Generalthema: Ausgewählte Fragen der Fremdfinanzierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Generalthema: Ausgewählte Fragen der Fremdfinanzierung"

Transkript

1 Institut fü Geld- und Kaitalvekeh de Univesität Hambug Pof. D. Hatmut Schmidt Semina zu llgemeinen Betiebswitschaftslehe und Bankbetiebslehe Wintesemeste 1999/2000 Zuständige Mitabeite: Dil.-Kfm. Dik Niedeeichholz Genealthema: usgewählte Fagen de Femdfinanzieung : Emittlung de Bonität von Keditnehmen Gliedeung. Einfühung I. nalyseziel: Wie hoch muß de veeinbate Keditzins mindestens sein? II. Gundbegiffe 1. usfallisiko, Bonität, Rating und Mindestbuttoisikoämie 2. Bonitätsisiko 3. Kedit 4. Keditfähigkeit und Keditwüdigkeit B. Vefahen de Keditwüdigkeitsanalyse I. Bankextene Keditwüdigkeitsanalyse 1. Usung und Entwicklung des Rating 2. Emittlung eines Rating II. Bankintene Keditwüdigkeitsanalyse 1. Taditionelle Keditwüdigkeitsüfung 2. Intene Ratingvefahen 3. Quantitativ-statistische Keditwüdigkeitsanalyse a) Übeblick b) Multivaiate Regessionsanalyse c) Multivaiate Diskiminanzanalyse d) Exetensysteme e) Künstliche Neuonale Netze C. Was wid mit de Keditwüdigkeitsanalyse eeicht?

2 - 2 - Übungen. Einfühung 1. a) Welches Ziel steben die Keditinstitute bei de Keditvegabe an? Welche Rendite müssen Keditotfolios mindestens ebingen? b) Was vesteht man unte einem efekt divesifizieten Keditotfolio? c) Waum handelt es sich beim Ewatungswet de Potfolioendite, E ( ), um eine Nettoendite? d) Wie hoch muß im Duchschnitt die Rendite eines einzelnen Kedits mindestens sein? Begünden Sie Ihe ntwot. 2. a) Wie emittelt man die folgende Fomel zu Beechnung de zu veeinbaenden Rendite: = f m k = 1 k k = usfallwahscheinlichkeit = (negative) usfallendite = Wahscheinlichkeit fü stöungsfeien Velauf = zu veeinbaende Rendite b) Stellen Sie bitte unte Vewendung de Gleichung aus ufgabe 2. a) die Fomel fü die Emittlung des Mindestbuttoisikoämiensatzes (MBRPS) auf. c) Begünden Sie ausfühlich, unte welchen Voaussetzungen die Mindestbuttoisikoämie auskömmlich ist. d) Waum wid de Ewatungswet de Rendite eines Einzelkedits meistens dem Zins auf isikofeie nlagen entsechen? 3. a) Bei einem Kedit übe GE 100 mit gesamtfällige Zins- und Tilgungszahlung kann entwede stöungsfeie Velauf ode Totalausfall einteten. Die Totalausfallwahscheinlichkeit betägt 4 %, de Zinssatz fü isikofeie nlagen 8 %. Bestimmen Sie fü diesen Kedit die Mindestbuttoisikoämie und die Standadabweichung de Rendite des Kedits. b) Gehen Sie davon aus, daß Sie antelle des Einzelkedits vie andee Kedite zu je GE 25 vegeben können, die ebenfalls eine Totalausfallwahscheinlichkeit von 4 % aufweisen. De veeinbate Zinssatz fü alle fünf Kedite betage 15 %. Die Wahscheinlichkeiten fü stöungsfeie Bedienung sind voneinande unabhängig. Beechnen Sie die veschiedenen Efolgsmöglichkeiten und deen Wahscheinlichkeiten.

3 a) Welches Ziel wid mit de Bonitätsemittlung aus theoetische Sicht vefolgt, wenn die in ufgabe 2. c) genannten Voaussetzungen efüllt sind? b) Wie veändet sich das Ziel, wenn die in ufgabe 2. c) genannten Voaussetzungen nicht efüllt sind? 5. a) Definieen Sie bitte kuz die folgenden Begiffe: - usfallisiko und Bonität - Bonitätsisiko - Rating - Kedit - Mindestbuttoisikoämie b) Nehmen Sie bitte kitisch zu de von Ihnen gewählten Definition von Kedit Stellung. B. Vefahen de Keditwüdigkeitsanalyse 1. a) Geben Sie einen kuzen Übeblick übe die histoische Entwicklung de bankextenen Keditwüdigkeitsanalyse. b) Woum handelt es sich bei de Einstufung duch eine Ratingagentu? Welche ussagen tifft die Einstufungsstelle übe die Emission ode den Emittenten? ls was ist ein Rating nicht zu vestehen? c) Eläuten Sie den Begiff elative Bonität und vedeutlichen Sie vo diesem Hintegund die Zielsetzung des Rating. d) Eläuten Sie die Hekunft und die Bedeutung de Begiffe investment gade und seculative gade. e) uf welche Einflußfaktoen wid bei den Definitionen de Ratingklassen eingegangen? Welche Imlikationen haben diese Faktoen fü nlageentscheidungen unte Potfoliogesichtsunkten? f) Das Rating ist kein Vefahen, das eine Segmentieung von usfallisiken elaubt. Nehmen Sie zu diese ussage Stellung. g) Welche Kitik müssen sich die Ratingagentuen imme wiede stellen? Wid damit die Funktion de Ratings tatsächlich in Fage gestellt? 2. a) Skizzieen Sie das beim Rating vewendete To-down-Vefahen und benennen Sie die Risiken, um die es auf den einzelnen nalysestufen geht. b) In welche Beeiche läßt sich die nalyse des Untenehmensisikos aufsalten? Wie weden die Infomationen jeweils beuteilt?

4 - 4 - c) Welche Untenehmensvehältnisse sind fü die Einstufung von besondee Bedeutung? d) Stellen Sie den blauf eines estmaligen Ratings gafisch da. e) Welche ktionen de Ratingagentuen können uswikungen auf die Kuse de Finanztitel haben? f) We tägt in de Regel die Kosten fü ein Rating? 3. a) In welche dei Teilasekte läßt sich die taditionelle Keditwüdigkeitsüfung unteteilen? Eläuten Sie, welche Infomationen dabei beücksichtigt weden und wie sie in de Regel beuteilt weden? b) Nehmen Sie kitisch zu Qualität und Effizienz de taditionellen Bonitätsanalyse Stellung. 4. a) Was ist unte bankintenen Ratingvefahen zu vestehen und welche Ziele weden mit ihe Imlementieung vebunden? b) Was bescheibt de Begiff Rating-Lücke? Gehen Sie bitte in diesem Zusammenhang auf die Bedeutung von extenen und intenen Ratings fü die Eigenkaitalanfodeungen an Keditinstitute ein? c) Skizzieen Sie beisielhaft ein Cedit-Scoing-System. Untescheiden Sie dabei zwischen Keditnehme- und Engagementbeuteilung. 5. a) Wie lassen sich quantitativ-statistische Vefahen de Keditwüdigkeitsanalyse klassifizieen? Eläuten Sie kuz die einzelnen Vefahen. b) Nennen Sie Vo- und Nachteile de quantitativ-statistischen Vefahen und nehmen Sie zu ihe nwendbakeit Stellung. c) Welche Schitte sind efodelich, um zu eine Regessionsfunktion zu gelangen, mit de Keditentscheidungen getoffen weden können? Stellen Sie den ufbau eine Regessionsfunktion beisielhaft da und eläuten Sie deen Bestandteile. 6. a) Wie lassen sich die Vefahen de multivaiaten Diskiminanzanalyse klassifizieen? b) Welches Ziel vefolgt die multivaiate-lineae Diskiminanzanalyse, wenn man davon ausgeht, daß die vewendeten Kennzahlen beeits eine gewisse Tennschäfe aufweisen? c) Stellen Sie das Gundinzi de bivaiaten-lineaen Diskiminanzanalyse gafisch da und eläuten Sie die einzelnen Schitte.

5 - 5 - d) Was vesteht man unte dem Fehle 1. t und was unte dem Fehle 2. t? Welches geschäftsolitische Poblem stellt sich bei de Festlegung des kitischen Diskiminanzwets? 7. Skizzieen Sie kuz den ufbau eines datenveabeitungsgestützten Exetensystems zu Keditwüdigkeitsanalyse und nennen Sie Vo- und Nachteile dieses Vefahens. 8. Bescheiben Sie kuz den schematischen ufbau und die Zielsetzung von Künstlichen Neuonalen Netzen (KNN). Wie elangt ein KNN seine Fähigkeit zu Tennung von solventen und insolvenzgefähdeten Untenehmen? Wo liegen die Vo- und Nachteile dieses Vefahens? 9. Welches Vefahen vewendet die Bundesbank, um Entscheidungen übe die Heeinnahme von Wechseln und Keditfodeungen ationell und intesubjektiv nachvollziehba zu teffen? 10. Sie sollen bei de Toto Bank das Cedit Scoing einfühen. Bei eine Untesuchung haben Sie sich fü die folgende Diskiminanzfunktion entschieden: Z = 2X 1 + 4X 2 + 8X 3 + 2X 4 Dabei egab sich folgende Zusammenhang zwischen de Totalausfallwahscheinlichkeit eines Kedits und den bei de Keditwüdigkeitsüfung emittelten Sco- ing-punkten Z: = Z/2500 Fü dei Kedite liegen folgende Daten vo: Mekmal Kedit 1 Kedit 2 Kedit 3 X X X X Volumen De Zinssatz auf isikofeie nlagen betägt 5 %.a. us Wettbewebsgünden soll die Vezinsung jedes Kedits so niedig wie möglich, abe dennoch auskömmlich sein. us Maketing-Gesichtsunkten hat de Vostand beschlossen, keine zweistelligen Keditzinssätze zu veeinbaen. Emitteln Sie die veeinbaten Buttozinseinnahmen de Toto Bank in DM.a.. C. Was wid mit de Keditwüdigkeitsanalyse eeicht? 1. Beuteilen Sie die behandelten nalysevefahen. Welche Ziele weden damit eeicht und welche nicht? Welche Pobleme lassen sich identifizieen? 2. Bei Ratings handelt es sich immehin um Einstufungen, deen bfolge mit de Höhe de Mindestbuttoisikoämiensätze hochkoeliet ist. Welche Pognosen können die Mitabeite de Einstufungsstellen demnach abgeben?

6 - 6 - Liteatu Büschgen, Hans E.; Eveling, Olive [1996] Handbuch Rating. Wiesbaden [ZB-Signatu 22/738] Deutsche Bundesbank [1999] Zu Bonitätsbeuteilung von Witschaftsuntenehmen duch die Deutsche Bundesbank. In: Deutsche Bundesbank Monatsbeicht, 51. Jg. (1999), Heft 1, S Deutsche Bundesbank [1999] Zu Untenehmensfinanzieung in Deutschland und Fankeich: Eine vegleichende nalyse. In: Deutsche Bundesbank Monatsbeicht, 51. Jg. (1999), Heft 10, S Dittma, Thomas; Hilbet, ndeas [1998] Bonitätsüfung mit Hilfe Künstliche Neuonale Netze. In: Zeitschift fü Bankecht und Bankwitschaft (ZBB), 10. Jg. (1998), Heft 5, S [ZB-Signatu 11/1380] Feidicke, Makus [1992] Keditwüdigkeitsüfung - Entwicklung eines Bonitätsindikatos. Düsseldof S und S [ZB-Signatu 9/36945] Hagenmülle, Kal-Fiedich [1976] Keditwüdigkeitsüfung. In: Handwötebuch de Finanzwitschaft, Hsg. Hans E. Büschgen, Stuttgat 1976, S [ZB-Signatu: 2:6/77] Heinke, Volke G. [1998] Bonitätsisiko und Cedit Rating festvezinsliche Wetaiee - Eine emiische Untesuchung am Euomakt. Bad Soden [ZB-Signatu 22/1153] Hessol, Gail I. [1987] Financial Management und Cedit Ratings. In: Financial Management Collection, Vol. 2 (1987), Heft 2, S. 1, 4 und 12. Hüls, Dagma [1995] Fühekennung insolvenzgefähdete Untenehmen. Düsseldof [ZB-Signatu 9/42607] Jeschensky, ndeas [1998] Messung des Bonitätsisikos von Untenehmen. Düsseldof [ZB-Signatu 9/48181] Kümmel, Hans-Jacob [1976] Finanzieungsisiken und Keditsielaum. In: Handwötebuch de Finanzwitschaft, Hsg. Hans E. Büschgen, Stuttgat 1976, S [ZB-Signatu: 2:6/77] Meiste, Edga [1999] De neue Basele kkod: Ändeungen de Eigenkaitalegeln fü Keditinstitute. Votag von Edga Meiste, Mitglied des Diektoiums de Deutschen Bundesbank, auf de Vostands-Jahestagung an de Ostdeutschen Sakassenakademie, Potsdam, am 30. Setembe In: uszüge aus Pesseatikeln, Deutsche Bundesbank (Hsg.), o. Jg. (1999), N. 65/1. Oktobe 1999, S

7 - 7 - Mülle-Schwein, Ebehad; Stack, Heinz [1977] Mathematisch-Statistische Vefahen zu Fomalisieung des Keditentscheidungsozesses. In: Kedit und Kaital, 10. Jg. (1977), Heft 3, S [ZB-Signatu: 11/306] Pfeife, xel [1998] Fühekennung von Untenehmensinsolvenzen auf Basis handelsechtliche Jahesabschlüsse. Fankfut am Main [ZB-Signatu 9/47628] Randow, Phili von [1995] Rating und Regulieung. In: Zeitschift fü Bankecht und Bankwitschaft (ZBB), 7. Jg. (1995), Heft 2, S [ZB-Signatu 11/1380] Randow, Phili von [1996] Rating und Wettbeweb. In: Zeitschift fü Bankecht und Bankwitschaft (ZBB), 8. Jg. (1996), Heft 2, S [ZB-Signatu 11/1380] Schmidt, Hatmut [1988] Einzelkedit und Keditotefeuille. In: Bankolitik, finanzielle Untenehmensfühung und die Theoie de Finanzmäkte, Festschift fü Hans-Jacob Kümmel, Hsg. Bend Rudolh und Jochen Wilhelm, Belin 1988, S [ZB-Signatu 22/113] Schmoll, nton [1983] Theoie und Paxis de Keditüfung unte besondee Beücksichtigung de Klein- und Mittelbetiebe. In: Östeeichisches Bankachiv, 31. Jg. (1983), Heft 3, S , (Teil I), Heft 5, S (Teil II) und Heft 6, S (Teil III). [ZB-Signatu 11/52] Schmoll, nton [1994] Keditübewachung: Systematische Efassung von Fühwansystemen. In: Zeitschift fü das gesamte Keditwesen, 47. Jg. (1994), Heft 16, S [ZB-Signatu 11/593] Joy, Pete [1999] Euoean agencies how do they ate?. In: euo, o. Jg. (1999), Setembe 1999, abgeduckt in: uszüge aus Pesseatikeln, Deutsche Bundesbank (Hsg.), o. Jg. (1999), N. 61/15. Setembe 1999, S Webe, Matin; Kahnen, Jan Pete; Voßmann, Fank [1999] Risikomessung im Keditgeschäft: Eine emiische nalyse bankintene Ratingvefahen. In: Rechnungswesen und Kaitalmakt: Beitäge anläßlich eines Symosiums zum 70. Gebutstag von Pof. D. D. h.c. mult. Walthe Busse von Colbe, Hsg. des Sondeh. Günthe Gebhadt und Benhad Pellens, Düsseldof 1999, Zfbf Sondeheft 41, S [ZB-Signatu 11/589] Liteatu wid ausgelegt Examenselevante Gundlagenliteatu des Instituts Beeits ausgelegte Gundlagenliteatu fü das Semina

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Consulting & Private Equity eine strategische Symbiose?

Consulting & Private Equity eine strategische Symbiose? Matin Fanssen Inteim Management Consulting & Pivate Equity eine stategische Symbiose? Untenehmen: Ot: Name: Funktion: Telefon: Bitte schicken Sie uns den ausgefüllten Fagebogen pe Fax ode Post zuück an:

Mehr

Technische Fachhochschule Berlin University of Applied Sciences

Technische Fachhochschule Berlin University of Applied Sciences Technische Fachhochschule Belin Univesity of Applied Sciences TFH Belin Fachbeeich III Bauingenieu- und Geoinfomationswesen Luxembuge St. 10 13353 Belin Pof. D. Jügen Schweikat Telefon: 030) 45 04-2038/2613

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Univesität Ulm 89069 Ulm Gemany Dipl.-WiWi Sabina Böck Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2008/2009 Übung 3 Das

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre:

8. Transmissionsmechanismen: Der Zinskanal und Tobins q. Pflichtlektüre: z Pof. D. Johann Gaf Lambsdoff Univesität Passau WS 2007/08 Pflichtlektüe: Engelen, C. und J. Gaf Lambsdoff (2006), Das Keynesianische Konsensmodell, Passaue Diskussionspapiee N. V-47-06, S. 1-7. 8. Tansmissionsmechanismen:

Mehr

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von

Unverbindliche Musterberechnung für den Wealthmaster Classic Plan von Unvebindliche Mustebeechnung fü den Wealthmaste Classic Plan von Die anteilsgebundene Lebensvesicheung mit egelmäßige Beitagszahlung bietet Ihnen die pefekte Kombination aus de Sicheheit eine Kapitallebensvesicheung

Mehr

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife

Aufgabenerstellung und Bewertung von Klausuren und Prüfungen für den Erwerb der. Fachhochschulreife MATHEMATIK Aufgabenestellung und Bewetung von Klausuen und Püfungen fü den Eweb de Fachhochschuleife in beuflichen Bildungsgängen im Rahmen duale ode vollqualifizieende Bildungsgänge, in de Beufsobeschule

Mehr

Rollenrichtprozess und Peripherie

Rollenrichtprozess und Peripherie Rollenichtpozess und Peipheie Macus Paech Die Hestellung von qualitativ hochwetigen Dahtpodukten efodet definiete Eigenschaften des Dahtes, die duch einen Richtvogang eingestellt weden können. Um den Richtpozess

Mehr

Bestimmung der massebezogenen Aktivität von Radionukliden

Bestimmung der massebezogenen Aktivität von Radionukliden Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT Beabeite:. Wiechen H. Rühle K. Vogl ISS 1865-8725 Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT-01 Die auf die Masse

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion

Über eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Übe eine ziemlich allgemeine Zahlenfolge und eine ziemlich allgemeine Funktion Beat Jaggi, beat.jaggi@phben.ch Abstact Ausgehend von einem veallgemeineten Mittelwet wid eine Zahlenfolge definiet, die eine

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzieung Studiengang B.A. Business Administation Pof. D. Raine Stachuletz Hochschule fü Witschaft und Recht Belin Belin School of Economics and Law Somme 2012 slide no.: 1 Handlungsfelde

Mehr

Anhang V zur Vorlesung Kryptologie: Hashfunktionen

Anhang V zur Vorlesung Kryptologie: Hashfunktionen Anhang V zu Volesung Kyptologie: Hashfunktionen von Pete Hellekalek Fakultät fü Mathematik, Univesität Wien, und Fachbeeich Mathematik, Univesität Salzbug Tel: +43-0)662-8044-5310 Fax: +43-0)662-8044-137

Mehr

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell

Übung zur Einführung in die VWL / Makroökonomie. Teil 7: Das IS-LM-Modell Begische Univesität Wuppetal FB B Schumpete School of Economics and Management Makoökonomische Theoie und Politik Übung zu Einfühung in die VWL / Makoökonomie Teil 7: Das IS-LM-Modell Thomas Domeatzki

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Möglichkeiten und Grenzen einer Marktbewertung von Krediten

Möglichkeiten und Grenzen einer Marktbewertung von Krediten 7 B e i c h t e Möglichkeiten und Genzen eine Maktbewetung von Kediten von ofesso D. homas Hatmann-Wendels * Gliedeung oblemstellung 2 Bewetung von Kediten bei vollkommenem Kapitalmakt 2. De Fall sichee

Mehr

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln

Preise, Form und Farbe: Fallstricke zwischen Verordnung und Einnahme von Arzneimitteln Peise, Fom und Fabe: Fallsticke zwischen Veodnung und Einnahme von Azneimitteln Seit Jahen ist die Tendenz im Gesundheitswesen unvekennba, dass andee Akteue imme meh ökonomische und egulatoische Ringe

Mehr

Die Theorie von Balassa und Samuelson Warum haben arme Länder im Durchschnitt niedrigere Preisniveaus?

Die Theorie von Balassa und Samuelson Warum haben arme Länder im Durchschnitt niedrigere Preisniveaus? Übung zu Volesung Fotgeschittene Monetäe Ökonomik WS 2005/06 Seite 1 Die Theoie von Balassa und Samuelson Waum haben ame Lände im Duchschnitt niedigee Peisniveaus? Eine gute Dastellung findet sich bei:

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung

Makroökonomie 1. Prof. Volker Wieland Professur für Geldtheorie und -politik J.W. Goethe-Universität Frankfurt. Gliederung Makoökonomie 1 Pof. Volke Wieland Pofessu fü Geldtheoie und -politik J.W. Goethe-Univesität Fankfut Pof.Volke Wieland - Makoökonomie 1 Mundell-Fleming / 1 Gliedeung 1. Einfühung 2. Makoökonomische Analyse

Mehr

Programm für alle Öffentlich-rechtlicher Rundfunk

Programm für alle Öffentlich-rechtlicher Rundfunk Wie untescheiden sich öffentlich-echtliche und pivate Sende in Pogamm und Finanzieung? Die Tabellen stellen einige Unteschiede da. Macht aus den Zahlen aussagekäftige Gafiken. Anteile de Sendungen veschiedene

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

SCHULLAUFBAHNBERATUNG auf der 4. Schulstufe

SCHULLAUFBAHNBERATUNG auf der 4. Schulstufe WIR WISSEN WEITER SCHULLAUFBAHNBERATUNG auf de 4. Schulstufe Eine Handeichung fü Lehe/innen? IMPRESSUM: Schullaufbahnbeatung auf de 4. Schulstufe Eine Handeichung fü Leheinnen und Lehe. BMBWK, Wien 2002.

Mehr

Übung 10. Das Mundell-Fleming-Modell

Übung 10. Das Mundell-Fleming-Modell Univesität Ulm 89069 Ulm Gemany Dipl.-Kfm. Philipp Buss Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2013/2014 Übung 10 Das

Mehr

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19

Optimierung der Lagerhaltung im. bearbeitet von. betreut von. Prof. Dr. Oliver Vornberger. Am Grewenkamp 19 Fachbeeich Mathematik/Infomatik Optimieung de Lagehaltung im Kaftfahzeugteile-Gohandel Diplomabeit beabeitet von Diete Stumpe beteut von Pof. D. Olive Vonbege 2. Apil 1996 Diete Stumpe Am Gewenkamp 19

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1

Konzeptionierung eines Feldsondenmeßplatzes zum EMV-gerechten Design von Chip/Multichipmodulen 1 Konzeptionieung eines Feldsondenmeßplatzes zum EMV-geechten Design von Chip/Multichipmodulen 1 D. Manteuffel, Y. Gao, F. Gustau und I. Wolff Institut fü Mobil- und Satellitenfunktechnik, Cal-Fiedich-Gauß-St.

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell Abeitsgemeinschaft Copoate Finance 3. Feb 2011 RKU Heidelbeg David Dell Gundpinzipien de Finanzieung Investition = Entscheidung fü eine bestimmte Vewendungsmöglichkeiten von Kapital Aufgaben de Finanzieung

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Software Engineering Projekt

Software Engineering Projekt FHZ > FACHHOCHSCHULE ZENTRALSCHWEIZ HTA > HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN Softwae Engineeing Pojekt Softwae Requiements Specification SRS Vesion 1.0 Patick Bündle, Pascal Mengelt, Andy Wyss,

Mehr

2 Prinzip der Faser-Chip-Kopplung

2 Prinzip der Faser-Chip-Kopplung Pinzip de Fase-Chip-Kopplung 7 Pinzip de Fase-Chip-Kopplung Dieses Kapitel behandelt den theoetischen Hintegund, de fü das Veständnis de im Rahmen diese Abeit duchgefühten Untesuchungen de Fase-Chip- Kopplung

Mehr

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r.

Ü b u n g s b l a t t 9. r/2 für 0 r < 1, F X (r) = 3/5 für 1 r < 2, (3 r + 1)/10 für 2 r < 3, 1 für 3 r. Einfühung in die Stochastik Sommesemeste 07 D Walte Oevel 4 6 007 Ü b u n g s b l a t t 9 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten vewendet weden Lösungen von -Aufgaben sind

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS 7 Tosten Scheibe 7 Eine Mati ist eine Kombination aus eine bestimmten nzahl von, die in Zeilen und Spalten unteteilt sind, die das eine Mati bestimmen, wobei jede die jede Komponente duch die zugehöige

Mehr

Diskrete Strukturen Klausur

Diskrete Strukturen Klausur Technische Univesität München Winte 2017/18 Pof. J. Esaza / D. M. Luttenbege, S. Sicket Diskete Stuktuen Klausu 14.02.2018 Beachten Sie: Soweit nicht andes angegeben, ist stets eine Begündung bzw. de Rechenweg

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Stellwiderstände. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines HOCHSCHLE FÜ TECHNK ND WTSCHFT DESDEN (FH) nivesity of pplied Sciences Fachbeeich Elektotechnik Paktikum Gundlagen de Elektotechnik Vesuch: Stellwidestände Vesuchsanleitung 0. llgemeines Eine sinnvolle

Mehr

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4

VR-FinalSparen. Raiffeisenbank Altdorf-Ergolding eg. Jeder Mensch hat etwas, das ihn antreibt. h n. im 4 Mai 2010 - An alle Haushalte oe, T h Me sen: n i Z meh % 5 2, 3. Jah im 4 VR-FinalSpaen Unse Anlagepodukt spielt Ihnen beeits vo dem esten Anstoß de Fußball-Weltmeisteschaft 2010 in Südafika einen exklusiven

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

DCF-Verfahren bei Wachstum, Teilausschüttung und persönlicher

DCF-Verfahren bei Wachstum, Teilausschüttung und persönlicher DCF-Vefahen bei Wachstum, Teilausschüttung und pesönliche Besteueung Jög Wiese Discussion Pape 26 19 28. Mai 26 - Vesion vom 29. Novembe 26 - Munich School of Management Univesity of Munich Fakultät fü

Mehr

über insgesamt Vorvertragliche Erläuterungen zum Darlehensantrag Name aller Darlehensnehner Sehr geehrter Kunde,

über insgesamt Vorvertragliche Erläuterungen zum Darlehensantrag Name aller Darlehensnehner Sehr geehrter Kunde, dessaue st. 5 I 06862 dessau-oßlau email info@pobaufi.de I www.pobaufi.de Kundenanschift Ih Anspechpatne Vovetagliche Eläuteungen zum Dalehensantag Name alle Dalehensnehne übe insgesamt Dalehensbetag Seh

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Grundbildung Nachholbildung Kauffrau/Kaufmann

Grundbildung Nachholbildung Kauffrau/Kaufmann Gundbildung Nachholbildung Kauffau/Kaufmann mit eidg. Fähigkeitszeugnis Inhaltsvezeichnis Ih Kusstat ist zu 100 % gaantiet. 1. Nachholbildung fü Ewachsene 4 2. Zulassungsbedingungen und Voaussetzungen

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

8.2 Nominaler Zinssatz und die Geldnachfrage

8.2 Nominaler Zinssatz und die Geldnachfrage 8.2 Nominale Zinssatz und die Geldnachfage Die Geldnachfage ist die Menge an monetäen Vemögensweten welche die Leute in ihen Potfolios halten wollen Die Geldnachfage hängt vom ewateten Etag, Risiko und

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Organisatorisches. Übersicht. Software. Dateitypen. Hilfe. UE Theorie und Konstruktion psychologischer Tests

Organisatorisches. Übersicht. Software. Dateitypen. Hilfe. UE Theorie und Konstruktion psychologischer Tests UE Theoie und Konstuktion psychologische Tests daniel.mache@uni-gaz.at Oganisatoisches UE immanente Püfungschaakte Anwesenheit? 3 Hausübungen Abgabe bis spätestens 15.01.007 mind. als Voaussetzung fü Püfungsantitt

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

Klausur 2 Kurs 12PH4 Physik

Klausur 2 Kurs 12PH4 Physik 2014-12-16 Klausu 2 Kus 12PH4 Physik Lösung 1 Teffen Elektonen mit goße Geschwindigkeit auf eine Gafitfolie und dann auf einen Leuchtschim, so sieht man auf dem Leuchtschim nicht nu einen hellen Punkt,

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

Verkürzung der Studienzeit im Studiengang Marketing MBA Antrag auf Anrechnung für Bachelor- und FH-Absolventen

Verkürzung der Studienzeit im Studiengang Marketing MBA Antrag auf Anrechnung für Bachelor- und FH-Absolventen Veküzung de Studienzeit im Studiengang Maketing MBA Antag auf Anechnung fü Bachelo- und FH-Absolventen die Anechnung beufliche Kompetenzen auf Hochschulstudiengänge ist ein wichtiges Ziel des Bologna-Pozesses

Mehr

Modellbasen für virtuelle Behaglichkeitssensoren

Modellbasen für virtuelle Behaglichkeitssensoren Modellbasen fü vituelle Behaglichkeitssensoen Felix Felgne, Lotha Litz felgne@eit.uni-kl.de Technische Univesität Kaiseslauten / Lehstuhl fü Autoatisieungstechnik Ewin-Schödinge-Staße 12, D-67663 Kaiseslauten

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro

Rendite gesucht! Union Investment Wir optimieren Risikobudgets. r r. e i. 29. Euro 01-U4-JB-2009-Umschlag-Y:01-U4-JB-2008-Umschlag-A 11.03.2010 9:51 Uh Seite 1 JAHRBUCH 2010 29. Euo s unte o f n I Meh sikoi e i d www..de e manag Union Investment Wi optimieen Risikobudgets Union Investment

Mehr

Titrationskurven in der Chemie

Titrationskurven in der Chemie RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.

Mehr

Magische Zaubertränke

Magische Zaubertränke Magische Zaubetänke In diese Unteichtseinheit waten auf Ihe SchüleInnen magische Zaubetänke, die die Fabe wechseln. Begiffe wie Säue, Base, Indikato und Salz können nochmals thematisiet bzw. wiedeholt

Mehr

Schwerpunkt Finanzen Johann Wolfgang Goethe Universität, Frankfurt (Main) Prof. Dr. Mark Wahrenburg. Dipl.-Ökonom Hergen Frerichs. Finanzwirtschaft 2

Schwerpunkt Finanzen Johann Wolfgang Goethe Universität, Frankfurt (Main) Prof. Dr. Mark Wahrenburg. Dipl.-Ökonom Hergen Frerichs. Finanzwirtschaft 2 Schwepunkt Finanzen Johann Wolfgang Goethe Univesität, Fankfut (Main) Pof. D. Mak Wahenbug Dipl.-Ökonom Hegen Feichs Finanzwitschaft Teil 3: Untenehmensbewetung Maktwet und wahe Wet : Wann lohnt Bewetung?

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

Handbuch zur Altlastenbehandlung Teil 8

Handbuch zur Altlastenbehandlung Teil 8 Handbuch zu Altlastenbehandlung Teil 8 Sanieungsuntesuchung Sächsisches Landesamt fü Umwelt und Geologie Anlagenvezeichnis Anlage 1: Anlage 2: Anlage 3: Anlage 4: Anlage 5: Anlage 6: Anlage 7a: Anlage

Mehr

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation

Energieeffiziente Abscheidung von hochkonzentrierten flüssigen Aerosolen mit einem Autogenen Raumladungsgetriebenen Abscheider (ARA) Dissertation Enegieeffiziente Abscheidung von hochkonzentieten flüssigen Aeosolen mit einem Autogenen Raumladungsgetiebenen Abscheide (ARA) Von de Fakultät fü Umweltwissenschaften und Vefahenstechnik de Bandenbugischen

Mehr

4/09. Interview mit Prof. Margrit Kennedy: Komplementärwährungen im Aufwind. Halbjahresbericht: Bilanzsumme wächst weiter. Hauptsitz im neuen Look

4/09. Interview mit Prof. Margrit Kennedy: Komplementärwährungen im Aufwind. Halbjahresbericht: Bilanzsumme wächst weiter. Hauptsitz im neuen Look Inteview mit Pof. Magit Kennedy: Komplementäwähungen im Aufwind 12 Halbjahesbeicht: Bilanzsumme wächst weite Hauptsitz im neuen Look 4 8 www.wibank.ch INHALT Ein neues Kleid fü die WIR Bank in Basel. 8

Mehr

Grundlagen der Betriebswirtschaft

Grundlagen der Betriebswirtschaft Gundlagen de Betiebswitschaft Wi wollen in unsem Wissen vom Gebauch de Spache eine Odnung hestellen: eine Odnung zu einem bestimmten Zweck (z.b. Veständnis de betiebswitschaftlichen Gundlagen; eine von

Mehr

Aufgabe P1 Bewegungen (15 BE)

Aufgabe P1 Bewegungen (15 BE) Abitu 2003 Physik Lk Seite 3 Pflichtaufgaben (30 BE) Aufgabe P1 Bewegungen (15 BE) 1. In de Physik weden Bewegungen mit den Modellen Massenpunkt" und stae Köpe" beschieben. Welche Gundaussagen beinhalten

Mehr

Die Entwicklung der Direktinvestitionen im Jahre 2000

Die Entwicklung der Direktinvestitionen im Jahre 2000 Die Entwicklung de Diektinvestitionen im Jahe 2000 SNB 42 Quatalsheft 4/2001 Die schweizeischen Diektinvestitionen im Ausland Kaitalexot Die schweizeischen Kaitalexote fü Diektinvestitionen im Ausland

Mehr

«Samariter im Netz» Praxisleitfaden zur Nutzung der neuen Medien

«Samariter im Netz» Praxisleitfaden zur Nutzung der neuen Medien «Samaite im Netz» Paxisleitfaden zu Nutzung de neuen Medien Leitfaden_RZ_2010_03_26.indd 1 26.03.2010 15:01:25 2 Inhaltsvezeichnis 1 2 Einleitung 4 1.1 Intenet: Ein Ekläungsvesuch 4 1.2 Web 2.0 Plattfomen

Mehr

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 4)

Banken und Börsen, Kurs 41520 (Inhaltlicher Bezug: KE 4) Lösugshiweise zu Eiseeabeit 2 zum Kus 452, ake u öse, WS 2/2 Lösugshiweise zu Eiseeabeit 2: WS 2/2 ake u öse, Kus 452 (Ihaltliche ezug: KE 4) alyse festvezisliche Wetpapiee 5 Pukte Vo Ihe ak wee Ihe ie

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

PKV-Beitragsoptimierer-Auftragserteilung

PKV-Beitragsoptimierer-Auftragserteilung PKV-Beitagsoptimiee-Auftagseteilung zu einmaligen Beatung Bei dem Vesichee : mit de Vetagsnumme : fü folgende Pesonen : Auftaggebe Name : Geb.-Dat. : Staße : PLZ und Ot : Telefon : Mobil : E-Mail : Beuf

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

Zum Leverage Effekt. Text 01-2013. Ausgangssituation und Ansatzpunkte der Kapitalstrukturpolitik

Zum Leverage Effekt. Text 01-2013. Ausgangssituation und Ansatzpunkte der Kapitalstrukturpolitik Zum Leveage Effekt Text 01-2013 Ausgangssituation und Ansatzpunkte de Kapitalstuktupolitik De finanzwitschaftliche Themenbeeich de Kapitalstuktupolitik fokussiet die ökonomische, i.e. finanzwitschaftliche

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Radioaktivität zum Anfassen - Das Philion-Experimentier-set

Radioaktivität zum Anfassen - Das Philion-Experimentier-set 100. MNU Kongess Regensbug 2009 Radioaktivität zum Anfassen - Das Philion-Expeimentie-set Rudolf GeiPel' Ilenning von PhiliPsbon" I Pivate Realschule Pindl Albecht-Düe-St. I l, 93 I 28 Regenstauf geipel@t-online.de

Mehr

Zur Gleichgewichtsproblematik beim Fahrradfahren

Zur Gleichgewichtsproblematik beim Fahrradfahren technic-didact 9/4, 57 (984). u Gleichgewichtspoblematik beim Fahadfahen Hans Joachim Schlichting Gleichgewicht halten ist die efolgeichste Bewegung des Lebens. Beutelock. Einleitung Die physikalische

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

Licht und Heizung bleiben an

Licht und Heizung bleiben an Anne Allex, Götz Renge und Anton Schweige: Licht und Heizung bleiben an auch bei wenig Geld 20 20 C 10 10 C 0 C 0 Anne Allex AutoInnen Anne Allex geb. 29. Dezembe 1958 in Belin-Mitte Studium de Witschaftswissenschaften,

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

ISBN 978-3-00-052134-8. Schriftenreihe Institut der Deutschen Messewirtschaft Edition 44

ISBN 978-3-00-052134-8. Schriftenreihe Institut der Deutschen Messewirtschaft Edition 44 Bibliogafische Infomation de Deutschen Bibliothek Die Deutsche Bibliothek vezeichnet diese Publikation in de Deutschen Nationalbibliogafie; detailliete bibliogafische Daten sind im Intenet unte t http://dnb.d-nb.de

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

Zahnarztangst? Wege zum entspannten Zahnarztbesuch. Mit einer von Marc A. Pletzer konzipierten und gesprochenen Trance. Bearbeitet von Lea Höfel

Zahnarztangst? Wege zum entspannten Zahnarztbesuch. Mit einer von Marc A. Pletzer konzipierten und gesprochenen Trance. Bearbeitet von Lea Höfel Zahnaztangst? Wege zum entspannten Zahnaztbesuch. Mit eine von Mac A. Pletze konzipieten und gespochenen Tance Beabeitet von Lea Höfel 1. Auflage 2012. Taschenbuch. 136 S. Papeback ISBN 978 3 7945 2870

Mehr

Abiturprüfung Physik, Grundkurs

Abiturprüfung Physik, Grundkurs Seite 1 von 10 Abitupüfung 2011 Physik, Gundkus Aufgabenstellung: Aufgabe 1: Definition und Messung de Feldstäke B (auch Flussdichte genannt) magnetische Felde kontaktlose Messung goße Stöme 1.1 Die Abbildung

Mehr

Stochastik: Nutzung sozialer Netzwerke

Stochastik: Nutzung sozialer Netzwerke Stochastik: Nutzung soziale Netzweke Die Nutzung von sozialen Netzweken wid imme beliebte. Dabei nutzen imme meh Jugendliche veschiedene soziale Netzweke. Es wid davon ausgegangen, dass 30 % alle Jugendlichen

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

Der Qualitätsmanagementbeauftragte Produktion

Der Qualitätsmanagementbeauftragte Produktion Themenspezial De Qualitätsmanagementbeauftagte Poduktion Themenspezial: Kundenzufiedenheit nach ISO 10001 und 10002 Kundenzufiedenheit: Was die Kunden wiklich denken und wie Sie es heausfinden De Pozentsatz

Mehr

Es können nur Schwarz-Weiß-Bilder erkannt werden. Am Ende wird kein Gleichgewichtszustand (der Ausgabeneuronen) erreicht.

Es können nur Schwarz-Weiß-Bilder erkannt werden. Am Ende wird kein Gleichgewichtszustand (der Ausgabeneuronen) erreicht. Neuonale Neze, Fuzzy Conol, Geneische Algoihmen Pof. Jügen Saue 0. Aufgabenbla mi Lösungen. Nennen Sie eine ypische Anwendung von Hopfield-Nezen. Museekennung 2. Welche Einschänkungen gib es hiefü? Es

Mehr

INFO. Klienten. Nr. 10 Winter 2003 NEUES ABGABEN- ÄNDERUNGSGESETZ 2003 GEPLANTE MODERNISIERUNG DES ÖSTERREICHISCHEN HANDELSRECHTS

INFO. Klienten. Nr. 10 Winter 2003 NEUES ABGABEN- ÄNDERUNGSGESETZ 2003 GEPLANTE MODERNISIERUNG DES ÖSTERREICHISCHEN HANDELSRECHTS Klienten INFO N. 10 Winte 2003 NEUES ABGABEN- ÄNDERUNGSGESETZ 2003 GEPLANTE MODERNISIERUNG DES ÖSTERREICHISCHEN HANDELSRECHTS Untenehme und Untenehmegesetzbuch Offene Pesonengesellschaft Libealisieung

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr