Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg,

Größe: px
Ab Seite anzeigen:

Download "Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch"

Transkript

1 Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg,

2 Unstrukturierte Daten spielen eine immer bedeutender Rolle in Big Data-Projekten. Zunächst gilt es herauszufinden, ob im konkreten Use Case überhaupt verwertbare Informationen aus den unstrukturierten Daten gewonnen werden können. AGENDA Big Data: Was bisher geschah Business Intelligence und unstrukturierte Daten Können BI-Analysen mit unstrukturierten Daten gemacht werden? Wie kann für ein Use Case diese Frage möglichst schnell beantwortet werden? Prozessmodell IT-Logix Sentiment Analyse mit Twitter-Tweets Zusammenfassung und Ausblick Slide 2 Big Data: Definition, Einführung und Live Democase

3 BIG DATA: WAS BISHER GESCHAH

4 Für die Beschreibung von «Big Data» haben sich drei typische Merkmale etabliert: Variety, Volume und Velocity. Für diese Bereichen bieten Hersteller spezifische Lösungen an. Unstrukturiert Texte können mit einer Text Analyse in strukturierte Daten verwandelt werdenb. BIG DATA: TYPISCHE MERKMALE UND LÖSUNGEN Volume: Velocity: Variety: schnelles Wachstum, hohe Datenvolumen ( >= Petabyte) Lösungen: analytische / spaltenorientierte DB s, Hadoop BI-Analyse zeitnah zur Entstehung der Daten, Realtime Warehousing Lösungen: In-Memory Technologien, Event-Stream-Processing viele unterschiedliche Datentypen, interne und extrne Daten Lösungen: ETL/ELT-Tools, ggf. In-Memory-Technologien Variety: unstrukturierte Daten Datenextraktion aus Tweets, Blogs, s, Fax, eingescannte Briefdokumente Lösungen: Text Analyse. Unstrukturierte Texte strukturierte Daten Slide 4 Big Data: Definition, Einführung und Live Democase

5 Zu Beginn jedes Use Cases mit unstrukturierten Daten sollte die Frage beantwortet werden, ob die unstrukturierten Daten überhaupt verwertbare Informationen liefern. Es sollte zu Beginn daher auch nicht zu viel Aufwand in die Beschaffung externer Daten investiert werden. BIG DATA: ERFAHRUNGEN, HERAUSFORDERUNGEN Volume, Velocity, Variety/Datenintegration In der Regel gute Abdeckung durch angebotene Technologien und mehrjährige methodische Erfahrungen Unstrukturierte Texte / Text Analyse: Jeder Use Case ist anders! Liefert die Text Analyse überhaupt für eine BI-Analyse verwertbare Ergebnisse? Ergebnisse müssen evaluiert werden Ergebnisse müssen bereinigt werden! Ergebnisse müssen aufbereitet werden, sodass sie mit BI-Tools ausgewertet werden können Externe Daten: Je nach Quelle kann die Beschaffung aufwändig und teuer sein Slide 5 Big Data: Definition, Einführung und Live Democase

6 BUSINESS INTELLIGENCE UND UNSTRUKTURIERTE DATEN

7 Das SAP Tex Analyse nutzt einen Natural Language Processor (NLP) um natürliche Sprache zu analysieren. Entitäten wie z.b. Personen, Produkte etc. können so in ihrem sprachlichen Kontext identifiziert werden. SAP TEXT ANALYSE: NLP Slide 7 Big Data: Definition, Einführung und Live Democase

8 Die SAP Text Analyse basiert auf Dictionaries und Rulesets. Beide können kunden-spezifisch angepasst werden. SAP TEXT ANALYSE: DICTIONARIES UND RULESETS Unstrukturierte Texte: ASCII-Text (Datei, DB,,,) Binär-Dateien (MSG, DOC, PDF, PPT, ) SAP Text Analyse Customizable Language Modules Dictionaries Extraction Rules Entitäten - strukturierte Daten, z.b.: Produkte Sentiments Slide 8 Big Data: Definition, Einführung und Live Democase

9 Die SAP Text Analyse basiert auf Dictionaries und Rulesets. Beide können kunden-spezifisch angepasst werden. SAP TEXT ANALYSE: DICTIONARIES UND RULESETS Unstrukturierte Texte: ASCII-Text (Datei, DB,,,) Binär-Dateien (MSG, DOC, PDF, PPT, ) SAP Text Analyse Customizable Language Modules Dictionaries Extraction Rules Entitäten - strukturierte Daten, z.b.: Produkte Sentiments Slide 9 Big Data: Definition, Einführung und Live Democase

10 Die SAP Text Analyse basiert auf Dictionaries und Rulesets. Beide können kunden-spezifisch angepasst werden. SAP TEXT ANALYSE: DICTIONARIES UND RULESETS Slide 10 Big Data: Definition, Einführung und Live Democase

11 Die von der SAP Text Analyse gelieferten Sentiments beziehen sich meistens auf eine Entität «Topic». Das Topic muss mit ebenfalls gefundenen Produkt-Entitäten verglichen werden, damit Sentiment und Produkt miteinader verknüpft werden können. Die Funktionalität liefert die SAP Text Analyse nicht! Z.B. TWITTER: SENTIMENTS UND APPLE-PRODUKTE SAP Text Analyse Mapping Sentiment Topic & Produkt nicht in SAP Text Analyse Slide 11 Big Data: Definition, Einführung und Live Democase

12 Beim Mapping von Attributen der Text Analyse kann es vorkommen, dass zweit Attributwerte leicht unterschiedlich sind, aber dennoch zusammen gehören MAPPING ATTRIBUTE DER TEXT ANALYSE Mapping erforderlich, z.b.: Es darf kein Mapping erfolgen, z.b.: Einfacher Vergleich mit Teilstrings funktioniert nicht! Komplexe Matching-Logik erforderlich! (Fuzzy Logik) Slide 12 Big Data: Definition, Einführung und Live Democase

13 Viele Ergebnisse in der Ausgabe sind irrelevant und müssen gelöscht werden. unterschiedliche Entitätsbezeichnungen in unstrukturierten Texten müssen standardisiert werden. TEXT ANALYSE: BEREINIGUNG Z.B. Grussformen in s: In den meisten Fällen löschen, aber abhängig vom Use Case! Slide 13 Big Data: Definition, Einführung und Live Democase

14 Nachdem die von der Text Analyse generierten Attribute bereinigt und ggf. miteinander in Beziehung gebracht wurden, kann eine typische BI Analyse erstellt werden BI UND TEXT ANALYSE: SENTIMENT ANALYSE Slide 14 Big Data: Definition, Einführung und Live Democase

15 TEXT ANALYSE: PROZESSMODELL DER IT-LOGIX

16 Um die Herausforderungen der Text Analyse mit möglichst wenig Aufwand zu lösen hat IT-Logix ein Prozessmodell und Tools für die Verarbeitung von unstrukturierten entwickelt ZIELE Möglichst schnelle Extraktion von externen Daten, insbes. aus sozialen Medien Erhöhung der Qualität der Ergebnisse der Text Analyse durch Bereinigung und Attribut-Mapping Möglichst schnelle Beantwortung der Frage für einen konkreten Use Case: «Können BI-Analysen mit unstrukturierten Texten gemacht werden?» Bis zur Beantwortung dieser Frage sollten möglichst wenig Aufwände anfallen Slide 16 Big Data: Definition, Einführung und Live Democase

17 Das Prozessmodell besteht aus 3 Phasen. Die Phase «Evaluierung» muss mit einem Entscheid abgeschlossen werden bevor die nächsten Phasen beginnen. Die Phasen «Anreicherung/Verfeinerung» und «Operationalisierung» können sich zeitliche auch leicht überschneiden. PROZESSMODELL: BI UND UNSTRUKTURIERTE TEXTE Evaluierung Initialer Datenextrakt Initiale Tests mit Text Analyse Initiale Datenbereinigung Weitgehend generische Tools Entscheid: Datenquelle eignet sich für BI Analysen Anreicherung und Verfeinerung Anreicherung mit Use Case-spezifischen Metadaten BI Analysen Verfeinerung der Datenextraktion und -bereinigung Operationalisierung Aufbau Big-Data Infrastruktur Integration mit DWH oder operativen Prozessen Data Governance Slide 17 Big Data: Definition, Einführung und Live Democase

18 In der Evaluierungsphase wird mit möglichst wenig Aufwand einer kleiner, aber ausreichend grosser Sample von unstrukturierten Daten bereitgestellt. Die Texte werden mit der SAP Text Analyse analysiert und die Ergebnisse mit Cleansing-Tools der IT-Logix bereinigt. Die Visualisierung erfolgt mit Standard-Tools. EVALUIERUNG Externe Daten Initiale Datenextraktion Interne Daten Sozial Medien, Internet, etc SAP Text Analyse Konfiguration Sprache: fest, automatisch erkennen, durch Quelle vorgegeben Konfiguration Entitäten z.b. nur Produkt und Sentiment SAP Data Services Anwender Cleansing Regel-gesteuertes Bereinigen der Ergebnisse der Text Analyse Regel-gesteuertes Mapping von Ergebnissen der Text Analyse SAP Data Services Text Analyse Tools SAP & IT-Logix: Steuerung der Ergebnisse durch Anwender! Keine Entwicklung notwendig! Reporting & Visualisierung Standard-Tools, z.b. Excel, SAP Lumira, (Standard-Tools) mehrere Iterationen Slide 18 Big Data: Definition, Einführung und Live Democase

19 In der Evaluierungsphase wird mit möglichst wenig Aufwand einer kleiner, aber ausreichend grosser Sample von unstrukturierten Daten bereitgestellt. Die Texte werden mit der SAP Text Analyse analysiert und die Ergebnisse mit Cleansing-Tools der IT-Logix bereinigt. Die Visualisierung erfolgt mit Standard-Tools. EVALUIERUNG Text Analyse: Mapping Parameter UseCase ParameterName ParameterValue Sentiment Analyse in Arnes s MATCH_DICT_TYPE PRODUCT Sentiment Analyse in Arnes s MATCH_RULE_TYPE Sentiment Sentiment Analyse in Arnes s MATCH_RULE_SUB_TYPE Topic Sentiment Analyse in Twitter Tweets mit Apple Produkten MATCH_DICT_TYPE PRODUCT Sentiment Analyse in Twitter Tweets mit Apple Produkten MATCH_RULE_TYPE Sentiment Sentiment Analyse in Twitter Tweets mit Apple Produkten MATCH_RULE_SUB_TYPE Topic Text Analyse: Cleansing Rules UseCase RuleName Active Action Rule Sentiment Analyse in Arnes s Grussformen 1 D type == 'Sentiment' and re.search('(lieb freundlich best).*gr.*ss', standard_form, re.i) Sentiment Analyse in Twitter Tweets mit Apple Produkten Sex-Tweets 1 D re.search('.*#sex.*', standard_form, re.i) or re.search('.*porn.*', standard_form, re.i) or re.search('.*sucking.*', standard_form, re.i) or re.search('.*fuck.*', standard_form, re.i) or re.search('.*hardcore.*', standard_form, re.i) or re.search('(sex xxx).*clip', standard_form, re.i) Slide 19 Big Data: Definition, Einführung und Live Democase

20 In der Phase «Anreicherung und Verfeinerung» werden Use Case spezifische Metadaten aus diversen Quellen integriert. Es entstehen höher Aufwände als in der Evaluierungsphase, weil Datenmodelle, Ladeprozesse und BI-Auswertungen angepasst werden müssen. Die Text Analyse wird ggf. Use Case spezifisch angepasst. ANREICHERUNG UND VERFEINERUNG Use Case Metadaten Anreicherung der Text Analyse Ergebnisse mit Use-Case spezifischen Metadaten, z.b.: Tweet Autor Anzahl Follower des Tweet Autor Subject Absender Prio. Use-Case spezifisches Datenmodell und Ladeprozesse Use-Case spezifische BI-Auswertungen Customizing Text Analyse Custom Dictionaries z.b. Katalog mit eigenen Produkten / Dienstleistungen (evtl. bereits in Evaluierungs-Phase erforderlich!) Customized Extraction Rules Slide 20 Big Data: Definition, Einführung und Live Democase

21 In der Phase «Operationalisierung» wird die Big Data Infrastruktur aufgebaut - falls notwendig und nicht bereits vorhanden! Die Text Analyse Prozesse werden in eine operative / produktive Umgebung integriert. Die Fachabteilung (Data Steward) ist für den permanenten Prozess «Data Governance» verantwortlich. OPERATIONALISIERUNG Big Data Infrastruktur Ggf. Big Volume: Analytische DB Hadoop Ggf. Real-Time Services Integration operative Umgebung Data Warehouse BI Applikationen Operative Systeme Job-Controlling Monitoring IT Data Governance permanenter Prozess Monitoring der Datenqualität Regelmässige Datenbereinigung Regelmässige Überprüfung Ergebnisse Text Analyse Begriffe, Ausdrücke ändern sich mit der Zeit Anpassen der Datenbereinigungsregeln Data Steward, Fachabteilung Slide 21 Big Data: Definition, Einführung und Live Democase

22 Es wird das Prozessmodell mit einer Sentiment Analyse von Twitter Tweets vom 9./ bzgl. Apple Produkten demonstriert. Die Extraktion von Tweets aus Twitter erfolgt mit DataSift. Die BI-Auswertungen der Sentiment Analyse werden in SAPLumira erstellt. EVALUIERUNG: DEMO TWITTER SENTIMENT ANALYSE Slide 22 Big Data: Definition, Einführung und Live Democase

23 ZUSAMMENFASSUNG UND AUSBLICK

24 Eine Evaluierung der Analyse von unstrukturierten Texten kann ein einem Use Case schnell und mit möglichst Aufwand erfolgen. Höhere Aufwände entstehen erst in späteren Phasen, wenn die Machbarkeit des Use Cases bereits positiv evaluiert wurde. Die Aufwände könne dann auch besser geschätzt werden. BI UND UNSTRUKTURIERTE TEXTE Für jeden einzelnen Use Case sollte zunächst die Machbarkeit evaluiert werden Die initiale Evaluierung kann mit möglichst wenig Aufwand realisiert werden Minimaler IT-Entwicklungsaufwand zur Anbindung der Datenquelle Kleine Datenvolumen, keine analytische DB notwendig Evaluierung wird von Fachabteilung gesteuert! Anwender von Beginn an aktiv im Projekt involviert! Die Ergebnisse der Text Analyse müssen bereinigt und für BI-Auswertungen aufbereitet werden Nach Operationalisierung: Bereinigung und Monitoring sind ein fortlaufender Prozess Slide 24 Big Data: Definition, Einführung und Live Democase

25 Wir freuen uns auf angeregte Gespräche mit Ihnen Arne Weitzel Senior Business Intelligence Consultant Follow

Big Data und Social Media Analyse. Baden, 11.06.2013 Arne Weitzel, Senior Solution Architect Samuel Rentsch, CEO Julian Götz, Head of Sales

Big Data und Social Media Analyse. Baden, 11.06.2013 Arne Weitzel, Senior Solution Architect Samuel Rentsch, CEO Julian Götz, Head of Sales Big Data und Social Media Analyse Baden, 11.06.2013 Arne Weitzel, Senior Solution Architect Samuel Rentsch, CEO Julian Götz, Head of Sales Big Data & Social Media Analyse werden in Zukunft zentrale Business

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Wie Fusion CRM die Datenqualität im Marketingprozess erhöhen kann (Fusion CRM@ec4u)

Wie Fusion CRM die Datenqualität im Marketingprozess erhöhen kann (Fusion CRM@ec4u) Wie Fusion CRM die Datenqualität im Marketingprozess erhöhen kann (Fusion CRM@ec4u) Jeder kennt folgende Sätze aus seinem eigenen Unternehmen: Wieso sind so viele doppelte Einträge im System? Kann man

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

SAP BW + Microsoft Excel Viel genutzt, oft unterschätzt

SAP BW + Microsoft Excel Viel genutzt, oft unterschätzt Corporate Performance Management SAP BW + Microsoft Excel Viel genutzt, oft unterschätzt Martin Krejci, Manager CPM Matthias Schmidt, BI Consultant Kristian Rümmelin, Senior BI Consultant Braincourt GmbH

Mehr

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch In dieser Session wird IDAREF, ein Framework, dass auf logischer Ebene eine analytische

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA

BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA Agenda VORSTELLUNG B.TELLIGENT WIE ENTSTEHT EINE KENNZAHL? WAS SIND METADATEN? AUFBAU UND FUNKTIONSWEISE DES BI WIKI LIVE DEMO ZUSAMMENFASSUNG

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence

Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence Analytische Datenbanken und Appliances als Engine für erfolgreiche Business Intelligence IBM Netezza Roadshow 30. November 2011 Carsten Bange Gründer & Geschäftsführer BARC Die Krise hat die Anforderungen

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch WANN REDEN WIR VON BIG DATA SCIENCE? Big Data ist der technische Teil von Big Data Science. Mehr Daten! Mehr Datenquellen(-änderungen)!

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

BI ist tot, lang lebe BI!

BI ist tot, lang lebe BI! BI ist tot, lang lebe BI! SAP HANA Live vs. SAP BW powered by HANA Glaubt man der ein oder anderen aus Walldorf stammenden Marketingfolie, so sind die Tage von herkömmlichen Business Intelligence Systemen

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

DISCOVER BIG DATA & PREDICTIVE ANALYTICS DISCOVER INSIGHTS

DISCOVER BIG DATA & PREDICTIVE ANALYTICS DISCOVER INSIGHTS BIG DATA & PREDICTIVE ANALYTICS BIG DATA & PREDICTIVE ANALYTICS Turn communication into usable data. In einer zunehmend vernetzten, digitalen Service-Ökonomie müssen Sie die Wünsche Ihrer Kunden laufend

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

FRT Consulting GmbH. Projekt KATEGO Komfortable SAP-Datenanalyse. Gustav Sperat FRT Consulting GmbH. www.frt.at. Wir machen aus Daten Wissen.

FRT Consulting GmbH. Projekt KATEGO Komfortable SAP-Datenanalyse. Gustav Sperat FRT Consulting GmbH. www.frt.at. Wir machen aus Daten Wissen. FRT Consulting GmbH Projekt KATEGO Komfortable SAP-Datenanalyse Gustav Sperat FRT Consulting GmbH 1 FRT Consulting das Unternehmen Spin off der TU Graz von langjährigen IT Experten Hauptsitz Graz, Büro

Mehr

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011 Roundtable Dashboards und Management Information Rüdiger Felke / Christian Baumgarten 29.11.2011 Agenda Behind the Dashboards Was ist ein Dashboard und was ist es nicht? SAP BusinessObjects Dashboards

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

1 Ihre BI-Galaxie von BITMARCK!

1 Ihre BI-Galaxie von BITMARCK! 1 Ihre BI-Galaxie von BITMARCK! Die Summe aller Sterne ist die Galaxie Ihre BI-Galaxie von BITMARCK! Michael Heutmann, Peter Hernold, Markus Jankowski Neuss, 4. November 2013 Sie haben uns mit auf den

Mehr

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014

SQL PASS Treffen RG KA. Überblick Microsoft Power BI Tools. Stefan Kirner Karlsruhe, 27.05.2014 SQL PASS Treffen RG KA Überblick Microsoft Power BI Tools Stefan Kirner Karlsruhe, 27.05.2014 Agenda Die wichtigsten Neuerungen in SQL 2012 und Power BI http://office.microsoft.com/en-us/office365-sharepoint-online-enterprise-help/power-bi-for-office-365-overview-andlearning-ha104103581.aspx

Mehr

Kann man Big Data managen?

Kann man Big Data managen? Kann man Big Data managen? Information Governance in Retail-Unternhmen Uwe Nadler Senior Managing Consultant Big Data Architect Sales Leader Information Governance D-A-CH Themen Die Bedeutung von Information

Mehr

Foto: violetkaipa - Fotolia

Foto: violetkaipa - Fotolia Die D kön Foto: violetkaipa - Fotolia 10 IT-Trend Big Data atenflut steigt wie nen wir sie nutzen? Ständig erhöht sich die Masse der uns umgebenden Daten, Informationen werden immer schneller generiert.

Mehr

Predictive Analysis und Data Mining die Kristallkugel und Ihr Business Value [Session C2] Uetliberg, 16.09.2014 www.boak.ch

Predictive Analysis und Data Mining die Kristallkugel und Ihr Business Value [Session C2] Uetliberg, 16.09.2014 www.boak.ch Predictive Analysis und Data Mining die Kristallkugel und Ihr Business Value [Session C2] Uetliberg, 16.09.2014 www.boak.ch it Diese Session gibt einen Überblick über Predictive und Data Mining, die Value-Proposition

Mehr

Unternehmensweites DQ Controlling auf Basis von BI-Werkzeugen. Doreen Hartung, TIQ Solutions GmbH 6. GIQMC, Bad Soden, 26.-28.

Unternehmensweites DQ Controlling auf Basis von BI-Werkzeugen. Doreen Hartung, TIQ Solutions GmbH 6. GIQMC, Bad Soden, 26.-28. Unternehmensweites DQ Controlling auf Basis von BI-Werkzeugen Doreen Hartung, TIQ Solutions GmbH 6. GIQMC, Bad Soden, 26.-28. November 2008 2007 TIQ Solutions GmbH All Rights Reserved. GIQMC Bad Soden,

Mehr

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014 Hadoop Projekte Besonderheiten & Vorgehensweise Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Die Erkenntnis von gestern muss heute mit einem neuen. 19.06.2009 TEAM - Ihr Partner für IT 2

Die Erkenntnis von gestern muss heute mit einem neuen. 19.06.2009 TEAM - Ihr Partner für IT 2 Beratung Software Lösungen Integration von Reporting Tools in Oracle ADF 11g Applikation Der Inhalt dieses Vortrages beruht auf den Erfahrungen und Erkenntnissen zu einem bestimmten Zeitpunkt und unter

Mehr

SPoT Agenda. Begrüßung und Vorstellung CAS AG. Markttrends aus Analystensicht. Big Data Trusted Information

SPoT Agenda. Begrüßung und Vorstellung CAS AG. Markttrends aus Analystensicht. Big Data Trusted Information SPoT Agenda Begrüßung und Vorstellung CAS AG Markttrends aus Analystensicht Big Data Trusted Information Lars Iffert, BARC GmbH Dr. Oliver Adamczak, IBM Deutschland GmbH Factory Ansatz für ETL-Prozesse

Mehr

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

AustroFeedr. Pushing the Realtime Web. Projektplan. erstellt von: DI Klaus Furtmüller, DI Wolfgang Ziegler Version 1.0 Datum: 05.10.

AustroFeedr. Pushing the Realtime Web. Projektplan. erstellt von: DI Klaus Furtmüller, DI Wolfgang Ziegler Version 1.0 Datum: 05.10. AustroFeedr Pushing the Realtime Web Projektplan erstellt von: DI Klaus Furtmüller, DI Wolfgang Ziegler Version 1.0 Datum: 05.10.2010 gefördert durch die Internet Privatstiftung Austria (IPA) 1 Projektbeschreibung

Mehr

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren Strategie und Self Service BI im Unternehmen Gegensätze miteinander kombinieren Claas Planitzer Düsseldorf Juni 2015 Agenda 5. Herausforderungen 1. Idealbild 2. Realität 3. Self Service 4. BI. Was ist

Mehr

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services

Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Launch Microsoft Dynamics AX 4.0 Richtige und schnelle Entscheidungen trotz sich änderner Anforderungen mit Microsoft Dynamics AX und Microsoft SQL Server Reporting Services Sonia Al-Kass Partner Technical

Mehr

«DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN

«DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN «DIE INFORMATIONSWELT MUSS EINFACHER UND AGILER WERDEN!» SCHNELLE, FLEXIBLE UND KOSTENGÜNSTIGE BUSINESS INTELLIGENCEund BIG DATA-LÖSUNGEN UNSERE EINFACHE FORMEL FÜR AGILE BUSINESS INTELLIGENCE LÖSUNGEN

Mehr

Agile BI mit Agile BI Modeler & Agile Scorecard

Agile BI mit Agile BI Modeler & Agile Scorecard Agile BI mit Agile BI Modeler & Agile Scorecard Business Intelligence - so einfach wie möglich - so komplex wie nö7g Jon Nedelmann Darmstadt, 26.10.2012 Agile BI Tools Agile BI Modeler Ist eine Web- Anwendung

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL

BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL BIG DATA STRATEGIE FÜR DEN ONLINE-HANDEL Am Beispiel der OTTO GmbH & Co KG Dortmund, 09. September 2015 Conny Dethloff (OTTO GmbH & CO. KG) 1 Anliegen des heutigen Dialogs Über mich Inhalt des Dialogs

Mehr

Agile BI Kickstart. Beschreibung des Workshops. Workshopbeschreibung

Agile BI Kickstart. Beschreibung des Workshops. Workshopbeschreibung Bereich: Workshop: Dauer: In-House Workshop Agile BI Kickstart 2 Tage Beschreibung des Workshops Agile Vorgehensweisen werden bei der Entwicklung von BI- und Data Warehouse-Lösungen heutzutage mehr und

Mehr

Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung

Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung Bachelor/Master-Thesis (für den Standort Stuttgart) Treiberbasierte Planung Hochschulstudium (Wirtschaftsinformatik oder ein vergleichbarer Studiengang) Fachliche und technische Kenntnisse im Bereich Business

Mehr

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben!

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben! Take aways Mit Power BI wird Excel zum zentralen Tool für Self- Service BI End-End Self-Service Lösungsszenarien werden erstmals möglich Der Information Worker erhält ein flexibles Toolset aus bekannten

Mehr

Kundenbeschwerden im Netz - Reagieren bevor es andere tun

Kundenbeschwerden im Netz - Reagieren bevor es andere tun Kundenbeschwerden im Netz - Reagieren bevor es andere tun Ihr Partner für die Digitale Transformation SAP Forum Baden, 20. April 2015 www.q-perior.com Digitale Transformation das zentrale Thema für Unternehmen

Mehr

Datenintegration mit Informatica PowerCenter

Datenintegration mit Informatica PowerCenter Datenintegration mit Informatica PowerCenter Mein Weg vom Studenten zum Consultant Christoph Arnold 03.07.2013 1 Agenda Von der THM zu Infomotion Datenschieberei oder doch mehr? Die weite Welt von Informatica

Mehr

Rainer Klapper QS solutions GmbH

Rainer Klapper QS solutions GmbH Rainer Klapper QS solutions GmbH Der Handlungsbedarf Die CRM-Welt ist umgeben von Social Media Foren Communities Netzwerke CRM Blogs Fehlende Prozessintegration wird zunehmend zum Problem Wir bauen Brücken

Mehr

PBS Ergänzungslösungen

PBS Ergänzungslösungen PBS Ergänzungslösungen Von der klassischen Archivierung bis zum Information Lifecycle Management mit SAP HANA Prof. Dr. Detlev Steinbinder Agenda Wo geht die Reise hin? Informationen im SAP-Umfeld Big

Mehr

THEOBALD XTRACT PPS IXTO GMBH. Mathias Slawik, Linda Kallinich

THEOBALD XTRACT PPS IXTO GMBH. Mathias Slawik, Linda Kallinich THEOBALD XTRACT PPS IXTO GMBH Mathias Slawik, Linda Kallinich Projekt BWA: Analytische Anwendungen, WS 2010/2011 Agenda 2/14 Projektaufgabe Technologien / Xtract PPS Projektablauf Dashboard-Prototyp Bewertung

Mehr

Macht Knowledge- Management Unternehmen effizienter?

Macht Knowledge- Management Unternehmen effizienter? Macht Knowledge- Management Unternehmen effizienter? Karl-Heinz Plünnecke Geschäftsführer H.U.T GmbH 1 Software Performance Entwicklung Performance Was dann? ecommerce ERP SCM CRM Zeit 2 1 Noch Potential?

Mehr

Durchblick im Self-Service-Dschungel. Hannover, 16.03.2015 Patrick Keller, Senior Analyst

Durchblick im Self-Service-Dschungel. Hannover, 16.03.2015 Patrick Keller, Senior Analyst Durchblick im Self-Service-Dschungel Hannover, 16.03.2015 Patrick Keller, Senior Analyst Business Application Research Center (BARC) B Europas führendes IT-Analysten- und -Beratungshaus für Business Software

Mehr

Analytisches CRM und Data Mining

Analytisches CRM und Data Mining Analytisches CRM und Data Mining Magische Zahlen für das Marketing Computerwoche Initiative CRM 2009 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Mitglied im CRM Expertenrat

Mehr

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT DIE DATEN IM ZENTRUM: SAS DATA RAINER STERNECKER SOLUTIONS ARCHITECT SAS INSTITUTE SOFTWARE GMBH Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. NEUE WEGE GEHEN SAS DATA GOVERNANCE & QUALITY

Mehr

Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt

Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt Ian Perry Marco Lehmann Stefan Sander Darmstadt, 6.11.2012 Einmal Pie-Chart und zurück Ian Perry Sales Engineer - IP&S Client Technical

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Agenda. Portfolioübersicht. Business-Case. Zusammenfassung. Das Ziel. SAP EIM Produktportfolio. Datenreorganisation mit SAP EIM

Agenda. Portfolioübersicht. Business-Case. Zusammenfassung. Das Ziel. SAP EIM Produktportfolio. Datenreorganisation mit SAP EIM Datenreorganisation > Effiziente und performante Stammdatenreorganisation mit SAP Data Services < Simon Hartstein / T-Systems Data Migration Consulting AG / Harmonization & Consolidation Mai 21, 2014 Agenda

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN

SOZIALES BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN CHRISTIAN KÖNIG BUSINESS EXPERT COMPETENCE CENTER CUSTOMER INTELLIGENCE Copyr i g ht 2012, SAS Ins titut e Inc. All rights res

Mehr

Cubeware Connectivity for SAP Solutions

Cubeware Connectivity for SAP Solutions Cubeware Connectivity for SAP Solutions Beispiele und Anwendungsfälle 1. Modellierung, Extraction, Transformation und Loading mit Datenquelle SAP R/3 und mysap ERP Mit Hilfe des Cubeware Importers und

Mehr

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers.

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers. Business und IT. Ein Team. Aus Sicht eines Retailers. Hier steht ein Bild randabfallend. Wenn kein Bild vorhanden ist, bitte Folie 2 benutzen. IT-Services Club of Excellence. Das CIO Forum der IBM vom

Mehr

Business Intelligence für alle ein integrierter und ganzheitlicher Ansatz

Business Intelligence für alle ein integrierter und ganzheitlicher Ansatz Business Intelligence für alle ein integrierter und ganzheitlicher Ansatz Martina Schnelle, PreSales Senior Specialist BI 21. Mai 2015 Public Haftungsausschluss In dieser Präsentation wird nur eine allgemeine

Mehr

Direktmarketing im Zentrum digitaler Vertriebsstrategien

Direktmarketing im Zentrum digitaler Vertriebsstrategien Direktmarketing im Zentrum digitaler Vertriebsstrategien Standortbestimmung und Key Learnings für Verlage Hamburg, September 2014 Im Zentrum digitaler Vertriebsstrategien steht zunehmend die Analyse komplexer

Mehr

spezial Productivity Monitor Alle Artikel zu unseren Fokusthemen finden Sie unter comlineag.de/infocenter

spezial Productivity Monitor Alle Artikel zu unseren Fokusthemen finden Sie unter comlineag.de/infocenter infoline spezial Productivity Monitor Alle Artikel zu unseren Fokusthemen finden Sie unter comlineag.de/infocenter Productivity Monitor COMLINE Productivity Monitor ist eine generische Lösung für die Aufnahme,

Mehr

Data Mining-Projekte

Data Mining-Projekte Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein

Mehr

Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence

Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence Die Realtime Big Data Architektur @ OTTO im Kontext von Process Excellence Conny Dethloff Bonn, 28. Januar 2015 Process Excellence im Kontext Big Data bedeutet, Komplexität in internen Prozessen nicht

Mehr

erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI

erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI Detlef Apel Wolfgang Behme Rüdiger Eberlein Christian Merighi Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte 3., überarbeitete und erweiterte Auflage Edition TDWI rä

Mehr

Business Intelligence SAP Anwenderbefragung

Business Intelligence SAP Anwenderbefragung Business Intelligence SAP Anwenderbefragung Status Quo und zukünftige Anforderungen in Kooperation mit dem AK BW Prof. Dr. Andreas Seufert (I-BI) Prof. Dr. Thomas Becker (I-BI) Prof. Dr. Peter Lehmann

Mehr

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014

IMPULS AM VORMITTAG. Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 IMPULS AM VORMITTAG Smart Grids 2.0, Österreich als Leitmarkt und Leitanbieter 27. Februar 2014 INHALTE Teradata? Wer sind denn die überhaupt? Big Data? Wirklich? Wo? Die vorgegebenen Impulsfragen: 1.

Mehr

Mit BW on HANA auf dem Weg in die Zukunft SAP Public Services Forum, 17. März 2015

Mit BW on HANA auf dem Weg in die Zukunft SAP Public Services Forum, 17. März 2015 Mit BW on HANA auf dem Weg in die Zukunft SAP Public Services Forum, 17. März 2015 Sabine Herbel Leiterin SAP BI Inselspital Bern Martin Effinger Principal BI HANA Consultant winnovation AG Agenda Über

Mehr

SAP HANA eine Plattform für innovative Anwendungen

SAP HANA eine Plattform für innovative Anwendungen SAP HANA eine Plattform für innovative Anwendungen Top Intelligence: Big Data & SAP HANA Zürich, Frankfurt, Hamburg, München, Mülheim/R Februar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Präsentation für die. Donnerstag, 2. Mai 2013

Präsentation für die. Donnerstag, 2. Mai 2013 Präsentation für die 1 AGENDA VON DER PLANUNG BIS ZUR SELF SERVICE BI 9.30 Uhr: Begrüßung und Vorstellung B.i.TEAM & QlikTech 9.40 Uhr: Moderne Business Intelligence heute und morgen Modernes BI-Live,

Mehr

Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen

Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen Big, Bigger, CRM: Warum Sie auch im Kundenmanagement eine Big-Data-Strategie brauchen 01000111101001110111001100110110011001 Volumen 10 x Steigerung des Datenvolumens alle fünf Jahre Big Data Entstehung

Mehr

Mehrwerte schaffen durch den Einsatz von Business Intelligence

Mehrwerte schaffen durch den Einsatz von Business Intelligence Mehrwerte schaffen durch den Einsatz von Business Intelligence 1 Menschen beraten Menschen beraten BTC zeigt Wege auf - Sie entscheiden BTC zeigt Wege auf - Sie entscheiden Martin Donauer BTC Business

Mehr

EDI - Lieferscheindruck

EDI - Lieferscheindruck EDI - Lieferscheindruck and it s possible. Versmold, 01.10.2011 Vorgaben für den Distributionskunden Pro Lieferschein muss ein elektronisches PDF Dokument erstellt werden. In diesem PDF Dokument darf es

Mehr

Datenqualität erfolgreich steuern

Datenqualität erfolgreich steuern Edition TDWI Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte von Detlef Apel, Wolfgang Behme, Rüdiger Eberlein, Christian Merighi 3., überarbeitete und erweiterte Auflage

Mehr

Virtual Roundtable: Business Intelligence - Trends

Virtual Roundtable: Business Intelligence - Trends Virtueller Roundtable Aktuelle Trends im Business Intelligence in Kooperation mit BARC und dem Institut für Business Intelligence (IBI) Teilnehmer: Prof. Dr. Rainer Bischoff Organisation: Fachbereich Wirtschaftsinformatik,

Mehr

Analysen sind nur so gut wie die Datenbasis

Analysen sind nur so gut wie die Datenbasis Analysen sind nur so gut wie die Datenbasis Datenaufbereitung und Sicherung der Datenqualität durch den kontextbasierten MIOsoft Ansatz. Daten gelten längst als wichtiger Produktionsfaktor in allen Industriebereichen.

Mehr

EXASOL AG Zahlen & Fakten

EXASOL AG Zahlen & Fakten Big Data Management mit In-Memory-Technologie EXASOL AG Zahlen & Fakten Name: EXASOL AG Gründung: 2000 Tochterges.: Management: Produkte: Firmensitz: Niederlassung: EXASOL Cloud Computing GmbH Steffen

Mehr

BOARD All in One. Unternehmen Lösung Referenzen

BOARD All in One. Unternehmen Lösung Referenzen BOARD All in One Unternehmen Lösung Referenzen Unternehmen BOARD Führender Anbieter für BI & CPM mit Sitz in Lugano Gegründet 1994 eigene Software seit 19 Jahren Eigenfinanziert & profitabel Weltweite

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Big Data im Bereich Information Security

Big Data im Bereich Information Security Der IT-Sicherheitsverband. TeleTrusT-interner Workshop Bochum, 27./28.06.2013 Big Data im Bereich Information Security Axel Daum RSA The Security Division of EMC Agenda Ausgangslage Die Angreifer kommen

Mehr

Data Governance als Teil von IT Governance. Dr.Siegmund Priglinger spriglinger@informatica.com 18.Juni 2007

Data Governance als Teil von IT Governance. Dr.Siegmund Priglinger spriglinger@informatica.com 18.Juni 2007 1 Data Governance als Teil von IT Governance Dr.Siegmund Priglinger spriglinger@informatica.com 18.Juni 2007 2 Agenda Informatica - Allgemeiner Überblick Die Informatica Data Quality Lösungen im Überblick

Mehr

Neuaufbau des Online-Vertriebskanals und Analyse der Conversion Rate bei einer Krankenversicherung - saracus consulting@tdwi Kongress.

Neuaufbau des Online-Vertriebskanals und Analyse der Conversion Rate bei einer Krankenversicherung - saracus consulting@tdwi Kongress. Neuaufbau des Online-Vertriebskanals und Analyse der Conversion Rate bei einer Krankenversicherung - saracus consulting@tdwi Kongress München 2014 Agenda 1 2 3 saracus stellt sich vor Der Online Vertriebskanal

Mehr

Self-Service Business Intelligence. Barthel, Björn, Key Account Manager Enterprise Information Management, Stuttgart

Self-Service Business Intelligence. Barthel, Björn, Key Account Manager Enterprise Information Management, Stuttgart Self-Service Business Intelligence Barthel, Björn, Key Account Manager Enterprise Information Management, Stuttgart Agenda Einleitung Self-Service Business Intelligence Definition(en) und Grundlage(n)

Mehr

Die Rolle von Stammdaten-Management in einer SOA

Die Rolle von Stammdaten-Management in einer SOA Die Rolle von Stammdaten-Management in einer SOA Frankfurt, Sept. 2007 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business Intelligence Rolle

Mehr

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 OPEN SYSTEMS CONSULTING IT-KOMPLETTDIENSTLEISTER IM MITTELSTAND GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 Business Analytics Sascha Thielke AGENDA Die Geschichte des Reporting Begriffe im BA Umfeld

Mehr

LC Systems. Christian Günther Head of Data Analytics

LC Systems. Christian Günther Head of Data Analytics LC Systems Christian Günther Head of Data Analytics Agenda» Kurzvorstellung LC Systems» Verständnis «Big Data» aus der Sicht LC Systems» Best Practice Ansätze Do s and dont s» Projektbeispiele 2 Über LC

Mehr

HP Big Data Anwendungsfälle

HP Big Data Anwendungsfälle HP Big Data Anwendungsfälle Bernd Mussmann, Strategist & Senior Principal HP Analytics & Data Management Services Agenda HP Day @TDWI 1 09:00-10:15 - BI Modernization: BI meets unstructured data 2 10.45-12.00

Mehr

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Big Data Herausforderungen und Chancen für Controller. ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Big Data Herausforderungen und Chancen für Controller ICV Jahrestagung, 19.05.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Organisationen Beratung Strategie

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

Best Practice für die Erstellung von Dashboards mit Web Intelligence A1. Uetliberg, 15.09.2015 www.boak.ch

Best Practice für die Erstellung von Dashboards mit Web Intelligence A1. Uetliberg, 15.09.2015 www.boak.ch Best Practice für die Erstellung von Dashboards mit Web Intelligence A1 Uetliberg, 15.09.2015 www.boak.ch AGENDA Einblick in IBCS (International Business Communication Standards) Erfassen der echten Anforderungen

Mehr

6. Oracle DWH Community Mainz 2011. Koexistenz SAP BW und mit unternehmensweitem zentralen DWH

6. Oracle DWH Community Mainz 2011. Koexistenz SAP BW und mit unternehmensweitem zentralen DWH 6. Oracle DWH Community Mainz 2011 Koexistenz SAP BW und mit unternehmensweitem zentralen DWH 2 6. Oracle DWH Community Mainz 2011 Agenda Vorstellung Globus Historische Entwicklung des DWH-Systems Globus

Mehr