Strahlungsgesetzes (Folie 68 + 69) haben wir
Temperaturmessungen. Vorkenntnisse. Physikalische Grundlagen. Thermometer
Temperaturmessungen Der Versuch soll mit verschiedenen Methoden der Temperaturmessung bekannt machen und auf die Fehler, die aufgrund von Wärmeleitung, Trägheit, Wärmekapazität und Eigenerwärmung auftreten,
Wärmeleitung und thermoelektrische Effekte Versuch P2-32
Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock
Theoretische Grundlagen
Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines
Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang
Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Aufgaben 1. Berechnen Sie die Wärmekapazität des Kalorimetergefäßes.
9 Physik I (3-stündig)
Physik I (3-stündig) In dieser Jahrgangsstufe nimmt die Sicherheit der Schüler beim Experimentieren stetig zu, sie vertiefen die experimentelle Methode zur physikalischen Erkenntnisgewinnung. Sowohl in
Versuch W6 für Nebenfächler Wärmeleitung
Versuch W6 für Nebenfächler Wärmeleitung I. Physikalisches Institut, Raum 104 Stand: 4. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche
Mittelwelliges Infrarot STIR - Der Spezialist für Komposite
Mittelwelliges Infrarot STIR - Der Spezialist für Komposite Referent: Dipl.-Ing. Ingolf Jaeger Entwicklungsingeneur bei IBT.InfraBioTech GmbH, Freiberg Inhalt (1) Über IBT.InfraBioTech GmbH (2)Zielstellungen
Transportvorgänge. 1. Einleitung. 2. Wärmetransport (makroskopische Betrachtung) KAPITEL D
3 KAPITEL D Transportvorgänge. Einleitung Bisher wurde das Hauptaugenmerk auf Gleichgewichtszustände gerichtet. Hat man in einem System an unterschiedlichen Orten unterschiedliche Temperaturen, so liegt
TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg
TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die
1. Aufgabe (18,5 Punkte)
TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene
1.3. Inhalt dieses Vorlesungsteils - ROADMAP MIKROWELLEN-HEIZPROZESSE. Einsatz von Mikrowellenenergie in der Verfahrenstechnik
Inhalt dieses Vorlesungsteils - ROADMAP GR UN DL AG EN MW-VT TRIKA OR T PROLOG APPLIKA TIONEN TE CH NI K 41 Einsatz von Mikrowellenenergie in der Verfahrenstechnik W ÄR M ET RA NS P ÄR M UN G+ DIELEK ER
Karlsruher Fenster,- und Fassaden-Kongress. Akademie für Glas- Fenster und Fassadentechnik Karlsruhe Prof. Klaus Layer Ulrich Tochtermann ö.b.u.v.
Karlsruher Fenster,- und Fassaden-Kongress Akademie für Glas- Fenster und Fassadentechnik Karlsruhe Prof. Klaus Layer Ulrich Tochtermann ö.b.u.v. SV Wärmedurchgangskoeffizient Energieeffizienz Warum soll
Prof. Dr. Otto Klemm. 2. Energiebilanz an der
Umweltmeteorologie Prof. Dr. Otto Klemm 2. Energiebilanz an der Oberfläche Energiebilanz En nergieflus ss / W m -2 800 700 600 500 400 300 200 100 0-100 30 Jul 31 Jul 1 Aug 2 Aug 3 Aug Bodenwärmestrom
Bildgebende Verfahren in der Medizin Thermographie
Bildgebende Verfahren in der Medizin Thermographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT
UNIVERSITÄT STUTTGART. INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Kommissarischer Leiter: apl. Prof. Dr.-Ing. Klaus Spindler
UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Kommissarischer Leiter: apl. Prof. Dr.-Ing. Klaus Spindler Praktikum Bestimmung des Oberflächentemperaturfeldes und des Emissionsgrads
Wärmeleitung und thermoelektrische Effekte Versuch P2-32
Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock
350³ Wärmedämmung an Gebäuden als Beitrag zum Klimaschutz Wärmeparcours Lehrerinformationen Teil 1 Vorbereitung der Experimente
350³ - 1-350³ Wärmedämmung an Gebäuden als Beitrag zum Klimaschutz Wärmeparcours Lehrerinformationen Teil 1 Vorbereitung der Experimente An fünf Stationen führen die Schüler einfache Experimente aus uns
5.4 Thermische Anforderungen
5.4 Thermische Anforderungen 133 5.4 Thermische Anforderungen Bild 5-32 Testzentrum zur Wintererprobung in Arjeplog, Schweden (Foto: Bosch) Extreme Temperaturen im Fahrzeug können z. B. durch kalte Winternächte
Energie, mechanische Arbeit und Leistung
Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können
Kryotechnik Fortbildung am GSI
Kryotechnik Fortbildung am GSI 1. Kälteerzeugung 2. Kälteverteilung 3. Wärmeübergang 4. Niedrigere Temperaturen Kühlmöglichkeite nmit Helium Bezugsquellen für Stoffdatenprogramme GASPAK, HEPAK, CRYOCOMP
Schulcurriculum des Faches Physik. für die Klassenstufen 7 10
Geschwister-Scholl-Gymnasium Schulcurriculum Schulcurriculum des Faches Physik für die Klassenstufen 7 10 Gesamt Physik 7-10 09.09.09 Physik - Klasse 7 Akustik Schallentstehung und -ausbreitung Echolot
Spezifische Wärmekapazität P2-33
Karlsruher Institut für Technologie (KIT) SS 2012 Physikalisches Anfängerpraktikum - P2 Spezifische Wärmekapazität P2-33 Auswertung von Tobias Renz und Raphael Schmager Gruppe: Do-28 Durchgeführt am 28.
Hochschule Bremerhaven Fotokopie 06
Bild 1 Wird von einem Körper abgegeben, so verringert sich seine thermische Energie. Die thermische Energie des Körpers, auf den die übertragen wird, vergrößert sich dementsprechend (Bild 1). Die ist somit
4.2 Wärmeleitung 4.2.1. Isolatoren 180
4. Wärmeleitung 4..1. Isolatoren 180 4. Wärmeleitung 4..1 Isolatoren Allgemein gilt für die Wärmeleitfähigkeit (vgl. Kap. 3..5): 1 κ = Cvl 3 dabei ist: C: Wärmekapazität v: Teilchengeschwindigkeit ( Schallgeschwindigkeit
Spezifische Wärmekapazität
Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am
Thermische Simulation und Kühlung von Leiterplatten
Thermische Simulation und Kühlung von Leiterplatten In modernen Leistungselektronik Anwendungen wie z.b. Schaltnetzteilen müssen auf engstem Raum mehrere Leistungs-Halbleiter montiert werden. Die steigende
Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6
Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6
Grenzflächen-Phänomene
Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere
Grundwissen Physik (8. Klasse)
Grundwissen Physik (8. Klasse) 1 Energie 1.1 Energieerhaltungssatz 1.2 Goldene egel der Mechanik Energieerhaltungssatz: n einem abgeschlossenen System ist die Gesamtenergie konstant. Goldene egel der Mechanik:
V19 Spezifische Wärmekapazität von Wasser
V19 Spezifische Wärmekapazität von Wasser Unter allen Energieformen kommt der Wärme eine besondere Bedeutung zu. Sowohl der Wärmehaushalt unseres Körpers als auch unserer Umwelt unterliegen komplizierten
Physik für Bauingenieure
Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl
Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme
Praktikum Physik Physiologie Thema: Muskelarbeit, leistung und Wärme Stichpunkte zur Vorbereitung auf das Praktikum Theresia Kraft Molekular und Zellphysiologie November 2012 Kraft.Theresia@mh hannover.de
Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert
Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)
Modulpaket TANK Beispielausdruck
Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang
Kleine Formelsammlung Technische Thermodynamik
Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag
Klausur Thermische Kraftwerke (Energieanlagentechnik I)
Klausur Thermische Kraftwerke (Energieanlagentechnik I) Datum: 09.03.2009 Dauer: 1,5 Std. Der Gebrauch von nicht-programmierbaren Taschenrechnern und schriftlichen Unterlagen ist erlaubt. Aufgabe 1 2 3
Thermische Ausdehnung
Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis
HEIZEN / KÜHLEN. Bodenkonvektoren
HEIZEN / KÜHLEN Bodenkonvektoren Ob in öffentlichen Gebäuden, Geschäftsobjekten oder in der Gemütlichkeit des eigenen Heimes: Bodenkonvektoren sind stets eine stilvolle und platzsparende Lösung. Angenehme
Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität
Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in
Referat Kühlkörper Projektlabor SS 2002
Inhaltsverzeichnis Referat Kühlkörper prolab SS 2002 Referat Kühlkörper Projektlabor SS 2002 1 Wärmeübertragung...2 1.1 Allgemeines...2 1.2 Konvektion...2 1.2.1 Eigenkonvektion...2 1.2.2 Fremdkonvektion...2
Versuch 9. Raumwärme. 9.1 Energieversorgung der Zukunft
Versuch 9 Raumwärme Fast jeder weiß, wie viel Liter Benzin oder Diesel sein Auto verbraucht um eine Strecke von 100 km zu fahren. Wissen Sie auch, wie viel Liter Heizöl oder Gas Ihre Wohnung im Jahr verbraucht,
W5 Latente Wärmemengen - spezifische Wärmekapazitäten
W5 Latente Wärmemengen - spezifische Wärmekapazitäten 28. Oktober 2010 Marcel Lauhoff - Informatik BA Matnr: xxxxxxx xxx@xxxx.xx 1 Einleitung 1 2 Theoretische Grundlagen 2 2.1 Wärme und thermische Energie................................
Berechnungsbeispiel Erwärmung (1)
Berechnungsbeispiel Erwärmung (1) Erwärmung von Wasser bei einer HF-Leistungsflussdichte, die dem Grenzwert entspricht (gilt auch als grobe Näherung für die Erwärmung von Körpergewebe). Grenzwert D-Netz
DOWNLOAD. Kerstin Neumann Wärmelehre: Wärmeübertragung. Physik selbst entdecken. Downloadauszug aus dem Originaltitel:
DOWNLOAD Kerstin Neumann Wärmelehre: Wärmeübertragung Physik selbst entdecken auszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht. Der Erwerber
WÄRMEÜBERTRAGUNG. Grundbegriffe, Einheiten, Kermgr8ßen. da ( 1)
OK 536.:003.6 STAi... DATIDSTELLE GRUNDBEGRIFFE.. Wärmeleitung WÄRMEÜBERTRAGUNG Weimar Grundbegriffe, Einheiten, Kermgr8ßen März 963 t&l 0-34 Gruppe 034 Verbind.lieh ab.0.963... Die Wärmeleitfähigkeit
Wiedemann-Franz-Lorenzsches Gesetz (Wiede)
TU Ilmenau Ausgabe: September 2015 Fakultät für Elektrotechnik und Informationstechnik Dr. Kups Institut für Werkstofftechnik 1 Versuchsziel Wiedemann-Franz-Lorenzsches Gesetz (Wiede) Ziel des Versuches
Thermodynamik des Kraftfahrzeugs
Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1
VIII Wärmetauscher. Inhaltsverzeichnis
VIII Wärmetauscher Inhaltsverzeichnis 1 Einleitung 1 2 Wiederholung wichtiger theoretischer Grundlagen 2 2.1 Erwärmen von Stoffen 2 2.1.1 Wärmestrom 2 2.1.2 Wärmeenergie 3 2.2 Wärmetransport 3 2.2.1 Wärmetransport
Schwarzkörperstrahlung Berührungslose Temperaturmessung Detektoren
Schwarzkörperstrahlung Berührungslose Temperaturmessung Detektoren Prinzipien Infrarotkameras Fernerkundung von Gefahrstoffen Einführung in die passive Fernerkundung mittels IR- Spektrometrie Anwendungen
Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau
Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch
W10. Wärmeleitung. Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität
W10 Wärmeleitung Es werden die Wärme- und die elektrische Leitfähigkeit zweier Metalle bestimmt und die Proportionalität dieser Größen nachgewiesen. 1. Theoretische Grundlagen 1.1 Wärmeleitung Mikroskopisch
Wärmebildkamera; Wie funktioniert die denn?
Wärmebildkamera; Wie funktioniert die denn? Vorüberlegungen: - was nimmt ein Foto auf? - Licht fotografieren? - was macht die Videokamera? - Infrarot, was ist das? Wie also genau: - Wärme strahlt in die
2 Grundgleichungen der Wärmeübertragung
8 Teil I Physikalische Grundlagen 2 Grundgleichungen der Wärmeübertragung 2.1 Einleitung Die wesentlichen physikalischen Effekte, die in technischen Problemen der Temperaturfeldberechnung auftreten, waren
Peltier-Element kurz erklärt
Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4
1 Aufgabe: Absorption von Laserstrahlung
1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570
www.schoollab.dlr.de Optische Messtechnik Wie man Dingen ein heißes Geheimnis entlocken kann
Optische Messtechnik Wie man Dingen ein heißes Geheimnis entlocken kann In den Naturwissenschaften wird Licht mit dem Fachbegriff der elektromagnetischen Welle bezeichnet. Von diesen Wellen gibt es ein
Globaler Kohlenstoff-Haushalt
Globaler Kohlenstoff-Haushalt 1 Lernziele Sie kennen die grossen globalen Kohlenstoffspeicher und wissen, wie sie zusammenhängen. Sie verstehen den Treibhauseffekt und die Rolle von CO 2 im Wärmehaushalt
Zustandsänderungen. fest dick schön
Aufgabe 1: Zustandsänderungen Du hast schon vielerlei Erfahrungen mit dem lebensnotwendigen Wasser gemacht. In welchen Zustandsformen (Aggregatzuständen) ist dir Wasser bekannt? Kreuze an! fest dick schön
Wie funktioniert ein Heißluftballon? Einen Mini-Heißluftballon aufsteigen lassen
Wie funktioniert ein Heißluftballon? Einen Mini-Heißluftballon aufsteigen lassen In aller Kürze Hast du schon mal einen Heißluftballon am Himmel beobachtet? Wie kommt es eigentlich, dass er fliegen kann?
2 Energie. 2.1 Energieformen. Energie und Arbeit. 2 Energie -II.1-
2 Energie -II.1-2 Energie 2.1 Energieformen Energie und Arbeit Energie ist die Fähigkeit eines Stoffes, Arbeit zu verrichten. Die Stoffumwandlungsprozesse der bedingen auch immer Energieänderungen der
Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten.
Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov Raum E143, Tel. 888-5875, email: dyakonov@physik.uni-wuerzburg.de 10 Wärmelehre/Thermodynamik Lehre der Energie,
Übungen zur Vorlesung. Energiesysteme
Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur
Kapitel 2 Thermische Ausdehnung
Kapitel 2 Thermische Ausdehnung Die Ausdehnung von Festkörpern, Flüssigkeiten und Gasen hängt von der Temperatur ab. Für Festkörper und Flüssigkeiten ist diese temperaturabhängige Ausdehnung zusätzlich
Institut für Elektrothermische Prozesstechnik Universität Hannover
WS/SS 20...- Institut für Elektrothermische Prozesstechnik Universität Hannover Name:... Versuch T1 Elektrowärmelabor I Wärmeübergang / Wärmestrommessungen Dat.: Testat: Gr.: Versuchsleiter: Inhalt 1 Grundlagen
1 Allgemeine Grundlagen
1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die
Webinar: Thermische Simulation hilft bei der Auswahl des richtigen Wärmemanagementkonzeptes Würth Elektronik Circuit Board Technology
Webinar: Thermische Simulation hilft bei der Auswahl des richtigen Wärmemanagementkonzeptes Würth Elektronik Circuit Board Technology www.we-online.de/waermemanagement Seite 1 06.11.2014 Grundlagen Treiber
Physik für Bauingenieure
Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen
2 Wärmeschutz. 2.1 Wärmeschutztechnische Begriffe. 2.1.1 Temperatur. 2.1.2 Rohdichte. 2.1.3 Wärmemenge, Spezi sche Wärmekapazität
39 2 Wärmeschutz 2.1 Wärmeschutztechnische Begriffe 2.1.1 Temperatur = T - 273,15 (2.1.1-1) Celsius-Temperatur in C T Kelvin-Temperatur in K 2.1.2 Rohdichte ρ = m V (2.1.2-1) Rohdichte in kg/m 3 m Masse
Fachhochschule Flensburg. Institut für Physik
Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung
Etwas Bauphysik. Auszüge von Dipl.-Ing. (fh) Martin Denk aus Richtig bauen von Prof. Dr.-Ing. habil. C. Meier
Etwas Bauphysik Auszüge von Dipl.-Ing. (fh) Martin Denk aus Richtig bauen von Prof. Dr.-Ing. habil. C. Meier Welche Konsequenzen entstehen aufgrund der Erfahrungen des Beispielobjektes Gäßler in Bezug
Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html
Angewandte Quantenmechanik (132.070) Christoph Lemell Institut für Theoretische Physik http://concord.itp.tuwien.ac.at/~qm_mat/material.html Übersicht Grundlagen 1) Grenzen der klassischen Physik und Entdeckung
Berechnungsgrundlagen
Inhalt: 1. Grundlage zur Berechnung von elektrischen Heizelementen 2. Physikalische Grundlagen 3. Eigenschaften verschiedener Medien 4. Entscheidung für das Heizelement 5. Lebensdauer von verdichteten
Temperatur Wärme Thermodynamik
Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten
Bild 1: Siedeverhalten im beheizten Rohr (Nach VDI- Wärmeatlas, hier liegend gezeichnet)
erdampfung Labor für Thermische erfahrenstechnik bearbeitet von Prof. r.-ing. habil. R. Geike. Grundlagen der erdampfung In der chemischen, pharmazeutischen und Lebensmittelindustrie sowie in weiteren