Schwarz Herwig Florian Grabner Druckverlust in Rohrleitungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schwarz Herwig herwig.schwarz@htl-kapfenberg.ac.at Florian Grabner florian.grabner@gmx.at Druckverlust in Rohrleitungen"

Transkript

1 HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite von 8 Schwarz Herwig Florian Grabner Drucverlust in Rohrleitungen Mathematische / Fachliche Inhalte in Stichworten: Energiegleichung, Kontinuitätsgleichung Kurzzusammenfassung Die Problemati es Drucverlustes bei stationären inompressiblen Strömungen wir aufgegriffen. Es wir ein Leitfaen für ie grunsätzliche Berechnung eines geraen urchströmten Rohres, mit onstantem Durchmesser, gelegt un ie Anwenung anhan eines pratischen Beispiels gezeigt. Lehrplanbezug (bzw. Gegenstan / Abteilung / Jahrgang): Mechani, 3.Jahrgang, Maschinenabu Mathca-Version: Mathca 000 Literaturangaben: Technische Strömungslehre, Willi Bohl, Kamprath-ige Vogel Verlag Wir wissen aus eigener Erfahrung, ass jeer Vorgang reibungsbehaftet ist. Dies gilt auch für ein urchströmtes Rohr. Nehmen wir an, es hanelt sich um eine stationäre inompressible Strömung un betrachten wir eren Energieumsetrzung zwischen zwei beliebigen Punten un (Bil ), so erennen wir rei verschieen Energieformen. - Lageenergie g z - inetische Energie -Drucenergie w p ρ Die beien Höhen sin von er ibung nicht abhängig,.h. ie Lageenergie ist reibungsunabhängig Wir wissen auch, ass ie ibung auf en urchströmten Querschnitt un en Volumenstrom einen Einfluss hat,.h. Die inetische Energie ist ebenfalls reibungsunabhängig.. ibungsverluste äußern sich als Drucverluste! In er Energiebilanz läßt sich as wie folgt ausrücen: (Bil ) g z p ρ w p w p v p g z oer z ρ ρ ρ g w p z g ρ g w h v g p v ρ... ist er ibungsverlust h v... ist ie Verlusthöhe Schwarz Herwig & Grabner Florian 00

2 HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite von 8 Diese ibungsverluste resultieren zum einen aus en Schubspannungen zwischen en Strömungsschichten bei laminarer Strömung un zusätzlich aus en Mischungsverlusten infolge er Geschinigeitsschwanungen bei er turbulenten Strömung. Um en Drucverlust bestimmen zu önnen, müssen wir uns zuerst ie Strömungsverhältnisse bei - laminarer Strömung - turbulenten Strömung entwas genauer anschauen. Die laminare Strömung: < 30 In einem waagrechten Rohr mit Durchmesser r 0 strömen ie Flüssigeitsteilchen in achsparallelen Schichten. Die Geschwinigeit an er Rohrwan ist null un steigt zur Mitte hin parabolisch an (Bil ). Der Verlauf läßt sich urch as Stoessche Gesetz arstellen. w p p 4 η L r 0 r (Bil ) η... ynamische Visosität Wir sehen, ass ie Geschwinigeit sich mit em Raius änert,.h. ie Flüssigeitsschichten bewegen sich mit jeweils aneren Geschwinigeiten, so ass Schubspannungen auftreten. Aus em Stoessche Gesetz ann man en Drucverlust er folgene Form herleiten. 64 h v L w m g w m... mittlere Geschiigeit Den Ausruc mit er ynols-zahl bezeichnet man auch als Rohreibungszahl. 64 Die tubulente Strömung: In er Praxis haben wir es meistens mit einer turbulenten Strömung zu tun. Hierbei spielt neben er ynols-zahl auch noch ie Wanrauhigeit eine entscheiente Roll,.h. ie Bestimmung es Geschwinigeitsverlaufes un später es Drucverlustes auf rein theoretischem Wege ist nicht mehr möglich. Auch bei er turbulenten Strömung haftet ie Flüssigeit an er Rohrwan. Innerhalb einer ünnen Schicht baut sich ie Geschwinigeit wie bei er laminaren Strömung parabolisch auf. Man spricht von er laminaren Grenzschicht. Der Verlauf flacht im Bereich er turbulenten Strömung allerings wesentlich ab (Bil 3). (Bil 3) Schwarz Herwig & Grabner Florian 00

3 HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite 3 von 8 Hyraulisch glatte Rohre: Man spricht ann von Hyraulisch glatten Rohren, wenn ie laminare Grenzschicht alle Oberflächenunebenheiten abect, so ass eine Spitze in en turbulenten Strömungsbereich ragt (wie im Bil 3 gezeichnet). In iesem Bereich hängt er Drucverlust,.h. ie Rohrreibungszahl nur von er ynols-zahl ab, ie, wie wir wissen, wieerum eine Funtion er Geschwinigeit ist. Es gibt für bestimmte Bereiche er ynols-zahl verschieene empirische Formeln. Hyraulisch glatt wenn < Rauhigeitswert... Durchmesser es Rohres... ynols-zahl Bereich: 30 < < 0 5 Formel von Blasius Bereich: 0 5 < < Formel von Niurase Bereich: > 0 6 Formel von Prantl un v. Karman ( ) log 0.8 Hyraulisch rauhe Rohre: Bei zunehmener Geschwinigeit wir ie laminare Grenzschicht immer ünner, so as vereinzelt Unebenheiten schon in en turbulenten Bereich hinein ragen. Hat ie Geschwinigeit je nach Wanrauhigeit einen bestimmten Wert erreicht, so as alle Unebenheiten in en turbulenten Bereich hineinragen, ann spricht man von Hyraulisch rauhen Rohren. Ab iesem Punt hängt ie Rohrreibungszahl nur mehr von er Rauhigeit un nicht mehr von er Geschwinigeit ab. Hyraulisch rauh wenn > 300 Übergangsgebiet: Formel von Prantl un Niurase Formel von Mooy log Das gesamte Gebiet zwischen Hyraulisch glatt un Hyraulisch rauh, bezeichnet man als Übergangsgebiet. Übergangsgebiet wenn 65 < < 300 Formel von Prantl-Colebroo log Schwarz Herwig & Grabner Florian 00

4 HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite 4 von 8 In er Praxis wählt man sehr oft en leichteren Weg un sucht ie -Werte aus einem Diagramm heraus. Dies ist mit Sicherheit ie schnellste Methoe, wenn man aber Cumputerunterstützt arbeiten möchte greift man eher auf ie Formeln zurüc. Es sei hier as prinzipielle Aussehen ieses Diagrammes gezeigt. Den Drucverlust errechnen wir nach er bereitsbeannten Gleichung: p v L ρ w m bzw. h v L w m g wobei für en entsprechenen Fall nach en oben angeführten Formeln zu berechnen ist. Hier sei noch erwähnt, ass ie -Werte in en Formeln un auch im Diagramm nicht ientisch mit er technischen (natürlichen) Rauhigeit ist, sonern sie sin als äquivalente (ünstliche) Sanrauhigeiten efiniert. Die Übernahme ieses umstrittenen unpräzisen Begriffes erfolgt nur, weil eine ausreichenen Versuchswerte existieren;.h. ie gesamte Berechnung es Drucverlustes ergibt nur ein sehr unpräzises Ergebnis. In er Praxis reichent iese Abschätzung es Drucverlustes aber aus. Leitfaen für ie Berechnung: Die Berechnung besteht im wesentlichen aus rei Punten. ACHTUNG: Bei en folgenen Gleichungen hanelt es sich um Zahlenwertgleichungen,.h. es müssen ie Werte in en angegebenen Werten eingegeben weren um as Ergebnis in er angegeben Einheit zu erhalten!!!. Bestimmung er ynols-zahl w 0 3 Für Wasser gilt ie Formel: tonne tonne... ynols-zahl [ ] w... Strömungsgeschwinigeit [m/s²]... Rohrurchmesser [mm]... inematische Visosität (Zähigeit) [m²/s]... inematische Visosität (Zähigeit) [m²/s]... Temperatur [ C] tonne Schwarz Herwig & Grabner Florian 00

5 HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite 5 von 8. Bestimmung es Rohrreibungsoeffizienten Wie wir aus en vorigen Betrachtungen gesehen haben, errechnet sich er Rohrreibungsoeffizient je nach Strömung nach einer aneren Gleichung. Mit er nun beannten ynols-zahl müssen wir zuerst ie Art er Strömung bestimmen. < 30 laminare Strömung,.h. 64 > 30 turbulente Strömung; wir müssen nun noch überprüfen ob ie Strömung im Berecih er hyr. glatten Rohre oer er hyr. rauhen Rohre bzw. im Übergangsgebiet liegt. < 65 hyr. glatte Rohre;.h. wenn 30 < < < < > 0 6 ( ) log < < 300 Übergangsgebiet,.h. log > 300 hyr. rauhe Rohre,.h. log Berechnung er Drucverlustes Mit em für en entsprechenen Bereich berechnetetn Rohrreibungsoeffizienten ann man en Drucverlust einfach berechnen mit er Gleichung: p v... Drucverlust [bar] L ρ p v 0 3 w m Rohrreibungsoeffizienten [ ] L... Rohlänge [m]... Rohrurchmesser [mm] ρ... Dichte von Wasser [g/m³] ρ 000 in [g/m³] w m... mittlere Geschwinigeit [m/s] Programm zum berechnen es Drucverlustes Wir sehen, ass ie Berechnung es Drucverlustes recht aufwenig ist. Deshalb pacen wir ie Gleichungen in ein Programm un automatisieren ie Berechnung soweit wie möglich. Folgene Größen müssen aus er Angabe beannt sein: - Volumenstrom oer Strömungsgeschwinigeit un Rohrurchmesser - Länge es urchströmten Rohres - Die Wanrauhigeit - Die Temperatur es Wassers Schwarz Herwig & Grabner Florian 00

6 HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite 6 von 8 Um as Programm urz un einfach zu halten geben wir anstatt es Volumenstromes ie Strömungsgeschwinigeit un Rohrurchmesser an. Ist er Volumenstrom un nur eine er beien obrigen Größen beannt, so önnen nach folgenem Schema ie beien gewünschten Größen ermittelt weren. x : ( ) π 0 3 V p 4 w m Anm.: Für x muss ann ie entsprechene gesuchte Größe (w m oer ) eingesetzt weren. Da wir noch einen Wert für en Volumenstrom angegeben haben erscheint ieser Fehler! x : Fin ( x ) - Programm zum ermitteln er ynols-zahl Wir erhalten wenn ( ) : ynol w m,, tonne,... ynols-zahl [ ] w m... mittlere Strömungsgeschwinigeit [m/s²]... Temperatur [ C] tonne... Rohrurchmesser [mm]... inematische Visosität [m²/s] - Programm zum ermitteln es Rohrreibungsoeffizienten if tonne tonne w m > 0 für Wasser Eingabe relevant; t irrelevant (z.b.: t 0) Für en turbulenten Strömungszustan im Bereich er hyraulisch glatten Rohre wenn ie ynols-zahl größer als 0 6 ist bzw. im Übergangsgebiet läßt sich nur mehr numerisch lösen. In MathCAD önnen wir afür en VORGABE-SUCHEN-Algorithmus verwenen. Diesen ann man in einem Programm nicht anwenen (es sei ann man programmiert ihn nach --> sehr großer Aufwan, unrentabel). Aus iesem Grun müssen wir iesen Lösungsalgorithmus außerhalb es Programmes schreiben. Anm: lamba(,, ) : 64 if < 30 otherwise if 65 Rohrrauhigeit in [mm] Rohrurchmesser in [mm] if < 0 5 if > otherwise if 300 log 3.7 otherwise Schwarz Herwig & Grabner Florian 00

7 HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite 7 von 8 Zusatz : Wenn ann muss urch en Zusatz berechnet weren. Wenn ann muss urch en Zusatz berechnet weren. Wenn ann entspricht as Ergebnis em gefragten. : : Zusatz : : ( ) log 0.8 Fin( ) Anm.: Da wir noch einen Wert für en Rohreibungsoeffizienten angegeben haben erscheint ieser Fehler. log : Fin ( ) - Der Drucverlust Anm.: Da wir noch einen Wert für en Rohrreibungsoffizienten angegeben haben erscheint ieser Fehler. Man erhält p v... Drucverlust in [bar] wenn... Rohrreibungsoeffizienten [ ] L... Rohlänge [m]... Rohrurchmesser [mm] ρ... Dichte in [g/m³] w m... mittlere Geschwinigeit [m/s] L ρ p v : 0 3 w 0 5 Anm.: Da wir noch einen Wert für en Durchmesser angegeben haben erscheint ieser Fehler. Wir wollen nun ein onretes Beispiel rechnen um zu zeigen wie man iese Programme anwenet. Gegeben: Ein m langes Rohr wir mit einem onstanten Durchmesser von 700 mm wir mit 40 heißen Wasser urchströmt, wobei er Durchsatz m³/s beträgt. Das Rohrreibung ann mit 0.05 mm angenommen weren (Dichte ρ 99.3 [g/m³] ). Volumenstrom [m³/s] V p : Rohrurchmesser [mm] : 700 Rohrlänge [m] L : 000 Wassertemperatur [ C] tonne : 40 Rohreibung [mm] : 0.05 Dichte [g/m³] ρ : 99.3 Gesucht: Berechnen sie en Drucabfall er sich bei er urchströmung es Rohres ergibt. Schwarz Herwig & Grabner Florian 00

8 HTBL-Kapfenberg Drucverlust in Rohrleitungen Seite 8 von 8. Schritt: Ermitteln er mittleren Strömungsgeschwinigeit w m : w m : : ( ) π 0 3 V p 4 Fin( w m ) log Fin( ) 3. Schritt: Ermitteln von : lamba(,, ).5 w m. Schritt: Berechnen er ynolszahl Schritt: Berechnen es Drucverlustes w m 5.97 : ynol w m,, tonne, in [m/s] h. Wir sin im Übergangsgebiet > Zusatz verwenen p v : Der Drucverlust beträgt.98 bar. Anhang : Einige Rauhigeitswerte für verwschieene Rohrwerstoffe Rohrwerstoff: L 0 3 ρ w m 0 5 p v.98 Zustan er Rohrwan in [bar] Rauhigeit in [mm] gezogene Rohre aus Metallen (Kupfer, Messing, Bronze, Leichtmetall), Kunststoffen, Glas oer Plexiglas Gummirucschlauch nahtlose Stahlrohre längsgeschweißte Stahlrohre Stahlrohre nach längeren Benützung gußeiserne Rohre Betonrohre neu, technisch glatt neu, nicht verspröet Walzhaut gebeizt neu verzint Walzhaut bitumiert neu galvanisiert mäßig verrostet bzw. leicht verrustet star verrustet neu mit Gußhaut neu bitumiert leicht angerostet verrustet neu mit Glattstrich neu, geglätteter Stahlbeton neu, Schleuerbeton unverputzt bis bis bis bis bis bis bis 0. bis 3 0. bis bis bis.5 bis bis bis bis 0.8 Schwarz Herwig & Grabner Florian 00

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Wärmeübertragung an einem Heizungsrohr

Wärmeübertragung an einem Heizungsrohr HTBL ien 0 ärmeübertragung Seite von 7 DI Dr. techn. Klaus LEEB klaus.leeb@surfeu.at ärmeübertragung an einem Heizungsrohr Mathematische / Fachliche Inhalte in Stichworten: Verwendung von empirischen Gleichungen,

Mehr

1 Verbindungsleitungen

1 Verbindungsleitungen 1 Verbinungsleitungen Für ie Funktion aller elektronischen Schaltungen sin Verbinungsleitungen zischen en Bauelementen unverzichtbar. Ihre Aufgabe ist es, Signale von einem Baustein zum nächsten zu transportieren.

Mehr

Optische Abbildung mit Einzel- und Tandemobjektiven

Optische Abbildung mit Einzel- und Tandemobjektiven Optische Abbilung mit Einzel- un Tanemobjektiven. Wirkungsgra einer Abbilung mit einem Einzelobjektiv Mit einem Einzelobjektiv wir ein strahlener egenstan er Fläche A [m ] un er Ausstrahlung M W m au ein

Mehr

Einführung in die Chaostheorie

Einführung in die Chaostheorie Einführung in ie Chaostheorie Die sogenannte Chaostheorie befasst sich mit er Erforschung nichtlinearer ynamischer Systeme, ie chaotisches Verhalten zeigen können. Chaotisches Verhalten liegt u.a. ann

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

Eigene Farbskala erstellen

Eigene Farbskala erstellen Farben er Präsentation bestimmen 210 Eigene Farbskala erstellen Im vorigen Kapitel haben Sie gesehen, wie Sie einer gesamten Präsentation oer einzelnen Folien einer Präsentation eine anere Farbskala zuweisen.

Mehr

Polynomfunktionen - Fundamentalsatz der Algebra

Polynomfunktionen - Fundamentalsatz der Algebra Schule / Institution Titel Seite 1 von 7 Peter Schüller peter.schueller@bmbwk.gv.at Polynomfunktionen - Funamentalsatz er Algebra Mathematische / Fachliche Inhalte in Stichworten: Polynomfunktionen, Funamentalsatz

Mehr

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung

Dispersion DADOS. Problemstellung. Technische Daten, DADOS. Rechnung Dispersion DADOS Problemstellung Für ie Auswertung von Spektren ist es notwenig, ie Nichtlinearität er Wellenlängenskala auf em CCD Chip zu berücksichtigen. Dies wir hier am Beispiel es DADOS urchgerechnet,

Mehr

Druckverluste in thermostatischen Heizkörperventilen

Druckverluste in thermostatischen Heizkörperventilen Drucverluste in thermostatischen Heizörerventilen Allgemeines: in Thermostatventil muss zwei eventuell bis zu vier Aufgaben erfüllen: 1. Abserrung es Heizörers,. Regelung er Raumtemeratur urch Drosselung

Mehr

Lehrbrief 1 Technik Seite 1 von 7

Lehrbrief 1 Technik Seite 1 von 7 Lehrbrief 1 Technik Seite 1 von 7 Mathematische Kenntnisse Mathematik? Eigentlich sollte es och um Amateurfunk gehen. Es ist nunmal ein technisches Hobby, einige grunlegene mathematische Kenntnisse sin

Mehr

MS Michelson-Interferometer

MS Michelson-Interferometer MS Michelson-Interferometer Blockpraktikum Herbst 2007 (Gruppe 2b) 24. Oktober 2007 Inhaltsverzeichnis 1 Grunlagen 2 1.1 Aufbau.................................... 2 1.2 Interferenzmuster...............................

Mehr

Fehlerrechnung mit Hilfe der Differentialrechnung

Fehlerrechnung mit Hilfe der Differentialrechnung HTBLA Neufelen Fehlerrechnung mit Hilfe er Differentialrechnung Seite von 9 Peter Fischer pe.fischer@atn.nu Fehlerrechnung mit Hilfe er Differentialrechnung Mathematische / Fachliche nhalte in Stichworten:

Mehr

3 Erzwungene Konvektion 1

3 Erzwungene Konvektion 1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation

Mehr

p = τ τ = λ = w d = υ = λ w k f Re, Körperdurchströmung, reibungsbehaftet VIII Rohrströmung

p = τ τ = λ = w d = υ = λ w k f Re, Körperdurchströmung, reibungsbehaftet VIII Rohrströmung Körperurchströmung, reibungsbehaftet VIII - Rohrströmung w F p s Fτ y τ r R p s p p s s τ A U w Bil VIII - : Geschwinigkeitsverteilung bei laminarer Rohrströmung 4 L = τ w L ρ = λ w 3 ρ w L Re = w = υ

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

8. Uninformierte Suche

8. Uninformierte Suche 8. Uninformierte Suche Prof. Dr. Ruolf Kruse University of Mageurg Faculty of Computer Science Mageurg, Germany ruolf.kruse@cs.uni-mageurg.e S otationen () otationen: Graph Vorgänger (ancestor) von Knoten

Mehr

Logik / Kombinatorik - Hinweise zur Lösungsfindung

Logik / Kombinatorik - Hinweise zur Lösungsfindung Logik / Kombinatorik Hinweise zur Lösungsfinung Aufgabe 1) Günstige Bezeichnungen einführen; Tabelle anfertigen un ie unmittelbaren Folgerungen aus bis eintragen (siehe linke Tabelle). Da ies noch nicht

Mehr

Cluster 1: Kabelverlauf

Cluster 1: Kabelverlauf Teil B Seite 1 / 6 Doris Schönorfer Cluster 1: Kabelverlauf zum Menü Hinweis: Cluster 1 bezieht sich auf Höhere Technische Lehranstalten (HTL) für ie Ausbilungsrichtungen Bautechnik, Holztechnik & Innenraumgestaltung

Mehr

Erste schriftliche Wettbewerbsrunde. Klasse 7

Erste schriftliche Wettbewerbsrunde. Klasse 7 Erste schriftliche Wettbewerbsrune Die hinter en Lösungen stehenen Prozentzahlen zeigen, wie viel Prozent er Wettbewerbsteilnehmer ie gegebene Lösung angekreuzt haben. Die richtigen Lösungen weren fettgeuckt

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung der haptischen Wahrnehmung von viskoser Reibung

Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung der haptischen Wahrnehmung von viskoser Reibung Hefei Heilbronn Workshop on Research an Eucation in Mechatronics June 17 th 18 th 2010, Heilbronn, Germany Implementierung einer aktiven Dämpfung bei einem Gleichstrommotor zur Untersuchung er haptischen

Mehr

8.1. Das unbestimmte Integral

8.1. Das unbestimmte Integral 8 Das unbestimmte Integral So wie ie Bilung von Reihen, also Summenfolgen, ein zur Bilung er Differenzenfolgen inverser Prozess ist, kann man ie Integration als Umkehrung er Differentiation ansehen Stammfunktionen

Mehr

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt

Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Mathe-Übungsbeispiele für ein fixes Honorar rechnen Freie Zeiteinteilung + Heimarbeit Vergleichbar mit Nachhilfe, aber ohne Schülerkontakt Gesucht Stuenten, ie minestens ie Vorlesungen aus en ersten 2

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1

f x n ) 2 1 Gleichung (*) f' x 1 f'' x 1 Das Newtonsche Näherungsverfahren, Teil Theorie - Konvergenzkriterium f x n Allgemeine Lösung: x n = x n f' x f' x n n 0 Nach er Fachliteratur (Bronstein/Semenjajew) arf man hier von einer Cauchy-Folge

Mehr

8. Energie, Impuls und Drehimpuls des elektromagnetischen

8. Energie, Impuls und Drehimpuls des elektromagnetischen 8. Energie, Impuls un Drehimpuls es elektromagnetischen Feles 8.1 Energie In Abschnitt.5 hatten wir em elektrostatischen Fel eine Energie zugeornet, charakterisiert urch ie Energieichte ω el ɛ 0 E. (8.1

Mehr

10. Vorlesung Wintersemester

10. Vorlesung Wintersemester 10. Vorlesung Wintersemester 1 Existenz von Potentialen Für einimensionale Bewegungen unter er Einwirkung einer Kraft, ie nur vom Ort abhängt, existiert immer ein Potential, a man immer eine Stammfunktion

Mehr

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn

Zahlentheorie. Kapitel 14 Quadratische Zahlkörper. Markus Klenke und Fabian Mogge Universität Paderborn Zahlentheorie Kaitel 14 Quaratische Zahlkörer Markus Klenke un Fabian Mogge Universität Paerborn 9. Mai 008 Inhaltsverzeichnis 14 Quaratische Zahlkörer 0 Vorwort............................... A Wieerholung...........................

Mehr

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 199 0,7...6... 200 1,0...9... 201 1,25... 10...

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 199 0,7...6... 200 1,0...9... 201 1,25... 10... Stirnahnräer, gerae verahnt, Übersicht Stirnahnräer: Aetalhar gespritt gerae verahnt, Stirnahnräer: POM weiß, gefräst gerae verahnt, Stirnahnräer: POM schwar, gefräst gerae verahnt, Stirnahnräer: Kunststoff

Mehr

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008

Der Bauablauf bei freistehenden Trockenmauern Version Januar 2008 Der Bauablauf bei freistehenen Trockenmauern Version Januar 2008 2008 Gerhar Stoll Trockenmaurer / Dipl. Arch. ETH/SIA Hüeblistrasse 28 8636 Wal / Switzerlan +41/55/246'34'55 +41/78/761'38'18 info@stonewalls.ch

Mehr

6 Lineare Kongruenzen

6 Lineare Kongruenzen 6 Lineare Kongruenzen Sei m > 0 un a, b beliebig. Wir wollen ie Frage untersuchen, unter welchen Beingungen an a, b un m eine Zahl x 0 existiert, so aß ax 0 b mo m. Wenn ein solches x 0 existiert, sagen

Mehr

Simulations-Untersuchungen des Entleerungsvorgangs eines adiabaten Behälters durch eine angeschlossene Laval-Düse

Simulations-Untersuchungen des Entleerungsvorgangs eines adiabaten Behälters durch eine angeschlossene Laval-Düse TTS-Labor Prof. Dr.-Ing. Victor Gheorghiu Simulations-Untersuchungen es Entleerungsvorgangs eines aiabaten Behälters urch eine angeschlossene Laval-Düse Die Strömung urch ie Laval-Düse von Länge L un minimalem

Mehr

Grundpraktikum I Fernrohr

Grundpraktikum I Fernrohr Grunpraktikum I Fernrohr 6.Versuch Datum: 08.05.2006 Thomas Hemmelmayr (#0455761 un Michael Drack (#0457224 1. Keplersches (astronomisches Fernrohr 1.1. Versuchsaufbau us zwei Sammellinsen soll ein Fernrohr,

Mehr

Messung des Strömungswiderstandes in Rohrbögen

Messung des Strömungswiderstandes in Rohrbögen Messung 6 Messung es Strömungswierstanes in Rohrbögen 1. EINLEITUNG In er Ingenieurpraxis ist er Großteil er vorkommenen Strömungen Rohrströmung - man enke z.b. an Wasserleitungen, Abwasserkanäle, Eröl-

Mehr

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [.

mathphys-online Umkehrfunktionen Aufgabe 1 1 Gegeben ist die Funktion f mit f( x) 2 x 1 und x [ 0.5 ; 4 [. Umkehrfunktionen Aufgabe Gegeben ist ie Funktion f mit f( ) un [ 0. ; [. a) Bestimmen Sie ie Wertemenge un tragen Sie en Graphen von f in as Koorinatensystem ein. Kennzeichnen Sie Definitionsmenge (grün)

Mehr

Schaltwerksanalyse-Übungen

Schaltwerksanalyse-Übungen Schaltwerksanalyse-Übungen Übung : Gegeben ist folgene Schaltung, eren Funktion zu bestimmen ist. c Ergänzen Sie as folgene Signal-Zeit-iagramm. c ie Lösung kann sehr zeitaufwenig sein, wenn man keine

Mehr

FERMACELL Gipsfaser-Platten. Bemessung von Wandtafeln nach DIN 1052:2004-08. Mehr Vorteile und Möglichkeiten für den Holzbau durch die neue DIN 1052

FERMACELL Gipsfaser-Platten. Bemessung von Wandtafeln nach DIN 1052:2004-08. Mehr Vorteile und Möglichkeiten für den Holzbau durch die neue DIN 1052 FERMACELL Gipsaser-Plaen Bemessung von Wanaeln nach DIN 05:004-08 Mehr Voreile un Möglicheien ür en Holzbau urch ie neue DIN 05 Mehr Voreile un Möglicheien ür en Holzbau urch ie neue DIN 05 Grunsäzliche

Mehr

623 Wärmeleitung. Arbeitsauftrag. Anwendung

623 Wärmeleitung. Arbeitsauftrag. Anwendung 63 Wärmeleitung Die Zusammenhänge bei er Wärmeämmung eines Hauses sin im üblichen gymnasialen Physikunterricht ein relatives Stiefkin. Wenn man ie Literatur zu ieser Thematik liest, muss man en Einruck

Mehr

SINAMICS S120. Nachweis des Performance Levels e gemäß EN ISO 13849-1

SINAMICS S120. Nachweis des Performance Levels e gemäß EN ISO 13849-1 I DT MC Anwenerbeschreibung SINAMICS S20 Nachweis es Performance Levels e gemäß EN ISO 3849- Dokument Projekt Status: release Organisation: I DT MC Baseline:.2 Ort: Erl F80 Datum: 24.09.2009 Copyright

Mehr

Heatpipe oder Wärmerohr

Heatpipe oder Wärmerohr Heatpipe oder Wärmerohr Ein Wärmerohr ist ein Wärmeübertrager, der mit einer minimalen Temperaturdifferenz eine beträchtliche Wärmemenge über eine gewisse Distanz transportieren kann. Dabei nutzt die Heatpipe

Mehr

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators

1.1.8 Radialsymmetrisches elektrisches Feld, Coulomb-Gesetz; Kapazität des Kugelkondensators 8 Raialsymmetrisches elektrisches Fel, Coulomb-Gesetz; Kapazität es Kugelkonensators Die Felstärke im raialen Fel - as Coulombsche Gesetz Am Ene es letzten Kapitels wure ie Grungleichung es elektrischen

Mehr

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2)

2.4. GAUSSSCHER SATZ π ε 0 r 2. π r 2) 2.4. GAUSSSCHER SATZ 23 2.4 Gaußscher Satz Das Fel einer Punktlaung genügt er Gleichung: E = 1 4 π ε 0 Q r 2 Desweiteren berechnet sich ie Oberfläche einer Kugel, eren Punkte vom Mittelpunkt en Abstan

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Mathematik III. Vorlesung 87. Die äußere Ableitung

Mathematik III. Vorlesung 87. Die äußere Ableitung Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 87 Die äußere Ableitung In ieser Vorlesung weren wir ein neuartiges mathematisches Objekt kennenlernen, ie sogenannte äußere Ableitung.

Mehr

Der Kostenverlauf spiegelt wider, wie sich die Kosten mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stückzahl) ändern.

Der Kostenverlauf spiegelt wider, wie sich die Kosten mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stückzahl) ändern. U2 verläufe Definition Der verlauf spiegelt wider, wie sich die mit einer Änderung der Ausbringungsmenge (z.b. produzierte Stüczahl) ändern. Variable Die variablen sind in der betriebswirtschaftlichen

Mehr

Labor Fluidmechanik I

Labor Fluidmechanik I Prof. Dr.- Ing. J.A. Szymczyk Dipl. Ing. Th. Panten Versuch FLM 1 Wasserströmungen 1 Grundlagen Die Grundlage für diesen Versuch bildet neben den folgenden Ausführungen die Vorlesung "Fluidmechanik I".

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

2. Musterlösung. Problem 1: Das Postamtplatzierungsproblem ** = min w i ( x p x i ) + w i ( y p y i ) i=1. w i + w m w i. 0 wegen (3) w m+1 m,m+1

2. Musterlösung. Problem 1: Das Postamtplatzierungsproblem ** = min w i ( x p x i ) + w i ( y p y i ) i=1. w i + w m w i. 0 wegen (3) w m+1 m,m+1 Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner 2. Musterlösung Problem 1: Das Postamtplatzierungsproblem ** Sei OE x 1 x 2 x n. Gesucht ist ein Punkt p = (x, y) mit

Mehr

6.3. Iterative Lösung linearer Gleichungssysteme. Großes lineares dünnbesetztes Gleichungssystem A x = b

6.3. Iterative Lösung linearer Gleichungssysteme. Großes lineares dünnbesetztes Gleichungssystem A x = b 6.3. Iterative Lösung linearer Gleichungssysteme Großes lineares ünnesetztes Gleichungssystem A Gauss-Elimination nutzt in er Regel ie Dünnesetztheit nicht aus un führt meist auf Kosten On 3 ; Im Gegensatz

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen.

der Eingabe! Haben Sie das Ergebnis? Auf diesen schwarzen Punkt kommen wir noch zu sprechen. Medizintechnik MATHCAD Kapitel. Einfache Rechnungen mit MATHCAD ohne Variablendefinition In diesem kleinen Kapitel wollen wir die ersten Schritte mit MATHCAD tun und folgende Aufgaben lösen: 8 a: 5 =?

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 187 0,7...6... 188 1,0...9... 189 1,25... 10...

Stirnzahnräder, gerade verzahnt, Übersicht. Modul Zahnbreite in mm Seite 0,5...3... 187 0,7...6... 188 1,0...9... 189 1,25... 10... Stirnzahnräer, gerae verzahnt, Üersicht Stirnzahnräer: Azetalharz gespritzt gerae verzahnt, mit Nae Stirnzahnräer: POM gefräst gerae verzahnt, mit Nae Stirnzahnräer: Kunststoff mit Kern aus Stahl un Eelstahl,

Mehr

Übungsheft. Das. Deutsch2. Rechtschreib- und Grammatiktraining. Mein Deutschmeister-Pass. Stefanie Drecktrah. Name: Klasse:

Übungsheft. Das. Deutsch2. Rechtschreib- und Grammatiktraining. Mein Deutschmeister-Pass. Stefanie Drecktrah. Name: Klasse: Rechtschrei- un Grammatitrainin Stefanie Drectrah Deutsch2 Das Üunsheft Name: Klasse: Mein Deutschmeister-Pass Deutschmeister Seite Datum Anzahl er richti elösten Aufaen Wie leicht fiel mir as? 1 8 2 20

Mehr

Kostenfunktion - Der Cournotsche Punkt

Kostenfunktion - Der Cournotsche Punkt Kostenfunktion Seite 1 von 8 Wilfrie Rohm Kostenfunktion - Der Cournotsche Punkt Der Cournotsche Punkt C beschreibt ie gewinnmaximale Preis-Mengen-Kombination mit en Koorinaten C(p c ; x c ). Er sagt aus,

Mehr

Barocker Kontrapunkt Invention: idealtypische ( akademische ) Form

Barocker Kontrapunkt Invention: idealtypische ( akademische ) Form Hans Peter Reutter: Invention 1 Baroker Kontrapunkt Invention: iealtypishe ( akaemishe ) Form Bis zum Ene er Barokzeit sin ie Bezeihnungen für polyphone Formen eigentlih ziemlih austaushbar: Fuge, Rierar,

Mehr

Explizite und Implizite Darstellung einer Funktion

Explizite und Implizite Darstellung einer Funktion Eplizite un Implizite Darstellung einer Funktion Für ie implizite Differentiation weren ie Begriffe implizite un eplizite Darstellung von Funktionen benötigt. Bisher haben wir eine Funktion (Zusammenhang

Mehr

Vertriebspartner/In sein

Vertriebspartner/In sein Beginnen Sie eine neue Zukunft. Wir begleiten Sie! Freuvoll! Chancenreich! Fair! Was kann ich tun? urch! Sie Starten Vertriebspartner/In weren Vertriebspartner/In sein Ihre Chance für mehr Einkommen, Freiheit

Mehr

Der Taschenrechner CAS: TI Inspire (Texas Instruments)

Der Taschenrechner CAS: TI Inspire (Texas Instruments) Der Taschenrechner (Texas Instruments) Übersicht: 1. Katalog (wichtige Funktionen un wie man sie aufruft) 2. Funktionen efinieren (einspeichern mit un ohne Parameter) 3. Nullstellen 4. Gleichungen lösen

Mehr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

Aufgaben zur Großübung

Aufgaben zur Großübung Mathematische Methoen II (SoSe 07) Aufgaben zur Großübung Aufgaben für 03. April 07. Bestimmen Sie jeweils f() eplizit un geben Sie en maimalen Definitionsbereich von g(), h() un f() an. f() = (g h)(),

Mehr

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 20. D-MAVT/D-MATL Analysis II FS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe) D-MVT/D-MTL nalysis II FS 8 Dr. nreas Steiger Lösung - Serie MC-ufgaben (Online-bgabe). Es sei ie Einheitskugel um en Ursprung. Für welches er Vektorfeler (x, y, z) v(x, y, z) arf er Divergenzsatz für

Mehr

7. Teile, und beherrsche den Rest

7. Teile, und beherrsche den Rest 7. Teile, un beherrsche en Rest 7.1. Division mit Rest Nicht alle natürlichen Zahlen sin urch 3 teilbar: Es lässt 17 en Rest 2 [17 = 5 3+2] 18 geht auf 1 lässt Rest 1 20 lässt Rest 2 21 geht auf 22 lässt

Mehr

Abschlussaufgabe Nichttechnik - A II - Lösung

Abschlussaufgabe Nichttechnik - A II - Lösung GS - 7 - m_nta_lsgmc Abschlussaufgabe - Nichttechni - A II - Lösung Gegeben ist ie relle Funtion f ( x) x = x mit IR > un ID f = IR Der Graph wir mit G f bezeichnet Bestimmen Sie Lage un Vielfachheit er

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Excel ein Tabellenprogramm

Excel ein Tabellenprogramm Excel ein Tabellenprogramm Mit den Tabellen können viele verschiedene Arbeiten erledigt werden: Adressdateien anlegen und verwalten. Sortieren, filtern von Daten. Berechnen von Daten, z.b. Zinsen, Rabatte,

Mehr

Aufgaben zum Wochenende (2)

Aufgaben zum Wochenende (2) Aufgaben zum Wochenene () Alle Koorinatensysteme seien kartesisch.. Berechnen Sie zu a =(, 3, ) un b =(,, ), c =(, 3, ) : a 3, 4 a b, b ( a c), a 4 b ( ) c. Rechnen Sie möglichst praktisch.. Lösen Sie

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche

c S sin 2 1 2 c c p sin 4 4.8 Kugelumströmung 4.8.1 Ideale reibungsfreie Umströmung der Kugel (Potentialströmung) Geschwindigkeit auf der Oberfläche 4.7 Kugelumströmung... 4.7. Ideale reibungsfreie Umströmung der Kugel (Potentialströmung)... 4.7. Reibungsbehaftete Umströmung der Kugel... 4.8 Zylinderumströmung... 4.9 Rohrströmung... 5 4.9. Laminare

Mehr

Physik und Umwelt I Lösungen der Übungen Nr. 6. ρ v

Physik und Umwelt I Lösungen der Übungen Nr. 6. ρ v Aufgabe 6. Physik un Umwet I Daten: Innenurchmesser = 5 mm Länge = m Fui: Ergas H ( =,78kg / m a) =,76 m/s = b) =,76 m/s = c) = 8,8 m/s = ; η =,8 6 Pa s ) Rohrreibungsgesetz: a) = < krit = Laminare Strömung

Mehr

Kleiner Satz von Fermat

Kleiner Satz von Fermat Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grunlagen er Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie en Aufgabensatz nicht auf. Benutzen Sie für ie Lösung er Aufgaben

Mehr

Superauflösende nichtlineare Femtosekundenlaserlithographie. Elena Fadeeva, Jürgen Koch, Boris N. Chichkov

Superauflösende nichtlineare Femtosekundenlaserlithographie. Elena Fadeeva, Jürgen Koch, Boris N. Chichkov Superauflösene nichtlineare Femtosekunenlaserlithographie Elena Faeeva, Jürgen Koch, Boris N. Chichkov Lithography Ol Greek: writing in stone Konventionelle Photolithographie Licht Maske Schicht Photoresist

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Excel Pivot-Tabellen 2010 effektiv

Excel Pivot-Tabellen 2010 effektiv 7.2 Berechnete Felder Falls in der Datenquelle die Zahlen nicht in der Form vorliegen wie Sie diese benötigen, können Sie die gewünschten Ergebnisse mit Formeln berechnen. Dazu erzeugen Sie ein berechnetes

Mehr

Lineare Differentialgleichungen erster Ordnung

Lineare Differentialgleichungen erster Ordnung HTBLA Neufelen Lineare Differentialgleichungen erster Ornung Seite 1 von 7 Peter Fischer pe.fischer@atn.nu Lineare Differentialgleichungen erster Ornung Mathematische / Fachliche Inhalte in Stichworten:

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Wir basteln einen Jahreskalender mit MS Excel.

Wir basteln einen Jahreskalender mit MS Excel. Wir basteln einen Jahreskalender mit MS Excel. In meinen Seminaren werde ich hin und wieder nach einem Excel-Jahreskalender gefragt. Im Internet findet man natürlich eine ganze Reihe mehr oder weniger

Mehr

DRAHTGEWEBE TECHNISCHE LISTE. 0,025 MM BIS 50 MM MASCHENWEITE.

DRAHTGEWEBE TECHNISCHE LISTE. 0,025 MM BIS 50 MM MASCHENWEITE. DRAHTGEWEBE TECHNISCHE LISTE. 0,0 MM BIS 0 MM MASCHENWEITE. Drahtgeebe-Terminologie nach DIN ISO 90 Webarten un Formen Mascheneite, : Abstan zischen zei benachbarten Kett- oer Schussrähten, in er Projektionsebene

Mehr

Leibnizschule Hannover

Leibnizschule Hannover Leibnizschule Hannover - Seminararbeit - Schleppkurven J D Schuljahr: 2011 Fach: Mathematik Inhaltsverzeichnis 1 Einleitung: Die Schleppkurve un ihre Anwenung 2 2 Erarbeitung eines Verfahrens zur Berechnung

Mehr

Die Logarithmische Spirale und ihre Faszination

Die Logarithmische Spirale und ihre Faszination Spiralen Seite / Wilfrie Rohm wilfrie.rohm@schule.at Die Logarithmische Spirale un ihre Faszination Mathematische / Fachliche Inhalte in Stichworten: Polaroorinaten, Archimeische Spirale, Logarithmische

Mehr

Implizite Differentiation

Implizite Differentiation Implizite Differentiation -E -E Implizite Darstellung Eine Funktion ist in impliziter Form gegeben, wenn ie Funktionsgleichung nach keiner er beien Variablen x un y aufgelöst ist. Beispielsweise x y =

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

2.5 Kondensatoren und Feldenergie

2.5 Kondensatoren und Feldenergie 30 KAPITEL 2. ELEKTOSTATIK 2.5 Konensatoren un Felenergie Aus en echnungen für eine unenlich ausgeehnte Platte mit homogener Laungsichte, ie wir in en Abschnitten 2.2 un 2.4 vorgenommen haben, können wir

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1)

Felder und Wellen WS 2017/2018 C = U = φ(2) φ(1) Feler un Wellen WS 017/018 Musterlösung zum 6. Tutorium 1. Aufgabe (**) Kapazität kann für jee beliebige Leiteranornung efiniert weren C = εe = f E s s }{{} φ() φ(1) Sin mehrere Leiter vorhanen, befinen

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

Technisches Lemma aus der Linearen Algebra

Technisches Lemma aus der Linearen Algebra echnisches Lemma aus er Linearen Algebra Lemma. Sei t A(t) Mat(n, n) eine glatte, matrixwertige Funktion auf em Intervall ( ε,ε), welche A(t) = I erfülle. Dann gilt: t et(a(t)) t=0 = trace(ȧ(0)). Beispiel.

Mehr

Praktikum Radioaktivität und Dosimetrie" Absorption von β-strahlung

Praktikum Radioaktivität und Dosimetrie Absorption von β-strahlung Praktikum Raioaktivität un Dosimetrie" Absorption von β-strahlung 1. Aufgabenstellung 1.1 Bestimmen Sie ie Schichticke von Glimmerplättchen aus er Absorptionskurve. 1. Ermitteln Sie en Massenabsorptionskoeffizienten

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

Lösungen zu Kapitel 6

Lösungen zu Kapitel 6 Lösungen zu Kapitel 6 Lösung zu Aufgabe : Es ist T (a) = {b b 0, b a}. Wir erhalten Es folgt un amit T (54) = {, 2, 3, 6, 9, 8, 27, 54}, T (72) = {, 2, 3, 4, 6, 8, 9, 2, 8,.24, 36, 72}. T (54) T (72) =

Mehr