Übung vom Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt. Herleitung des SvG. Flächenformel.

Größe: px
Ab Seite anzeigen:

Download "Übung vom Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt. Herleitung des SvG. Flächenformel."

Transkript

1 Übung vom Heute geht es hauptsächlich um den Satz von Gauss und seine Anwendungen. Der Inhalt 1 Formulierung des Satzes von Gauss (SvG). 2 Erinnerung an die Denition der Divergenz und intuitive Herleitung des SvG. 3 Das äuÿere Normalenfeld und seine Beschreibung. 4 Spezialfälle und Anwendungen: n = 1, Gauss-Green, Flächenformel. 5 Übungsaufgaben und (letztere nur im Ansatz) 6 Weitere Anwendungen: partielle Integration, Kontinuitätsgleichung.

2 Der Satz von Gauÿ Sei V R n ein Kompaktum mit stückweise glattem Rand V (welches wir im folg. auch mit Volumen bezeichnen) und äuÿerem Normalenfeld ν : V R n. Für jedes Vektorfeld X : V R n für welches X,ν auf V und div(x ) im Inneren von V integrierbar ist, gilt div(x ) dv = X,ν d( V ). V V Dabei bezeichnen dv und d( V ) die jeweiligen Volumenintegranten dv = g V dλ n und d( V ) = g V dλ n 1.

3 Erinnerung an die Divergenz X z 0 Ν Für ein Vektorfeld X : R n R n gilt im Punkt z 0 R n : div(x )(z 0 ) = lim r 0 B n r X,ν d( Br n ). vol(br n ) Dabei ist Br n die Vollkugel um z 0 mit Radius r. Das Integral B X,ν d( B n r n ) ist ein Maÿ für r die Dierenz von Abuss ( X,ν > 0) und Zuuss ( X,ν < 0) in Br n.

4 Bezug zum Satz von Gauss Bezeichnen wir diese Dierenz von Abuss und Zuuss als Quellstärke von X in Br n, dann ist B X,ν d( B n r n ) r vol(br n ) die durchschnittliche Quellstärkendichte (=Quellstärke pro Volumen) von X in Br n um z 0. Die Divergenz div(x )(z 0 ) = lim r 0 B X,ν d( B n r n ) r vol(br n ) ist demzufolge die punktuelle Quellstärkendichte in z 0. Integriert man die punktuelle Quellstärkendichte über ein ganzes Volumen V, dann muss sich daraus die Quellstärke von X in ganz V ergeben: div(x ) dv = X,ν d( V ) V V

5 Bezug zum Satz von Gauss Bezeichnen wir diese Dierenz von Abuss und Zuuss als Quellstärke von X in Br n, dann ist B X,ν d( B n r n ) r vol(br n ) die durchschnittliche Quellstärkendichte (=Quellstärke pro Volumen) von X in Br n um z 0. Die Divergenz div(x )(z 0 ) = lim r 0 B X,ν d( B n r n ) r vol(br n ) ist demzufolge die punktuelle Quellstärkendichte in z 0. Integriert man die punktuelle Quellstärkendichte über ein ganzes Volumen V, dann muss sich daraus die Quellstärke von X in ganz V ergeben: div(x ) dv = X,ν d( V ) V V

6 Bezug zum Satz von Gauss Bezeichnen wir diese Dierenz von Abuss und Zuuss als Quellstärke von X in Br n, dann ist B X,ν d( B n r n ) r vol(br n ) die durchschnittliche Quellstärkendichte (=Quellstärke pro Volumen) von X in Br n um z 0. Die Divergenz div(x )(z 0 ) = lim r 0 B X,ν d( B n r n ) r vol(br n ) ist demzufolge die punktuelle Quellstärkendichte in z 0. Integriert man die punktuelle Quellstärkendichte über ein ganzes Volumen V, dann muss sich daraus die Quellstärke von X in ganz V ergeben: div(x ) dv = X,ν d( V ) V V

7 Bekannte Dichte: die Massedichte Besitzt ein homogener Körper die Masse m und ein Volumen V, dann bezeichnet ρ := m dessen Massedichte. V Inhomogene Körper, z.b. Gasgemische, haben eine nichtkonstante Massedichte ρ(x). Für diese gilt m = ρ(x) dv. V

8 Das äuÿere Normalenfeld Nochmal: Sei V R n ein Kompaktum mit stückweise glattem Rand V und äuÿerem Normalenfeld ν : V R n. Für jedes Vektorfeld X : V R n für welches X,ν auf V und div(x ) im Inneren von V integrierbar ist, gilt div(x ) dv = X,ν d( V ). V V Was ist nochmal das äuÿere Normalenfeld?

9 Das äuÿere Normalenfeld Das äuÿere Normalenfeld ν eines Volumen V R n : Ist (ortho)normal zu V, d.h. es steht senkrecht auf V, d.h. ν(x) steht ν(x) T x V und besitzt stets die Länge ν(x) = 1. Es zeigt nach auÿen, d.h. es existiert eine Kurve γ : ( ε,0] V mit γ(0) = x und γ(0) = ν(x). Wie kann man das bestimmen?

10 Das äuÿere Normalenfeld Bestimmung eines (nicht notwendigerweise äuÿeren) Normalenvektors n(x) im Punkt x V. 1 Ist V die Nullstellenmenge einer C 1 -Funktion F, dann ist grad F x orthonormal zu V und damit n(x) := grad F x grad F x. 2 Ist V R 3 und γ : Ω R 2 V eine Parametrisierung von V, dann ist n(x) := γ x 1 γ x 2 γ x 1 γ x 2. 3 Ist V R 2 und γ : I V eine Parametrisierung von V, dann ist n(t) = M π 2 γ(t) γ(t) M π 2 = ( ).

11 Das äuÿere Normalenfeld Bestimmung eines (nicht notwendigerweise äuÿeren) Normalenvektors n(x) im Punkt x V. 1 Ist V die Nullstellenmenge einer C 1 -Funktion F, dann ist grad F x orthonormal zu V und damit n(x) := grad F x grad F x. 2 Ist V R 3 und γ : Ω R 2 V eine Parametrisierung von V, dann ist n(x) := γ x 1 γ x 2 γ x 1 γ x 2. 3 Ist V R 2 und γ : I V eine Parametrisierung von V, dann ist n(t) = M π 2 γ(t) γ(t) M π 2 = ( ).

12 Das äuÿere Normalenfeld Bestimmung eines (nicht notwendigerweise äuÿeren) Normalenvektors n(x) im Punkt x V. 1 Ist V die Nullstellenmenge einer C 1 -Funktion F, dann ist grad F x orthonormal zu V und damit n(x) := grad F x grad F x. 2 Ist V R 3 und γ : Ω R 2 V eine Parametrisierung von V, dann ist n(x) := γ x 1 γ x 2 γ x 1 γ x 2. 3 Ist V R 2 und γ : I V eine Parametrisierung von V, dann ist n(t) = M π 2 γ(t) γ(t) M π 2 = ( ).

13 Beweis von 1. und 2. Es gilt T x V = { γ(0) γ : I oen R V st.dib., γ(0) = x}. 1 Sei v T x V und γ(0) = x sowie γ(0) = v. Nach Voraussetzung ist F (γ(t)) 0 und damit 0 = d dt t=0 F (γ(t)) = DF x ( γ(0)) = grad F x, v. 2 Dies folgt daraus, dass γ steht. x 1 γ x 2 senkrecht auf γ x 1 und γ x 2

14 Beweis von 1. und 2. Es gilt T x V = { γ(0) γ : I oen R V st.dib., γ(0) = x}. 1 Sei v T x V und γ(0) = x sowie γ(0) = v. Nach Voraussetzung ist F (γ(t)) 0 und damit 0 = d dt t=0 F (γ(t)) = DF x ( γ(0)) = grad F x, v. 2 Dies folgt daraus, dass γ steht. x 1 γ x 2 senkrecht auf γ x 1 und γ x 2

15 Satz von Gauss in R 1 Sei V = [a, b] R ein Volumen und X : V R ein Vektorfeld. Dann gilt 1 div(x ) = X x = X, 2 V = {a, b} und ν(a) = 1 sowie ν(b) = 1. 3 Insgesamt entspricht dann der Satz von Gauss dem Hauptsatz der Dierential und Integralrechnung: X dv = 1 X (a) + X (b) [a,b]

16 Satz von Gauss in R 1 Sei V = [a, b] R ein Volumen und X : V R ein Vektorfeld. Dann gilt 1 div(x ) = X x = X, 2 V = {a, b} und ν(a) = 1 sowie ν(b) = 1. 3 Insgesamt entspricht dann der Satz von Gauss dem Hauptsatz der Dierential und Integralrechnung: X dv = 1 X (a) + X (b) [a,b]

17 Satz von Gauss in R 1 Sei V = [a, b] R ein Volumen und X : V R ein Vektorfeld. Dann gilt 1 div(x ) = X x = X, 2 V = {a, b} und ν(a) = 1 sowie ν(b) = 1. 3 Insgesamt entspricht dann der Satz von Gauss dem Hauptsatz der Dierential und Integralrechnung: X dv = 1 X (a) + X (b) [a,b]

18 Satz von Gauss-Green Sei ObdA X (x, y) = (v(x, y), u(x, y)) auf einem Volumen V R 2 und γ : I V eine positiv orientierte Parametrisierung von V (also positiv otientierte Randkurve). Dann gilt 1 div(x ) = v x u y, 2 ν(γ(t)) = M π γ(t) 2 γ(t) = ( γ 2(t), γ 1 (t)) γ(t) und X,ν = v γ 2+u γ 1 γ(t) d( V ) = γ, γ dt = γ(t) dt. 3 Insgesamt entspricht dann der Satz von Gauss der Gauss-Green-Formel v V x u y I dv = v(γ(t)) γ 2 + u(γ(t)) γ 1 dt = (v(γ(t)) dy( γ) + u(γ(t)) dx( γ)) dt I =: v dy + u dx. V =γ sowie

19 Satz von Gauss-Green Sei ObdA X (x, y) = (v(x, y), u(x, y)) auf einem Volumen V R 2 und γ : I V eine positiv orientierte Parametrisierung von V (also positiv otientierte Randkurve). Dann gilt 1 div(x ) = v x u y, 2 ν(γ(t)) = M π γ(t) 2 γ(t) = ( γ 2(t), γ 1 (t)) γ(t) und X,ν = v γ 2+u γ 1 γ(t) d( V ) = γ, γ dt = γ(t) dt. 3 Insgesamt entspricht dann der Satz von Gauss der Gauss-Green-Formel v V x u y I dv = v(γ(t)) γ 2 + u(γ(t)) γ 1 dt = (v(γ(t)) dy( γ) + u(γ(t)) dx( γ)) dt I =: v dy + u dx. V =γ sowie

20 Satz von Gauss-Green Sei ObdA X (x, y) = (v(x, y), u(x, y)) auf einem Volumen V R 2 und γ : I V eine positiv orientierte Parametrisierung von V (also positiv otientierte Randkurve). Dann gilt 1 div(x ) = v x u y, 2 ν(γ(t)) = M π γ(t) 2 γ(t) = ( γ 2(t), γ 1 (t)) γ(t) und X,ν = v γ 2+u γ 1 γ(t) d( V ) = γ, γ dt = γ(t) dt. 3 Insgesamt entspricht dann der Satz von Gauss der Gauss-Green-Formel v V x u y I dv = v(γ(t)) γ 2 + u(γ(t)) γ 1 dt = (v(γ(t)) dy( γ) + u(γ(t)) dx( γ)) dt I =: v dy + u dx. V =γ sowie

21 Bemerkung dx und dy sind hier die Dierenziale der Koordinatenfunktionen x und y, d.h. x(γ) = γ 1 und y(γ) = γ 2, sodass z.b. gilt: γ 1 = d x(γ(t)) = dx( γ). dt

22 Anwendung: Flächenformel Ist v x u = 1 so folgt y vol(v ) = dv = v dy + u dx. V V =γ Dies gilt z.b. für (u, v) = 1 2 ( y,x).

23 Übungsaufgabe Sei B der durch x 2 1 y x x 3 und x 1 denierte Bereich der (x, y)ebene und γ ein positiv orientierter stückweise dierenzierbarer Randweg. Berechnen Sie das Wegintegral y 2 dx + (2xy + x)dy γ den Inhalt von B. Begründen Sie mit dem Gauÿschen Integralsatz, warum die Übereinstimmung der Werte nicht zufällig ist

24 Lösung Das Volumen kann man nach Cavalieri berechnen: Sei { /0 x / [0,1] B x = {y (x, y) B} = [x 2 1, x x 3 ] sonst der x-schnitt von B, dann gilt 1 vol(b) = = µ(b x ) dx = x dx = x x 3 x dx 1 [ 1 3 x 3 + x ] 1 1 = 4 3.

25 Lösung Andererseits ist die Verknüpfung γ der Wege α(t) = (t, t 2 1) für t [ 1,1] und β(t) = ( t, t + t 3 ) für t [ 1,1] eine positiv orientierte Parametrisierung von B. Damit gilt y 2 dx +(2xy +x)dy = y 2 dx +(2xy +x)dy + y 2 dx +(2xy +x)dy. γ α Aus α(t) = (1,2t) und β(t) = ( 1,3t 2 1) folgt durch Einsetzen 1 y 2 dx + (2xy + x)dy = (t 2 1) 2 + ( 2 t(t 2 1) + ) t 2t dt 1 α β = t 2 + 5t 4 dt = = ( t + t 3 ) 2 + (3t 2 1) ( 2 t(t t 3 ) ) t dt 1 = 1 1 t 3t 2 3t t 4 7t 6 dt = 0. Die Übereinstimmung der Integrale folgt aus der obigen y 2 (2xy x) β

26 Übungsaufgabe Sei G = { (x, y,z) x, y,z 0, x 2 + y 2 + z 2 1 } ein Gebiet im R 3. Berechnen Sie (xy + yz + zx) dλ 3 G a) direkt und b) mittels des Integralsatzes von Gauÿ.

27 Lösung Wir machen nur den Ansatz von b). D.h. wir suchen ein Vektorfeld X mit div(x ) = xy + yz + zx. Dazu setzen wir xy = X z z, yz = X x x zx = X y y. integrieren wir den ersten Summenden nach z, den zweiten nach y und den dritten nach z und erhalten X = xyz (1,1,1). Das äuÿere Normalenfeld ist oenbar ν x,y (0,0, 1), ν y,z ( 1,0,0), ν z,x (0, 1,0) und ν S 2(x, y,z) = (x, y,z).

28 Partielle Integration Aus der Produktregel für Funktionen f, g : R R folgt b a f g dx = [f g] b a b a f g dx. Insbesondere ist b a f g dx = b a f g dx falls f (a) = f (b) = 0. Aus div(f X ) = f div(x ) + grad f, X folgt nach Gauss V f div(x ) dv = f X,ν d( V ) grad f, X dv. V V }{{} DF X Insbesondere ist hier V f div(x ) dv = V DF X dv, falls f V 0 gilt.

29 Kontinuitätsgleichung 1 Wir betrachten ein elektrisch geladenes Volumen V mit der Ladungsdichte ρ, d.h. Q V = ρ dv V ist die Gesamtladung von V. 2 Sei zudem das Vektorfeld J die Stromdichte des elektrischen Flusses, d.h. I V = J,ν d( V ) V ieÿt bzw. quillt durch die Oberäche V (vgl. Quellstärke). 3 Weil Strom als Ladungsänderung deniert ist, d.h. I = d dt Q, folgt aus dem Satz von Gauss die Kontinuitätsgleichung Warum? d ρ div(j) 0. dt

30 Erklärung Mit dem Satz von Gauss gilt zunächst I V = V div(j) dv bzw. d V ρ div(j) dv = 0. dt Es bleibt: V fdv = 0 für alle V Rn f = 0 zu zeigen. Angenommen f (x 0 ) > ε 0. Wegen der Stetigkeit gibt es eine Umgebung U von x 0 mit f (x) > ε 0 für alle x U. Sei Sei zudem Bδ n(x 0) U, dann folgt insgesamt U f du > ε 0 U du > ε 0vol(Bδ n ) > 0 - ein Widerspruch.

Grundzüge der Vektoranalysis

Grundzüge der Vektoranalysis KAPITEL 7 Grundzüge der Vektoranalysis 7. Satz von Green................................... 2 7.2 Satz von Stokes................................... 22 7.2. Zirkulation und Wirbelstärke..........................

Mehr

Übungen zur Vorlesung: Mehrdimensionale Integralrechnung, Vektoranalysis und Differentialgleichungen B.Sc. Matthias Schulte

Übungen zur Vorlesung: Mehrdimensionale Integralrechnung, Vektoranalysis und Differentialgleichungen B.Sc. Matthias Schulte SoSe 17 Blatt 1 07. April 2017 Abgabe: Freitag, 14.04.2017 bis 14:00 Uhr. Persönlich oder per Mail. Aufgabe 1. [4+2 = 6 Punkte] a) Berechnen Sie folgende Integrale! 4 i) 3 7x 2 +6x 4 x 3 3x 2 dx 1 ii)

Mehr

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes

Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Vektoranalysis Orientierte Flächenintegrale, Satz von Gauß, Satz von Stokes Themen des Tutoriums am 03.06.2015: Wiederholung: Ein glattes Flächenstück ist eine Menge M R 3, die eine reguläre Parametrisierung

Mehr

7 Der Gaußsche Integralsatz

7 Der Gaußsche Integralsatz 7 Der Gaußsche Integralsatz Im Folgenden sei eine k-dimensionale Untermannigfaltigkeit des R n und a. 7.1 Tangentialvektoren. Ein Vektor v R n heißt Tangentialvektor an in a, falls es eine stetig differenzierbare

Mehr

Analysis IV. Gruppenübungen

Analysis IV. Gruppenübungen Fachbereich Mathematik Prof. B. Farkas Martin Fuchssteiner Lisa Steiner TECHNISCHE UNIVESITÄT DAMSTADT ASS 6 7.7.26 Analysis IV 3. Übung mit Lösungshinweisen (G ) Berechnung einiger Volumina Gruppenübungen

Mehr

Höhere Mathematik III. Variante A

Höhere Mathematik III. Variante A Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III WiSe 04/05 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter Vorder- und Rückseite

Mehr

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a).

Ist C eine Kurve mit Anfangspunkt a und Endpunkt b und f eine stetig differenzierbare Funktion, grad f( r ) d r = f( b) f( a). KAPITEL 5. MEHRDIMENSIONALE INTERATION. Berechnung Integralsätze in R Hauptsatz für Kurvenintegrale wegunabhängig radientenfeld Integrabilitätsbedingung Hauptsatz für Kurvenintegrale a b Ist eine Kurve

Mehr

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze

Ferienkurs Analysis 3 für Physiker. Übung: Integralsätze Ferienkurs Analysis 3 für Physiker Übung: Integralsätze Autor: enjamin Rüth Stand: 7. März 4 Aufgabe (Torus) Zu festem R > werden mittels ϱ T : [, R] [, π] [, π] R 3, ϕ ϑ Toruskoordinaten eingeführt. estimmen

Mehr

10 Der Integralsatz von Gauß

10 Der Integralsatz von Gauß 10 Der Integralsatz von Gauß In diesem Abschnitt beweisen wir den Integralsatz von Gauß, die mehrdimensionale Verallgemeinerung des Hauptsatzes der Differential- und Integralrechnung. Aussage des Satzes

Mehr

Vektoranalysis [MA2004]

Vektoranalysis [MA2004] Technische Universität München WS 4/5 Zentrum Mathematik Blatt 5 Prof. Dr. Simone Warzel Michael Fauser Vektoranalysis [MA4] Tutoraufgaben Besprechung am 3..5 und 4..5 T 5. Elektrostatik Es seien N elektrische

Mehr

Integralsatz von Gauss und Greensche Formeln

Integralsatz von Gauss und Greensche Formeln Integralsatz von Gauss und Nicola Schweiger LM München Haslach am 13.12.2012 Nicola Schweiger Integralsatz von Gauss und 1/12 Integralsatz von Gauss Sei R n ein beschränktes Gebiet mit stückweise glattem

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Warzel Max Lein TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik 4 für Physik (Analysis 3) Wintersemester 29/2 Lösungsblatt 2 (27..29) Zentralübung 4. Parametrisierung einer

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

12 Der Gaußsche Integralsatz

12 Der Gaußsche Integralsatz 12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:

Mehr

Wiederholung: Integralsätze im Raum

Wiederholung: Integralsätze im Raum Wiederholung: Integralsätze im Raum Sei S R 2 ein glattes Flächenstück, d.h. man hat eine (reguläre) Parametrisierung Φ : D R 2 S R 3, (x, y) s = Φ(x, y). S Φ(x, y) T 1 dx T 2 dy Φ D (x, y) e 1 dx e 2

Mehr

Ferienkurs Analysis 3

Ferienkurs Analysis 3 Ferienkurs Analysis 3 Vektoranalysis Zensen Carla, Heger aniel, Kössel Fabian, Ried Tobias 21. ärz 21 Inhaltsverzeichnis 1 Untermannigfaltigkeiten des R n 3 1.1 Charakterisierung von Untermannigfaltigkeiten...............

Mehr

A1: Diplomvorprüfung HM II/III SS

A1: Diplomvorprüfung HM II/III SS A: Diplomvorprüfung HM II/III SS 8 378 Aufgabe 5 + 7 + 6 8 Punkte a Führen Sie für den Bruch x+x x+3 b Berechnen Sie den Wert der Reihe k3 eine Partialbruchzerlegung durch k+k k+3 c Untersuchen Sie die

Mehr

116 KAPITEL 15. INTEGRALSÄTZE

116 KAPITEL 15. INTEGRALSÄTZE 116 APITEL 15. INTEGRALSÄTZE Aufgabe 15.1.3 (Verschwinden des Integrales über eine partielle Ableitung) Es sei U R n offen, ϕ C 0 (U; R). Dann ist für j = 1,..., n U ϕ x j dλ n = 0. Wir erinnern an die

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Scheinklausur zur HM3 (vertieft) für LRT und MaWi

Scheinklausur zur HM3 (vertieft) für LRT und MaWi Scheinklausur zur HM (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Name des Tutors: Es gelten die üblichen Klausurbedingungen. Bitte beachten

Mehr

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten

Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- ten Ferienkurs Analysis 3 Lösung Vektoranalysis 19. März 1 Die Einheitssphäre werde parametrisiert mithilfe von Kugelkoordina- Lösung 1. ten Ψ(θ, φ) sin θ cos φ sin θ sin φ cos θ Dann gilt 1 Ψ(θ, φ) cos θ

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld

Analysis II für Ingenieure Übersicht: Integration. 1 Kurvenintegral über ein Skalarfeld Analysis II für Ingenieure Übersicht: Integration 1 Kurvenintegral über ein Skalarfeld 1.1 erechnung c f ds = b a f ( c(t) ) c(t) dt 1. Kurve c parametrisieren: c : [a, b] R n, t c(t). 2. c(t) und dann

Mehr

Mathematische Grundlagen

Mathematische Grundlagen G-CSC Goethe-Center for Scientific Computing der Universität Frankfurt 1. Übung zur Vorlesung Modellierung und Simulation 3 (WS 2012/13) Prof. Dr. G. Wittum Susanne Höllbacher, Martin Stepniewski, Christian

Mehr

Definition. Eine 2-Form ω auf einem affinen Raum (X, V, +) ist eine differenzierbare Abbildung

Definition. Eine 2-Form ω auf einem affinen Raum (X, V, +) ist eine differenzierbare Abbildung 2.6 Flächenintegrale Die passenden Integranden für Flächenintegrale sind weder Vektorfelder noch 1-Formen, sondern sogenannte 2-Formen. 2.6.1 2-Formen In Abschnitt 2.3 haben wir gelernt, dass 1-Formen

Mehr

Analysis I & II Lösung zur Basisprüfung

Analysis I & II Lösung zur Basisprüfung FS 6 Aufgabe. [8 Punkte] (a) Bestimmen Sie den Grenzwert ( lim x x ). [ Punkte] log x (b) Beweisen Sie, dass folgende Reihe divergiert. n= + n + n + sin(n) n 3 + [ Punkte] (c) Finden Sie heraus, ob die

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe H 34.

Mehr

Modulprüfung HM III (kyb, mech, phys)

Modulprüfung HM III (kyb, mech, phys) Seite von 5 Modulprüfung HM III (kyb, mech, phys) Hinweise: Lösen Sie bitte jede Aufgabe auf einem separaten Blatt. Alle nicht in der Vorlesung behandelten Sachverhalte sind zu beweisen, Lösungsschritte

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften

Anleitungsaufgaben zu. Analysis III für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2011/12 Dr. K. Rothe Anleitungsaufgaben zu Analysis III für Studierende der Ingenieurwissenschaften Aufgabe 1: Für die folgenden Funktionen f : IR 2

Mehr

Parametrisierung und Integralsätze

Parametrisierung und Integralsätze Parametrisierung und Integralsätze 2. März 2 Integration in der Ebene. Defintion: eien w,..., w n stückweise reguläre, einfach geschlossene Kurven in R 2, seien W,..., W n die von diesen Wegen umschlossene

Mehr

Klausur HM II/III F 2003 HM II/III : 1

Klausur HM II/III F 2003 HM II/III : 1 Klausur HM II/III F 3 HM II/III : Aufgabe : (7 Punkte) Untersuchen Sie die Funktion f : R R gegeben durch x 3 y 3 f(x, y) x + y sin, (x, y) (, ) x + y, (x, y) (, ) auf Stetigkeit und Differenzierbarkeit.

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R 2

Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R 2 Thomas Neukirchner 6. November 7 Zur geometrischen Interpretation der Divergenz, Rotation und des Laplace-Operator im R Vorbemerkung: Sein Nt cos t, sin t und JNt sin t, cos t. Dann gilt: A X R konstant

Mehr

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen.

Übungsaufgaben zu Höherer Analysis, WS 2002/03. Aufgaben zu Doppelintegralen. Übungsaufgaben zu Höherer Analysis, WS 2002/03 Aufgaben zu Doppelintegralen. (A) Bestimmen Sie den Schwerpunkt des Gebietes 0 x π 2, 0 y cos x. (Antwort: s = ( π 2, π 8 )) (A2) Berechnen Sie die folgenden

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung WS 15/16: Woche vom Übungsaufgaben 11. Übung WS 15/16: Woche vom 4. 1. - 8. 1. 2016 Integralsatz von Gauß 23.1, 23.3, 23.5 (a,g), 23.6 (a) Integralsatz von Stokes 23.7, 23.8 (a), 23.10 Zusatzaufgabe zu Gauß + Stokes in 2D

Mehr

Höhere Mathematik III. Musterlösung

Höhere Mathematik III. Musterlösung Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik III SoSe 3 Musterlösung Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche Aufzeichnungen von maximal DinA4-Blättern.

Mehr

Neilsche Parabel. Wieso ist die Neilsche Parabel N = { (x,y) R 2 x 3 = y 2} keine UMF von R 2?

Neilsche Parabel. Wieso ist die Neilsche Parabel N = { (x,y) R 2 x 3 = y 2} keine UMF von R 2? Inhalt vom 23.6. In dieser Übung soll zum einen die Parametrisierung von Flächen als auch die Berechnung von Flächeninhalten im Mittelpunkt stehen. Bevor wir jedoch damit anfangen, wollen wir noch beantworten,

Mehr

26. Der Gaußsche Integralsatz

26. Der Gaußsche Integralsatz 6 26. Der Gaußsche Integralsatz Im Folgenden sei eine k-dimensionale Untermannigfaltigkeit des R n und a 2. 26.1. Tangentialvektoren. Ein Vektor v 2 R n heißt Tangentialvektor an in a, falls es eine stetig

Mehr

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt

Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?

Mehr

Mehrdimensionale Integration

Mehrdimensionale Integration Kapitel C Mehrdimensionale Integration h s r h h r h r Inhalt dieses Kapitels C000 1 Der Satz von Fubini 3 Aufgaben und Anwendungen 1 Vertauschen von Integral und Reihe Mehrdimensionale Integration #Der

Mehr

15. Bereichsintegrale

15. Bereichsintegrale H.J. Oberle Analysis III WS 212/13 15. Bereichsintegrale 15.1 Integrale über uadern Ziel ist die Berechnung des Volumens unterhalb des Graphen einer Funktion f : R n D R, genauer zwischen dem Graphen von

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Mathematik für Sicherheitsingenieure I B

Mathematik für Sicherheitsingenieure I B Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 3.3.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I B Aufgabe. (5+8+7 Punkte a Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Der allgemeine Satz von Stokes...

Der allgemeine Satz von Stokes... Der allgemeine Satz von Stokes...... in der Sprache der Differentialformen. dω Differentialformen... sind - vereinfacht gesagt - orientierte Differentiale. k-form im R n a i1,...,i k (x) dx i1... dx ik,

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang

ETH Zürich Musterlösungen Basisprüfung Sommer 2014 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang ETH Zürich Musterlösungen asisprüfung Sommer 14 D-MAVT & D-MATL Analysis I & II Prof. Dr. Urs Lang 1. a I. I n 1 1 e r dr e r 1 e 1. 1 r n e r dr r n e r 1 n r n 1 e r dr e ni n 1, für n 1. b Wegen der

Mehr

(Gaußscher Integralsatz)

(Gaußscher Integralsatz) Der Gaußsche Integralsatz Beim Oberflächenintegral O F n da beschreibt der Integrand den senkrechten Durchsatz des Vektorfeldes durch das Flächenelement da. Insgesamt liefert das Integral über eine geschlossene

Mehr

Klausur zur Höheren Mathematik 3

Klausur zur Höheren Mathematik 3 Prof. Dr. Ch. Hesse 3.09.202 Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Klausur zur Höheren Mathematik 3 für kyb, mecha, phys, Dipl el Erlaubte Hilfsmittel: 20 Blätter DIN

Mehr

3 Die Integralsätze von Gauß und Stokes

3 Die Integralsätze von Gauß und Stokes 3 Die Integralsätze von Gauß und Stokes 3.1 Der Gaußsche Integralsatz 3.1 Definition. Es sei G R n (n N, n 2) ein beschränktes Gebiet und k N eine natürliche Zahl. G heißt C k glatt berandet, falls es

Mehr

Höhere Mathematik für Ingenieure 2

Höhere Mathematik für Ingenieure 2 Höhere Mathematik für Ingenieure 2 Prof. Dr. Swanhild Bernstein Sommersemester 218 Institut für Angewandte Analysis Kurven- und Parameterintegrale Parameterintegrale Typische Beispiele für Parameterintegrale

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Repetitorium Analysis II für Physiker

Repetitorium Analysis II für Physiker Technische Universität München Larissa Hammerstein Vektoranalysis und Fourier-Transformation Lösungen Repetitorium Analysis II für Physiker Analysis II Aufgabe Skalarfelder Welche der folgenden Aussagen

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem

Mehr

16 Vektorfelder und 1-Formen

16 Vektorfelder und 1-Formen 45 16 Vektorfelder und 1-Formen 16.1 Vektorfelder Ein Vektorfeld v auf D R n ist eine Abbildung v : D R n, x v(x). Beispiele. Elektrisches und Magnetisches Feld E(x), B(x), Geschwindigkeitsfeld einer Strömung

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 015 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Vollständigkeit

Mehr

Teil 8. Vektoranalysis

Teil 8. Vektoranalysis Teil 8 Vektoranalysis 5 6 8. kalar- und Vektorfelder kalarfeld alternative chreibweisen: U = U(x, y, z) = U( r) R 3 P U(P ) R Visualisierung durch Niveaumengen oder Einschränkungen auf achsenparallele

Mehr

Formelsammlung Analysis I & II

Formelsammlung Analysis I & II Formelsammlung Analysis I & II Wichtige eindimensionale Integrale: { x s dx = s+ xs+ + C falls s log x + C falls s = exp(x dx = exp(x + C cos(x dx = sin(x + C sin(x dx = cos(x + C sinh(x dx = cosh(x +

Mehr

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi

Bemerkung Als Folge von Satz 6.2 kann man jede ganze Funktion schreiben als Potenzreihe. α m z m. f(z) = m=0. 2πi. re it t [0,2π] 2πi Funktionentheorie, Woche 7 Eigenschaften holomorpher Funktionen 7.1 Ganze Funktionen Definition 7.1 Eine Funktion f : C C, die holomorph ist auf C, nennt man eine ganze Funktion. Bemerkung 7.1.1 Als Folge

Mehr

Übungen zu Partielle Differentialgleichungen, WS 2016

Übungen zu Partielle Differentialgleichungen, WS 2016 Übungen zu Partielle Differentialgleichungen, WS 2016 Ulisse Stefanelli 16. Januar 2017 1 Beispiele 1. Betrachten Sie die Beispiele von nichtlinearen PDG und Systemen, die wir im Kurs diskutiert haben,

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. = 1 n, (1 Punkt ) x 2. x 1 = 1. x n + (1 Punkt )

Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. = 1 n, (1 Punkt ) x 2. x 1 = 1. x n + (1 Punkt ) Aufgabe (glm. Konvergenz) (6+6 Punkte) Untersuchen Sie die angegebenen Funktionenfolgen auf gleichmäßige Konvergenz. a) g n : R R, mit g n (x) = x + n (6 Punkte) b) f n : R R, mit f n (x) = arctan(nx)

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.

Mehr

Ferienkurs in Vektoranalysis

Ferienkurs in Vektoranalysis Zentrum athematik echnische Universität ünchen Dipl. ath. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Vektoranalysis Aufgabe. Sei U R n offen und f : U R m stetig differenzierbar. Zeige dass der Graph

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 8. Übung WS 17/18: Woche vom Übungsaufgaben 8. Übung WS 17/18: Woche vom 27. 11. - 1. 12. 2017 Vektoranalysis: Differentialausdrücke in anderen Koordinaten 17.39, 17.43, 17.45 Skalare und Vektorfelder, grad, div, rot 19.1, 19.2 (a-d),

Mehr

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir

Integrieren Das bestimmte Integral einer Funktion f f(x) in einer Variable über das Intervall [a,b] schreiben wir Klassische Theoretische Physik TP-L - WS 2013/14 Mathematische Methoden 8.1.2014 Frank Bertoldi (Version 2) Abbildungen und Beispiele aus F. Embacher "Mathematische Grundlagen..." und "Elemente der theoretischen

Mehr

Mathematik für Anwender II

Mathematik für Anwender II Prof. Dr. H. Brenner Osnabrück SS 212 Mathematik für Anwender II Vorlesung 58 Der Satz von Green Wir betrachten eine kompakte eilmenge R 2, deren Rand R sich stückweise durch reguläre Kurven parametrisieren

Mehr

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη.

φ(ζ, η) = (ζ η, η) = (x, y), bijektiv und stetig differenzierbar ist. Die Jacobi-Matrix von φ lautet: f(ζ) det(dφ(ζ, η)) dζ dη f(ζ) dζ dη. Übungen (Aufg und Lösungen zu Mathem u Lin Alg II SS 6 Blatt 9 66 Aufgabe 43: Sei f : R R eine stetige Funktion Formen Sie das Integral f(x + y dx dy in ein einfaches Integral um Lösung: Führe neue Koordinaten

Mehr

5 Der Gaußsche und Stokes sche Integralsatz

5 Der Gaußsche und Stokes sche Integralsatz HM III = MATH III FT 2013 50 5 Der Gaußsche und Stokes sche Integralsatz Der Gaußsche Integralsatz umgangssprachlich am eispiel strömender Flüssigkeiten: Die Flüssigkeitsmenge, die durch die Oberfläche

Mehr

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2.

4. Gruppenübung zur Vorlesung. Höhere Mathematik 3. Wintersemester 2015/ , E 2 := (x, y, z) R 3 4z M := Z E 1 E 2. Dr. F. Gaspoz, Dr. T. Jentsch, Dr. A. Langer, J. Neusser, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik 3 Wintersemester 1/16 Apl. Prof. Dr. N. Knarr Lösungshinweise zu den Hausaufgaben: Aufgabe

Mehr

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM

Prüfungsklausur Höhere Mathematik II (22. Juli 2006) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM Prüfungsklausur Höhere Mathematik II (. Juli 6) für MB, EC, TeM, FWK, VT, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe 1: In der x-y-ebene seien die Mengen A {(x, y) : x } und

Mehr

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung

x(t) := 1 k definierte Funktion. (a) Berechnen Sie ẋ(t) und ẍ(t). (b) Zeigen Sie, daß die Funktion x = x(t) eine Lösung der Differentialgleichung Übungen (Aufg. u. Lösungen) zu Mathem. u. Lin. Algebra II SS 26 Blatt 7 3.5.26 Aufgabe 33: Die Funktion f : R R sei stetig. Betrachten Sie die durch x(t) : 1 k f(u) sin (k(t u)) du definierte Funktion.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Keyl M. Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://www-m5.ma.tum.de/allgemeines/ma923 216S Sommersem. 216 Lösungsblatt 3 (29.4.216)

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 3

Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Mathematischer Vorkurs Lösungen zum Übungsblatt 3 Prof. Dr. Norbert Pietralla/Sommersemester c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe : Berechnen Sie die bestimmten Integrale: π/ 3 cos(x)

Mehr

2.4 Eigenschaften des Gradienten

2.4 Eigenschaften des Gradienten 2.4 Eigenschaften des Gradienten Niveauflächen: Die Niveauflächen (D = 2 Höhenlinien) einer Funktion f sind die durch die Gleichung f(x, y, z) = c = const bestimmten Flächen(scharen); für jeden Wert von

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS 7/8 W. Stannat, A. Gündel-vom ofe..8 Februar Klausur Analysis II für Ingenieurwissenschaften Lösungsskizze Analysis II für Ingenieurwissenschaften

Mehr

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes

24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes 24: Vektoranalysis und die Integralsätze von Gauß, Green und Stokes Zur Integration reeller Funktionen wurden folgende Regeln behandelt (f,g : [a,b] R seien stetig differenzierbar): Einsetzen der Intervall-Grenzen

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung

Höhere Mathematik II für die Fachrichtung Physik. Modulprüfung Institut für Analysis SS7 PD Dr. Peer Christian Kunstmann 8.9.7 Höhere Mathematik II für die Fachrichtung Physik Modulprüfung Aufgabe [5+5= Punkte] (a) Zeigen Sie, dass die Matrix α A α =, α. genau dann

Mehr

55 Integralsätze in der Ebene

55 Integralsätze in der Ebene 262 IX. Integralsätze 55 Integralsätze in der Ebene 55.1 Wegintegrale skalarer Funktionen. a) Für einen Weg γ C 1 st ([a,b],rn ) und eine stetige Funktion f C((γ)) wird durch γ f ds := γ f(x)ds(x) := b

Mehr

9 Integration von Differentialformen und der Satz von Stokes

9 Integration von Differentialformen und der Satz von Stokes 9 Integration von Differentialformen und der Satz von Stokes 9. Definition. Es sei ω = f dx... dx n eine n-form auf der offenen Menge U in R n. Wir definieren sofern das Integral rechts existiert: ω =

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /4 P. Bank, A. Gündel-vom-Hofe, G. Penn-Karras 9.4.4 April Klausur Analsis II für Ingenieure Lösungsskizze. Aufgabe 6 Punkte Es seien

Mehr

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung

Vorlesungsfolien Mathematik 3 WS 2010/11 UMIT. Einleitung Vorlesungsfolien Mathematik 3 WS 2010/11 Dr. Leonhard Wieser UMIT Einleitung Begriff Vektoranalysis: Kombination aus Linearer Algebra/Vektorrechnung mit Differential- und Integralrechnung Inhaltsangabe:

Mehr

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander.

D-MAVT/D-MATL FS 2018 Dr. Andreas Steiger Analysis IILösung - Serie19. sind weder parallel noch stehen sie senkrecht aufeinander. -MAVT/-MATL FS 8 r. Andreas Steiger Analysis IILösung - Serie9. ie Fläche S sei einerseits durch die Parameterdarstellung (u, v) r(u, v) und andererseits durch die Gleichung f(x, y, z) = gegeben. Wir betrachten

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Lösungsvorschlag Klausur MA9802

Lösungsvorschlag Klausur MA9802 Lehrstuhl für Numerische Mathematik Garching, den 3.8.22 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA982 Aufgabe [3 + 3 Punkte] Berechnen Sie, falls existent, die folgenden

Mehr

f(x, y) = x 2 4x + y 2 + 2y

f(x, y) = x 2 4x + y 2 + 2y 7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem

Mehr

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer)

MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) TU DRESDEN Dresden,. Februar 4 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK II für Bauingenieure (Fernstudium und Wiederholer) Immatrikulationsjahrgang

Mehr

Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss

Serie 11. Analysis D-BAUG Dr. Cornelia Busch FS Überprüfen Sie die Gültigkeit des Satzes von Gauss Analysis -BAUG r. Cornelia Busch F 6 erie. Überprüfen ie die Gültigkeit des atzes von Gauss F d div F dv, () anhand des Beispiels F(x, y, z) (3x, xy, xz), [, ] [, ] [, ] (Einheitswürfel im R 3 ). Wir berechnen

Mehr

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx

Seite 1. sin 2 x dx. b) Berechnen Sie das Integral. e (t s)2 ds. (Nur Leibniz-Formel) c) Differenzieren Sie die Funktion f(t) = t. d dx ln(x + x3 ) dx Seite Aufgabe : a Berechnen Sie das Integral b Berechnen Sie das Integral +x x+x dx. π sin x dx. c Differenzieren Sie die Funktion ft = t e t s ds. Nur Leibniz-Formel a + x x + x dx = d dx lnx + x dx =

Mehr

Klausur zur HM3 (vertieft) für LRT und MaWi

Klausur zur HM3 (vertieft) für LRT und MaWi Klausur zur HM3 (vertieft) für LRT und MaWi Aufgabe 1. Bitte füllen Sie folgendes aus! (1 Punkt) Name: Matrikelnummer: Vorname: Fachrichtung: Bitte beachten Sie folgende Hinweise: Bearbeitungszeit: 120

Mehr

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale

D-ERDW, D-HEST, D-USYS Mathematik II FS 15 Dr. Ana Cannas. Serie 8: Satz von Green und Oberflächenintegrale D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 8: Satz von Green und Oberflächenintegrale Bemerkungen: Die Aufgaben der Serie 8 bilden den Fokus der Übungsgruppen vom./3. April.. Den Satz

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Integralrechnung. integral12.pdf, Seite 1

Integralrechnung. integral12.pdf, Seite 1 Integralrechnung Beispiel Zusammenhang WegGeschwindigkeit: Ist F (t) der zur Zeit t zurückgelegte Weg und v(t) die Geschwindigkeit, so ist v(t) = F (t) Geometrisch: Steigung der Tangente an der Kurve y

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt N dl. y 3 Übungen zur Ingenieur-Mathematik III WS / Blatt 9.. Aufgabe 5: Berechnen Sie das Integral K ( x y N dl über den Rand des Kreises K {(x, y x + y } einmal direkt mit Hilfe einer geeigneten Parametrisierung

Mehr