Komplexität und Komplexitätsklassen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Komplexität und Komplexitätsklassen"

Transkript

1 Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 21 vom Komplexität und Komplexitätsklassen Die meisten Probleme mit denen wir zu tun haben sind entscheidbar. Daher brauchen wir ein anderes Maÿ um zu beurteilen, ob ein Problem gut handhabbar ist, oder nicht. Übliche Maÿe sind dabei die Zeitkomplexität (wie viele Schritte braucht mein Algorithmus) und die Platzkomplexität (wie viele Bandfelder werden besucht). Es kann weiterhin nach der Art der Problemstellung unterschieden werden: Entscheidung von Sprachen Für eine Eingabe x soll die Zugehörigkeit zu einer vorgegebenen Menge A, auch Sprache genannt, entschieden werden. Ist x A, so wird x akzeptiert; ist hingegen x / A, so wird x verworfen. Funktionsberechnung Eine Funktion f soll berechnet werden. Bei Eingabe x soll die Ausgabe f(x) produziert werden. Konstruktionsprobleme Zur Eingabe x, hier Probleminstanz genannt, soll eine Lösung ausgegeben werden. Die Menge der zulässigen Lösungen zu x besteht nicht notwendigerweise nur aus einem Element. Optimierungsprobleme Optimierungsprobleme sind Konstruktionsprobleme, bei denen Lösungen zusätzlich ein Wert zugeordnet ist. Zu einer Probleminstanz x soll eine Lösung mit optimalem Wert oder zumindest möglichst hohem/niedrigem Wert ausgegeben werden. Beispiele von Problemen: Aussagenlogische Formeln Sat als Entscheidungsproblem Eingabe: Eine aussagenlogische Formel ϕ Frage: Existiert eine erfüllende Belegung für ϕ? 1

2 Sat als Konstruktionsproblem Eingabe: Eine aussagenlogische Formel ϕ Ausgabe: Eine erfüllende Belegung für ϕ oder ϕ ist nicht erfüllbar Ein guter Algorithmus zur Lösung für das Entscheidungsproblem führt hier auch gleich zu einem guten Algorithmus der das Konstruktionsproblem löst. Graphen Path als Entscheidungsproblem Frage: Existiert ein gerichteter Pfad von s nach t? Path als Konstruktionsproblem Ausgabe: Ein gerichteter Pfad von s nach t oder kein Pfad von s nach t Path als Optimierungsproblem Ausgabe: Ein gerichteter Pfad von s nach t Ziel: Der Pfad von s nach t soll möglichst kurz sein. Path ist das Standardproblem der Graphentheorie. Fast alle Algorithmen für Graphen nutzen Path-Algorithmen. Arithmetik/Zahlentheorie Primes (Entscheidungsproblem) Eingabe: Eine natürliche Zahl n (binär kodiert) Frage: Ist n eine Primzahl? Factoring (Konstruktionsproblem) Eingabe: Eine natürliche Zahl n (binär kodiert) Ausgabe: Zwei Zahlen a, b < n mit ab = n oder n ist prim Es existiert ein guter Algorithmus für Primes, allerdings hilft dieser nicht, um das Factoring Problem eektiv zu lösen. Da die heutigen Sicherheitsalgorithmen auf Primzahlfaktorzerlegung basieren, hätte die Lösung von Factoring weitreichende Konsequenzen. Denition 1 (Zeit- und Platzaufwand) Der Zeitaufwand von M bei Eingabe w ist t M (w) := Länge der längsten Berechnung von M bei Eingabe w. Gezählt wird die Anzahl der Schritte. Der Platzaufwand von M bei Eingabe w bei Berechnung b ist die Anzahl der während der Berechnung von den Köpfen auf den Arbeitsbändern besuchten Felder. 2

3 Der Platzaufwand von M bei Eingabe w ist s M (w) := Platzaufwand der platzintensivsten Berechnung von M bei Eingabe w. Der Zeitaufwand T M : N N von M ist deniert durch T M (n) := max {t M (w) w = n}. Der Platzaufwand S M : N N von M ist deniert durch S M (n) := max {s M (w) w = n}. Denition 2 (TIME- und SPACE-Sprachklassen) Es sei A Σ eine Sprache, t: N N eine Zeitschranke und s: N N eine Platzschranke. Es ist A DTIME(t), falls eine DTM M existiert mit L(M) = A und T M O(t). Es ist A DSPACE(s), falls eine oine-dtm M existiert mit L(M) = A und S M O(s). Es ist A NTIME(t), falls eine NTM M existiert mit L(M) = A und T M O(t). Es ist A NSPACE(s), falls eine oine-ntm M existiert mit L(M) = A und S M O(s). Bemerkung: Eine oine-dtm ist eine DTM, die auf ihrem Eingabeband nicht schreibt, also alle weiteren Informationen auf einem Arbeitsband ablegt. Denition 3 (Grundlegende Komplexitätsklassen) P = k N DTIME(n k ) NP = k N NTIME(n k ) PSPACE = k N DSPACE(n k ) NPSPACE = k N NSPACE(n k ) L = DSPACE(log n) NL = NSPACE(log n) E = c N DTIME(2 cn ) NE = c N NTIME(2 cn ) EXP = k N DTIME(2 nk ) NEXP = k N NTIME(2 nk ) 3

4 Denition 4 (TIME- und SPACE-Funktionenklassen) Sei f : Σ Σ eine Funktion, t: N N eine Zeitschranke und s: N N eine Platzschranke. Es ist f FDTIME(t), falls eine DTM M mit Ausgabeband existiert, die f berechnet, und für die T M O(t) gilt. Es ist A FDSPACE(s), falls eine oine-dtm M existiert, die f berechnet, und für die S M O(s) gilt. Die auf dem Ausgabeband beschriebenen Bandfelder werden beim Platzverbrauch nicht mitgerechnet. Von besonderem Interesse sind Funktionen, die sich in polynomieller Zeit oder auf logarithmischem Platz berechnen lassen. Denition 5 (Grundlegende Funktionenklassen) FP = k N FDTIME(n k ) FL = FDSPACE(log n) Zwischen den verschiedenen Klassen existieren leicht zu ndende Inklusionsbeziehungen: Deterministische Maschinen sind spezielle nichtdeterministische Maschinen. Deshalb gilt insbesondere P NP, E NE und EXP NEXP; und auch L NL und PSPACE NPSPACE. Erhöht man den zulässigen Ressourcenverbrauch, so kann die dadurch denierte Klasse nur gröÿer werden. Deshalb gilt insbesondere P E EXP und NP NE NEXP; und auch L PSPACE und NL NPSPACE. Ein Schreib-Lese-Kopf einer Maschine, die höchstens t(n) Schritte macht, kann höchstens t(n) Bandfelder besuchen. Deshalb gilt P PSPACE und NP NPSPACE. Die Klassen der Chomski-Hierarchie sind auch Komplexitätsklassen. REG bezeichne die Menge der regulären Sprachen (Typ 3). CFL bezeichne die Menge der kontextfreien Sprachen (Typ 2). CSL bezeichne die Menge der kontextsensitiven Sprachen (Typ 1). 4

5 REC bezeichne die Menge der entscheidbaren (auch rekursiv genannten) Sprachen. RE bezeichne die Menge der von allgemeinen Grammatiken erzeugbaren (auch rekursiv aufzählbar genannten) Sprachen (Typ 0). Es gilt REG CFL CSL REC RE Satz 6 1. REG DSPACE(const), REG DTIME(n) und REG L. 2. CFL P und L CFL. 3. CSL = NSPACE(n). (Ohne Beweis) 5

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 5 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Problemklassen 2 NTM Nichtdeterministische Algorithmen 3 Problemarten Konstruktionsprobleme

Mehr

Theoretische Informatik 2

Theoretische Informatik 2 Theoretische Informatik 2 Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2009/10 Zeitkomplexität von Turingmaschinen Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl

Mehr

Komplexitätstheorie. Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07. Stand 8.

Komplexitätstheorie. Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07. Stand 8. Komplexitätstheorie Arfst Nickelsen Universität zu Lübeck Institut für Theoretische Informatik Wintersemester 2006/07 Stand 8. Februar 2007 Inhaltsverzeichnis 1 Probleme, Ressourcen, Klassen 4 1.1 Probleme,

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Ulrich Furbach. Sommersemester 2014 Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Ulrich Furbach Institut für Informatik Sommersemester 2014 Furbach Grundlagen d. Theoretischen Informatik:

Mehr

Speicherplatz-Komplexität 1 / 30

Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität 1 / 30 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Herzlich willkommen!!!

Herzlich willkommen!!! Komplexitätstheorie Sommersemester 2013 Prof. Dr. Georg Schnitger AG Theoretische Informatik Johann Wolfgang Goethe-Universität Frankfurt am Main Herzlich willkommen!!! Einführung 1 / 30 Kapitel 1: Einführung

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Komplexitätstheorie (I) 22.07.2015 und 23.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie 3. Endliche

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Die Komplexitätsklasse P David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Äquivalenz von RM und TM Äquivalenz, Sätze Simulation DTM

Mehr

Reelle Komplexität - Grundlagen II

Reelle Komplexität - Grundlagen II Reelle Komplexität - Grundlagen II Julian Bitterlich Themenübersicht: Beziehungen zwischen den Komplexitätsklassen Savitchs Theorem conp und Charakterisierungen von NP und conp Reduktion, Vollständigkeit,

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 7. Vorlesung: Einführung in die Komplexitätstheorie Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 28. April 2017 Übersicht Der Raum der formalen Sprachen

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF

Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Komplexitätsklassen THEORETISCHE INFORMATIK VORGETRAGEN VON: ELIAS DROTLEFF Einflussgrößen bei der Bildung von Komplexitätsklassen Das zugrunde liegende Berechnungsmodell (Turingmaschine, Registermaschine

Mehr

Chaos?! Überblick. Beispiele für Rekurrenzen. fn := 3fn-1 + 4fn Beweisen. Abwickeln. Raten Summen. Formelsammlung. Suche nach einer Systematik

Chaos?! Überblick. Beispiele für Rekurrenzen. fn := 3fn-1 + 4fn Beweisen. Abwickeln. Raten Summen. Formelsammlung. Suche nach einer Systematik Überblick fn := 3fn-1 + 4fn-2 + 1 Beispiele für Rekurrenzen Beweisen Raten Summen Abwickeln Formelsammlung Chaos?! Suche nach einer Systematik F3 03/04 p.294/395 Allgemeines Verfahren Bestimmung einer

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Übersicht Der Raum der formalen Sprachen (Wortprobleme) lässt sich wie foglt aufteilen: THEORETISCHE INFORMATIK UND LOGIK Unentscheidbare Probleme 7. Vorlesung: Einführung in die Komplexitätstheorie Markus

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 10. Motivation. Motivation. Bisher haben wir mit TMs. Probleme gelöst/entschieden/berechnet.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 10. Motivation. Motivation. Bisher haben wir mit TMs. Probleme gelöst/entschieden/berechnet. bei TMs bei Computern Formale Grundlagen der Informatik 1 Kapitel 10 Frank Heitmann heitmann@informatik.uni-hamburg.de Bisher haben wir mit TMs Probleme gelöst/entschieden/berechnet. Dabei war entscheidbar

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik - das Quiz zur Vorlesung Teil I - Grundzüge der Logik In der Logik geht es um... (A) die Formen korrekten Folgerns (B) die Unterscheidung von wahr und falsch (C) das Finden von

Mehr

Polynomielle Verifizierer und NP

Polynomielle Verifizierer und NP Polynomielle Verifizierer und NP Definition Polynomieller Verifizierer Sei L Σ eine Sprache. Eine DTM V heißt Verifizierer für L, falls V für alle Eingaben w Σ hält und folgendes gilt: w L c Σ : V akzeptiert

Mehr

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Lösungen zur Vorlesung Berechenbarkeit und Komplexität Lehrstuhl für Informatik 1 WS 009/10 Prof. Dr. Berthold Vöcking 0.0.010 Alexander Skopalik Thomas Kesselheim Lösungen zur Vorlesung Berechenbarkeit und Komplexität. Zulassungsklausur Aufgabe 1: (a) Worin

Mehr

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie

Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Einführung in Berechenbarkeit, Formale Sprachen und Komplexitätstheorie Wintersemester 2005/2006 20.12.2005 18. Vorlesung 1 Komplexitätstheorie - Zeitklassen Komplexitätsmaße Wiederholung: O,o,ω,Θ,Ω Laufzeitanalyse

Mehr

Theoretische Informatik II

Theoretische Informatik II Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Wintersemester 2007/2008 B. Beckert Theoretischen Informatik II: WS 2007/08 1 / 266 Dank Diese Vorlesungsmaterialien basieren

Mehr

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte)

Vorname Name Matrikelnummer 1. a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) 1 Aufgabe 1 (19 Punkte) a) Benennen Sie die übrigen 6 Komponenten einer nicht-deterministischen Turingmaschine (TM): (3 Punkte) Q, die endliche Zustandsmenge b) Was besagt die Church-Turing-These? (1 Punkt)

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (V) 16.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Einführung in Algorithmen und Komplexität

Einführung in Algorithmen und Komplexität Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

Kapitel II : Zeit- und platzbeschränkte Berechnungen

Kapitel II : Zeit- und platzbeschränkte Berechnungen Kapitel II : Zeit- und platzbeschränkte Berechnungen Prof. Dr. F. Otto (Universität Kassel) Komplexitätstheorie 41 / 286 Rechenzeit- und Speicherplatzbedarf bei Turingmaschinen Komplexitätsklassen Grundlegende

Mehr

Überblick. F3 01/02 p.295/325

Überblick. F3 01/02 p.295/325 Überblick fn := 3fn-1 + 4fn-2 + 1 Beispiele für Rekurrenzen Beweisen Raten Summen Abwickeln Formelsammlung Chaos?! Suche nach einer Systematik F3 01/02 p.295/325 Allgemeines Verfahren Bestimmung einer

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Nichtdeterminismus David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Nichtdeterminismus NTM Nichtdeterministische Turingmaschine Die

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Theoretische Informatik: Berechenbarkeit und Formale Sprachen Prof. Dr. F. Otto 26.09.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen SS 2011 Name:................................

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 23.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen

Mehr

Komplexitätstheorie Slide 1. Komplexitätstheorie

Komplexitätstheorie Slide 1. Komplexitätstheorie Komplexitätstheorie Slide 1 Komplexitätstheorie Maike Buchin (RUB) basierend auf dem Skript von Hans Simon (RUB) Lehrstuhl Mathematik und Informatik Homepage: http://www.ruhr uni bochum.de/lmi Komplexitätstheorie

Mehr

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 15 + 16 vom 17.12.2012 und 20.12.2012 Deterministische und nichtdeterministische Turing-Maschinen, Typ1- und Typ0-Sprachen

Mehr

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie

Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),

Mehr

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2

Beispiel: NTM. M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) q 2 Beispiel: NTM M = ({q 0,q 1,q 2 }, {0, 1}, {0, 1, #},δ, q 0, #, {q 2 }) 0,1,R 0,0,R q0 1,0,R q1 #,#,R q2 0,0,L Zustand 0 1 # q 0 {(1, R, q 0 )} {(0, R, q 1 )} q 1 {(0, R, q 1 ),(0, L, q 0 )} {(1, R, q

Mehr

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel

Proseminar Theoretische Informatik. Die Klasse NP. von Marlina Spanel Proseminar Theoretische Informatik Die Klasse NP von Marlina Spanel 29.11.2011 1 Gliederung Gliederung Problem des Handlungsreisenden Die Klasse NP Einleitung und Wiederholung Sprachen Nichtdeterministische

Mehr

P, NP und NP -Vollständigkeit

P, NP und NP -Vollständigkeit P, NP und NP -Vollständigkeit Mit der Turing-Maschine haben wir einen Formalismus kennengelernt, um über das Berechenbare nachdenken und argumentieren zu können. Wie unsere bisherigen Automatenmodelle

Mehr

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1

Zeitkomplexität (1) Proseminar Theoretische Informatik. Proseminar Theoretische Informatik: Lisa Dohrmann 1 Zeitkomplexität (1) Proseminar Theoretische Informatik Proseminar Theoretische Informatik: Lisa Dohrmann 1 Warum Komplexitätsbetrachtung? Ein im Prinzip entscheidbares und berechenbares Problem kann in

Mehr

Speicherplatz-Komplexität 1 / 78

Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität 1 / 78 Speicherplatz-Komplexität Warum sollte uns die Ressource Speicherplatz interessieren? Um die Komplexität der Berechnung von Gewinnstrategien für viele nicht-triviale 2-Personen

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

FORMALE SYSTEME. Kompexitätsklassen. Deterministisch vs. nichtdeterministisch. Die Grenzen unseres Wissens. 25. Vorlesung: NP-Vollständigkeit

FORMALE SYSTEME. Kompexitätsklassen. Deterministisch vs. nichtdeterministisch. Die Grenzen unseres Wissens. 25. Vorlesung: NP-Vollständigkeit Kompexitätsklassen FORMALE SYSTEME 25. Vorlesung: NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme Komplexitätsklassen sind Mengen von Sprachen, die man (grob) einteilt entsprechend

Mehr

FORMALE SYSTEME. Kompexitätsklassen. Die Grenzen unseres Wissens. Deterministisch vs. nichtdeterministisch. 25. Vorlesung: NP-Vollständigkeit

FORMALE SYSTEME. Kompexitätsklassen. Die Grenzen unseres Wissens. Deterministisch vs. nichtdeterministisch. 25. Vorlesung: NP-Vollständigkeit Kompexitätsklassen FORMALE SYSTEME 25 Vorlesung: NP-Vollständigkeit Markus Krötzsch Professur für Wissensbasierte Systeme Komplexitätsklassen sind Mengen von Sprachen, die man (grob) einteilt entsprechend

Mehr

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch

Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik. SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch Einführung in die Theoretische Informatik I/ Grundlagen der Theoretischen Informatik SS 2007 Jun.-Prof. Dr. Bernhard Beckert Ulrich Koch 3. Teilklausur 25. 07. 2007 Persönliche Daten bitte gut leserlich

Mehr

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie.

Einführung (1/3) Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (1) Vorlesungen zur Komplexitätstheorie. Einführung (1/3) 3 Wir verfolgen nun das Ziel, Komplexitätsklassen mit Hilfe von charakteristischen Problemen zu beschreiben und zu strukturieren Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit

Mehr

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie

13. Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit Satz von Cook-Levin Anwendungen in der Kryptographie 13 Woche: NP-Vollständigkeit, Satz von Cook-Levin, Anwendungen 276/ 333 N P-Vollständigkeit Ḋefinition NP-vollständig Sei

Mehr

Rekursive Aufzählbarkeit Die Reduktion

Rekursive Aufzählbarkeit Die Reduktion Rekursive Aufzählbarkeit Die Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Informatik-Grundlagen

Informatik-Grundlagen Informatik-Grundlagen Komplexität Karin Haenelt 1 Komplexitätsbetrachtungen: Ansätze Sprachentheorie Klassifiziert Mengen nach ihrer strukturellen Komplexität Komplexitätstheorie Klassifiziert Probleme

Mehr

5. Universelle Maschinen und uniform rekursive Klassen

5. Universelle Maschinen und uniform rekursive Klassen 5. Universelle Maschinen und uniform rekursive Klassen Die Existenz universeller Maschinen erlaubt effektive Aufzählungen der Klasse der r.a. Mengen, der Klasse der partiell rekursiven Funktionen und der

Mehr

FORMALE SYSTEME. 25. Vorlesung: NP-Vollständigkeit. TU Dresden, 23. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme

FORMALE SYSTEME. 25. Vorlesung: NP-Vollständigkeit. TU Dresden, 23. Januar Markus Krötzsch Lehrstuhl Wissensbasierte Systeme FORMALE SYSTEME 25. Vorlesung: NP-Vollständigkeit Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 23. Januar 2017 Rückblick Markus Krötzsch, 23. Januar 2017 Formale Systeme Folie 2 von 32

Mehr

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar?

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? 3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14 1. Welches der folgenden klassischen Probleme der Informatik ist entscheidbar? A. Gegeben eine kontextfreie Grammatik G. Gibt es ein

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Das P versus N P - Problem

Das P versus N P - Problem Das P versus N P - Problem Dr. Michael Huber Habilitationsvortrag eines der sieben Milleniumsprobleme des Clay Mathematics Institute A gift to Mathematics from Computer Science (Steve Smale) Überblick

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion

Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Berechenbarkeit und Komplexität: Rekursive Aufzählbarkeit und die Technik der Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität 26. November 2007 Semi-Entscheidbarkeit

Mehr

13. ZEIT- UND PLATZKOMPLEXITÄT

13. ZEIT- UND PLATZKOMPLEXITÄT EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2011 13. ZEIT- UND PLATZKOMPLEXITÄT VON MEHRBAND-TURINGMASCHINEN Theoretische Informatik (SoSe 2011) 13. Zeit- und Platzkomplexität

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Inforatik 1 Teil 6 Bernhard Nessler Institut für Grundlagen der Inforationsverabeitung TU Graz SS 2008 Übersicht 1 Reduktionen 2 Definition P- NP- 3 Sprachbeziehungen Klassenbeziehungen Turingreduktion

Mehr

Teil III. Komplexitätstheorie

Teil III. Komplexitätstheorie Teil III Komplexitätstheorie 125 / 160 Übersicht Die Klassen P und NP Die Klasse P Die Klassen NP NP-Vollständigkeit NP-Vollständige Probleme Weitere NP-vollständige Probleme 127 / 160 Die Klasse P Ein

Mehr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017 Hier Aufkleber mit Name und Matrikelnummer anbringen Vorname: Nachname: Matrikelnummer: Beachten Sie: Bringen Sie

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität

Probeklausur zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Probeklausur 25.01.2013 Probeklausur zur Vorlesung Berechenbarkeit und Komplexität Aufgabe 1 (1+2+6+3 Punkte)

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Theoretische Informatik. Berechenbarkeit

Theoretische Informatik. Berechenbarkeit Theoretische Informatik Berechenbarkeit 1 Turing Maschine Endlicher Automat mit unendlichem Speicher Ein Modell eines realen Computers Was ein Computer berechnen kann, kann auch eine TM berechnen. Was

Mehr

Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie

Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie Einführung in P und NP Frank Heitmann heitmann@informatik.uni-hamburg.de 11. November 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P

Die Klassen P und NP. Formale Grundlagen der Informatik 1 Kapitel 11. Die Klassen P und NP. Die Klasse P Die Klassen Formale Grundlagen der Informatik 1 Kapitel 11 Frank Heitmann heitmann@informatik.uni-hamburg.de P := {L es gibt ein Polynom p und eine p(n)-zeitbeschränkte DTM A mit L(A) = L} = i 1 DTIME(n

Mehr

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben

Komplexität von Algorithmen Musterlösungen zu ausgewählten Übungsaufgaben Dieses Dokument soll mehr dazu dienen, Beispiele für die formal korrekte mathematische Bearbeitung von Aufgaben zu liefern, als konkrete Hinweise auf typische Klausuraufgaben zu liefern. Die hier gezeigten

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen November 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08)

Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) 1 Vorlesung Kombinatorische Optimierung (Wintersemester 2007/08) Kapitel 5: NP-schwierige Probleme Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 21. Dezember 2007) Rucksack Problem

Mehr

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2)

Formale Grundlagen der Informatik 1 Kapitel 23 NP-Vollständigkeit (Teil 2) Formale Grundlagen der Informatik 1 Kapitel 23 (Teil 2) Frank Heitmann heitmann@informatik.uni-hamburg.de 5. Juli 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/37 Die Klassen P und NP P := {L

Mehr

Die Klasse NP und die polynomielle Reduktion

Die Klasse NP und die polynomielle Reduktion Die Klasse NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Dezember 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Was ist überhaupt berechenbar? Was ist mit vernünftigem Aufwand berechenbar?

Was ist überhaupt berechenbar? Was ist mit vernünftigem Aufwand berechenbar? Effiziente Berechenbarkeit bisher: Frage nach der prinzipiellen Lösbarkeit von algorithmischen Fragestellungen Was ist überhaupt berechenbar? Rekursionstheorie jetzt: Frage nach der effizienten Lösbarkeit

Mehr

Dank. Theoretische Informatik II. Teil VI. Vorlesung

Dank. Theoretische Informatik II. Teil VI. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D Studie zum Arbeitsverhalten von Studierenden unter Leitung

1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D Studie zum Arbeitsverhalten von Studierenden unter Leitung Organisatorisches Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie in P und NP Frank Heitmann heitmann@informatik.uni-hamburg.de 1 Raumwechsel: Gr. 19 (Fr 12-14, F-334) diese Woche in D-129.

Mehr

IP=PSPACE. t Joachim Kneis t IP = PSPACE t 16. Dezember 2003 t

IP=PSPACE. t Joachim Kneis t IP = PSPACE t 16. Dezember 2003 t Rheinisch Westfälische Technische Hochschule Aachen Lehr- und Forschungsgebiet Theoretische Informatik Seminar Programmverifikation IP=PSPACE Joachim Kneis Gliederung IP=PSPACE Teil 0 Einführung und Motivation

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Prüfungsprotokoll der mündlichen Prüfung Grundlagen der Theoretischen Informatik (Bachelor Informatik)

Prüfungsprotokoll der mündlichen Prüfung Grundlagen der Theoretischen Informatik (Bachelor Informatik) Prüfungsprotokoll der mündlichen Prüfung Grundlagen der Theoretischen Informatik 25310 (Bachelor Informatik) Prüfer: Prof. Dr. Verbeek Semester der Prüfung: SS 2010 Datum der Prüfung: 25.11.2010 Dauer:

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr

Theoretische Informatik Kap 2: Berechnungstheorie

Theoretische Informatik Kap 2: Berechnungstheorie Gliederung der Vorlesung 0. Grundbegriffe 1. Formale Sprachen/Automatentheorie 1.1. Grammatiken 1.2. Reguläre Sprachen 1.3. Kontextfreie Sprachen 2. Berechnungstheorie 2.1. Berechenbarkeitsmodelle 2.2.

Mehr

Grammatiken und die Chomsky-Hierarchie

Grammatiken und die Chomsky-Hierarchie Grammatiken und die Chomsky-Hierarchie Def.: Eine Grammatik G=(Σ,V,S,R) besteht aus endlichem Alphabet Σ endlicher Variablenmenge V mit V Σ= Startsymbol SєV endlicher Menge R с (V Σ) + x(v Σ)* von Ableitungsregeln

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 heoretische Informatik 1 uringmaschinen David Kappel Institut für Grundlagen der Informationsverarbeitung echnische Universität Graz 11.03.2016 Übersicht uring Maschinen Algorithmusbegriff konkretisiert

Mehr

3. Ziel der Vorlesung

3. Ziel der Vorlesung 3. Ziel der Vorlesung Der Zweck der Vorlesung ist das Studium fundamentaler Konzepte in der Algorithmentheorie. Es werden relevante Maschinenmodelle, grundlegende und höhere Datenstrukturen sowie der Entwurf

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Abbildungen, injektiv, surjektiv, bijektiv

Abbildungen, injektiv, surjektiv, bijektiv Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18

Übungsblatt 6. Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Vorlesung Theoretische Grundlagen der Informatik im WS 17/18 Ausgabe 10. Januar 2018 Abgabe 23. Januar 2018, 11:00 Uhr (im

Mehr

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13

Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: Komplexitätstheorie und effiziente Algorithmen. Wintersemester 2012/13 Vorlesung Berechenbarkeit und Komplexität alias Theoretische Informatik: und effiziente Algorithmen Wintersemester 2012/13 Prof. Barbara König Übungsleitung: Henning Kerstan & Sebastian Küpper Barbara

Mehr

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik 2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik Ulrich Furbach Claudia Schon Christian Schwarz Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr