4 Kondensatoren und Widerstände

Größe: px
Ab Seite anzeigen:

Download "4 Kondensatoren und Widerstände"

Transkript

1 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden. Ferner soll der mgang mit dem Oszilloskop vertieft werden. 4.2 Einleitung Elektronische Schaltungen sind heutzutage allgegenwärtig. Fast jedes elektrische Gerät, einschließlich vieler Toaster und Kaffeemaschinen, besitzt eine. Elektronische Schaltungen sind aus einzelnen Bauelementen aufgebaut, die auf einer Trägerplatine sitzen. Verbunden sind die einzelnen Bausteine über Leiterbahnen, die nicht auf eine Ebene beschränkt sein müssen (Stichwort Multilayer). In diesem Versuch soll das Verhalten zweier Grundelemente dieser Schaltungen bei Gleichspannung und bei Wechselspannung näher untersucht werden: Widerstand und Kondensator, wobei die Einflüsse des letzteren genauer betrachtet werden. 4.3 Versuchsdurchführung 4.3. Laden und Entladen eines Kondensators beim Ein- und Ausschalten von Gleichspannungen Theorie Ein Kondensator stellt in einem Gleichstromkreis einen unendlichen Widerstand dar. Nur während des Ein- bzw. Ausschaltvorgangs fließt ein Strom. Beim Einschalten bewirkt dieser Storm die Aufladung des Kondensators bis die angelegte Spannung erreicht ist. Entsprechend fließt beim Ausschalten die Ladung über einen Widerstand wieder ab. Der Spannungsverlauf am Kondensator kann mit einer Exponentialfunktion beschrieben werden. Für die Spannung beim Ausschaltvorgang gilt: t τ (t) = 0 e () mit τ: Zeitkonstante Die Zeitkonstante oder Abklingzeit τ ist die Zeit, in der die Spannung auf den Wert 0 e abgesunken ist. In der Halbwertszeit T ½ sinkt die Spannung auf die Hälfte ab. Nach () gilt: T 2 - τ ) 0 0 e 2 (T = = T ½ = τ ln 2 2 Die Zeitkonstante τ wird durch den Widerstand und die Kapazität bestimmt: τ = Damit gilt für die Halbwertszeit: T ½ = ln 2 (2) 24

2 In entsprechender Weise kann der Spannungsverlauf beim Einschaltvorgang betrachtet werden: (t) = 0 (- e t τ ) Abbildung : Schaltskizze zum Versuch 2.2. Im Experiment wird eine echteckspannung (t) und der Spannungsverlauf am Kondensator mit dem Oszilloskop dargestellt. Die Halbwertszeit T ½ wird über die Zeitablenkung bestimmt Versuchsdurchführung Überprüfen Sie die Gleichung (2) indem Sie zunächst die Abhängigkeit der Halbwertszeit T ½ von der Kapazität T ½ (3) und anschließend vom Widerstand T ½ (4) untersuchen. Abbildung 2: Prinzipieller Aufbau zum Versuch

3 Die echteckspannung des FG wird mit Kanal und der Spannungsabfall am Kondensator mit Kanal 2 gemessen. Darstellungsart auf DAL / HOP, Kopplung auf D, Zeitablenkung auf AL stellen. a) ntersuchen Sie das Auf- und Entladeverhalten eines Kondensators. = kω, = µf FG: echteckspannung mit f = 00 Hz, = 6 V (Darstellung auf dem Oszilloskop: mit einer geraden Anzahl von Kästchen). Bei der Entladung die Zeiten t für die Spannungsabfälle von 6 V auf 3 V und von 3 V auf,5 V messen, bei der Aufladung für die Spannungsanstiege von 0 V auf 3 V und von 3 V auf 4,5 V. b) ntersuchen Sie die Abhängigkeit der Halbwertszeit vom Widerstand ealisieren Sie eine Kapazität von = 0,5 µf Setzen Sie nacheinander verschiedene Widerstände ein (Werte in kω: 0,47 / /,47 / 2,2 / 2,67) Bestimmen Sie jeweils die Zeit t = T ½, in der die Spannung am Kondensator vom Maximum bis zur Hälfte abgesunken ist. c) ntersuchen Sie die Abhängigkeit der Halbwertszeit von der Kapazität Verwenden Sie den Widerstand = 470 Ω und testen Sie verschiedene Kapazitäten aus (Werte in µf: 0,33 / 0,5 / 0,67 / / 2). Bestimmen Sie jeweils die Zeit t = T ½, in der die Spannung am Kondensator vom Maximum bis zur Hälfte abgesunken ist. d) Geben Sie ALLE Messungen in Form von Tabellen an. e) Bestimmen Sie die Proportionalitätskonstante. f) Stellen Sie ALLE Ergebnisse grafisch dar. 26

4 4.3.2 Bestimmung des Kapazitiven Widersandes eines Kondensators im Wechselstromkreis Theorie Im Gegensatz zum Gleichstromkreis fließt in einem Wechselstromkreis mit Kondensator ein Strom. Der im Wechselstromkreis fließende Strom I wird durch den kapazitiven Widerstand (Wechselstromwiderstand X des Kondensators) und der Spannung bestimmt: I = X bzw. X = I Bei einer sinusförmigen Spannung ergibt sich eine Phasendifferenz zwischen Spannung und Strom. Die Spannung ist im Maximum, wenn der Strom null ist bzw. bei maximalem Strom ist die Spannung null, d.h. der Strom eilt der Spannung um 90 (π/2) voraus. Auf Grund des Leistungsfaktors cos ϕ wird am Kondensator also keine Leistung (P = I cosϕ) umgesetzt bzw. Energie umgewandelt. Deswegen wird ein kapazitiver Widerstand im Gegensatz zum ohmschen Widerstand auch als Blindwiderstand bezeichnet. Abbildung 3: Schaltskizze zum Versuch Im Experiment wird die Stromstärke I durch Messen des Spannungsabfalls am Widersand bestimmt und die Spannung am Kondensator direkt gemessen. Dazu werden mit dem Oszilloskop jeweils die Spitzenspannungen bestimmt. Für die Stromstärke gilt dann: I =. Damit wird der kapazitive Widerstand X = I berechnet. 27

5 Versuchsdurchführung Zum Aufstellen der Gleichung X = wird zunächst die Abhängigkeit des kapazitiven 2 π f Widerstandes von der Kapazität X und anschließend von der Frequenz X f untersucht. Abbildung 4: Prinzipieller Aufbau zum Versuch Der Spannungsabfall am Widerstand wird mit Kanal und der Spannungsabfall am Kondensator mit Kanal 2 gemessen. Darstellungsart auf DAL / HOP, Kopplung auf A, Y- und Zeitachse auf AL. Zur phasenrichtigen Darstellung der beiden Kurven Kanal 2 invertieren. a) ntersuchung der Phasenverschiebung. FG: Sinusspannung mit f = 5 khz, = 6 V, = 0 Ω Beide Kurven am Oszilloskop so einstellen, dass eine möglichst große Auslenkung und einige Schwingungen sichtbar sind. Vergleichen Sie die Lage der Maxima bzw. Minima des Spannungsverlaufs am Kondensator mit der Lage der Nulldurchgänge des Spannungsverlaufs am Widerstand. b) ntersuchen Sie die Abhängigkeit des kapazitiven Widerstandes von der Kapazität Frequenz f = 5000 Hz des FG durch Ablesen der Schwingungsdauer (welche?) am Oszilloskop genau einstellen. = Ω nterschiedliche Kapazitäten durch Parallel- bzw. eihenschaltung der Kondensatoren realisieren. Jeweils Spannungsabfälle (Spitzenspannungen) am Widerstand und Kondensator mit dem Oszilloskop bestimmen. 28

6 c) ntersuchen Sie die Abhängigkeit des kapazitiven Widerstandes von der Frequenz Aufbau mit = µf, = 0 Ω Variieren Sie die Frequenz am FG. Bestimmen Sie diese genau mit Hilfe des Oszilloskops. Bestimmen Sie jeweils die Spannungsabfälle (Spitzenspannungen) am Widerstand und Kondensator mit dem Oszilloskop. d) Geben Sie ALLE Messungen in Form von Tabellen an. e) Bestimmen Sie die Proportionalitätskonstante k in der Gleichung f) Stellen Sie ALLE Ergebnisse grafisch dar. X = k. f Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen Theorie Liegt an einem Kondensator mit der Kapazität eine Wechselspannung = 0 cos(ωt) mit ω = 2π f () an, so fließt ein Strom I = 0 ω cos(ωt + 2 ) (2) durch den Kondensator. Man weist daher dem Kondensator einen kapazitiven Wechselstromwiderstand X = (3) Zu. Der Strom ist gegenüber der Spannung um 90 phasenverschoben (s.o.) eihenschaltung Ist der Kondensator in eihe mit einem ohmschen Widerstand geschaltet, so fließt durch beide der gleiche Strom. Dieser lässt sich in der Form I = I 0 cos(ωt+ϕ S ) (4) Darstellen, wobei ϕ S zunächst noch unbekannt ist. Am ohmschen Widerstand fällt demnach eine Spannung = I 0 cos(ωt+ϕ S ) (5) nd am Kondensator die Spannung = X I 0 cos(ωt + ϕ S - 2 ) (6) ab. 29

7 Die Summe dieser beiden Spannungen ist S = X I 0 cos(ωt) (7) wenn ϕ S die Bedingung X tan ϕ S = (8) erfüllt. S stimmt mit der angelegten Spannung überein, folglich ist 0 = X I 0 (9) d.h. der eihenschaltung aus ohmschem Widerstand und Kondensator lässt sich der Wechselstromwiderstand Z S = X (0) zuweisen. Der Strom ist in dieser Anordnung um ϕ S gegenüber der Spannung phasenverschoben Parallelschaltung Ist der Kondensator parallel zum ohmschen Widerstand geschaltet, liegt an beiden die gleiche Spannung. Sie hat z.b. die in () angegebene Form. Durch den ohmschen Widerstand fließt jetzt der Strom 0 I = cos( t) () nd durch den Kondensator der Strom 0 I = cost + (2) X 2 Die Summe der beiden Ströme ist I P = cos(ωt+ϕ P ) (3) X mit tan ϕ P = X (4) Sie entspricht dem gesamten der Spannungsquelle entnommenen Strom. Also lässt sich der Parallelschaltung aus ohmschem Widerstand und Kondensator ein Wechselstromwiderstand Z P zuweisen, für den die Beziehung Z P = + (5) 2 2 X gilt. Der Strom ist in dieser Anordnung um ϕ P gegenüber der Spannung phasenverschoben. 30

8 Versuchsdurchführung Im Versuch werden der Strom I(t) und die Spannung (t) in einem Wechselstromkreis als zeitabhängige Größen gemessen. Aus den gemessenen Größen wird der Betrag des Gesamtwiderstandes Z und die Phasenverschiebung ϕ zwischen Strom und Spannung bestimmt. FG auf Sinus, Kanal mit FG verbinden, an Kanal 2 wird der Spannungsabfall am Messwiderstand m = Ω gemessen, Darstellung DAL, Trigger und Kopplung auf A a) eihenschaltung Abbildung 5: Prinzipieller Aufbau zum Versuch 2.2.3, eihenschaltung = 0 µf in eihe zu = 00 Ω Am FG 2 khz einstellen, Amplitude auf 5 V An Kanal 2 Amplitude des Signals ablesen und als Strom I 0 = m in die Tabelle Ω eintragen. Zeitabstand t der Nulldurchgänge der beiden Signale ablesen. Messung jeweils für F = µf und F= 0, µf wiederholen. Messungen für f = khz, 500 Hz, 200 Hz, 00 Hz und 50 Hz wiederholen. 3

9 b) Parallelschaltung Abbildung 6: Prinzipieller Aufbau zum Versuch 2.2.3, Parallelschaltung = 0 µf parallel zu = 00 Ω Messung a) wiederholen Messung jeweils für F = µf und F= 0, µf wiederholen. Messungen für f = khz, 500 Hz, 200 Hz, 00 Hz und 50 Hz wiederholen. c) Geben Sie ALLE Messungen in Form von Tabellen an. d) Berechnen Sie aus den Messdaten den jeweiligen Gesamtwiderstand und Phasenverschiebung. e) Geben Sie Ihre Ergebnisse in einer Übersichtstabelle an. f) Stellen Sie die Ergebnisse als Funktion des kapazitiven Wechselstromwiderstandes X grafisch dar. 32

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am 08.12.2011. Gruppe X Praktikum Physik Protokoll zum Versuch: Wechselstromkreise Durchgeführt am 08.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 4 Wechselstromwiderstände Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 3.09.202 Abgabe:

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April 2007. 1 Einführung 2 EO Oszilloskop Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Oszilloskop........................ 2 2.2 Auf- und Entladevorgang

Mehr

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ Praktikum Elektrotechnik SS 2006 Protokoll Übung 1 : Oszilloskop Gruppe: Protokollführer / Protokollführerin: Unterschrift: Mitarbeiter / Mitarbeiterin:

Mehr

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R =

Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 R = Grundlagen der Elektrotechnik: Wechselstromwiderstand Xc Seite 1 Versuch zur Ermittlung der Formel für X C In der Erklärung des Ohmschen Gesetzes ergab sich die Formel: R = Durch die Versuche mit einem

Mehr

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 2 Name: Pascal Hahulla Matrikelnr.: 207XXX Thema: Widerstände und Dioden Versuch durchgeführt

Mehr

EO - Oszilloskop Blockpraktikum Frühjahr 2005

EO - Oszilloskop Blockpraktikum Frühjahr 2005 EO - Oszilloskop, Blockpraktikum Frühjahr 25 28. März 25 EO - Oszilloskop Blockpraktikum Frühjahr 25 Alexander Seizinger, Tobias Müller Assistent René Rexer Tübingen, den 28. März 25 Einführung In diesem

Mehr

Brückenschaltungen (BRUE)

Brückenschaltungen (BRUE) Seite 1 Themengebiet: Elektrodynamik und Magnetismus 1 Literatur W. Walcher, Praktikum der Physik, 3. Aufl., Teubner, Stuttgart F. Kohlrausch, Praktische Physik, Band 2, Teubner, 1985 W. D. Cooper, Elektrische

Mehr

Aufgabenbeschreibung Oszilloskop und Schaltkreise

Aufgabenbeschreibung Oszilloskop und Schaltkreise Aufgabenbeschreibung Oszilloskop und Schaltkreise Vorbereitung: Lesen Sie den ersten Teil der Versuchsbeschreibung Oszillograph des Anfängerpraktikums, in dem die Funktionsweise und die wichtigsten Bedienungselemente

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

R C 1s =0, C T 1

R C 1s =0, C T 1 Aufgaben zum Themengebiet Aufladen und Entladen eines Kondensators Theorie und nummerierte Formeln auf den Seiten 5 bis 8 Ein Kondensator mit der Kapazität = 00μF wurde mit der Spannung U = 60V aufgeladen

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz.

2. Graphische Darstellung des Phasenwinkels als Funktion der Frequenz. E a Phasenbeziehungen und RC-Filter Toshiki Ishii (Matrikel 3266690) 7.06.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Ermitteln des Phasenverlaufes zwischen Strom und Spannung mithilfe

Mehr

Hochpass, Tiefpass und Bandpass

Hochpass, Tiefpass und Bandpass Demonstrationspraktikum für Lehramtskandidaten Versuch E3 Hochpass, Tiefpass und Bandpass Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

Vorbereitung zur Verwendung des Elektronenstrahl-Oszilloskops

Vorbereitung zur Verwendung des Elektronenstrahl-Oszilloskops Vorbereitung zur Verwendung des Elektronenstrahl-Oszilloskops Armin Burgmeier (347488) Gruppe 5 8. November 2007 Inhaltsverzeichnis Kennenlernen der Bedienelemente 2 2 Messungen im Zweikanalbetrieb 3 2.

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren.

3. Bestimmung der Frequenz einer Sinusspannung anhand von mindestens fünf Lissajous-Figuren. E 3a Messungen mit dem Oszilloskop Toshiki Ishii (Matrikel 3266690) 29.04.203 Studiengang Chemie (Bachelor of Science) Aufgabenstellung. Bestimmung der Ablenkempfindlichkeiten s des Oszilloskops durch

Mehr

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen

Zusammenstellung der in TARGET 3001! simulierten Grundschaltungen Simulieren mit TARGET 31! Seite 1 von 24 Zusammenstellung der in TARGET 31! simulierten Grundschaltungen Alle simulierten Schaltungen sind als TARGET 31!Schaltungen vorhanden und beginnen mit SIM LED Kennlinie...2

Mehr

Das Oszilloskop als Messinstrument

Das Oszilloskop als Messinstrument Verbesserung der Auswertung Das Oszilloskop als Messinstrument Carsten Röttele Stefan Schierle Versuchsdatum: 29. 11. 2011 Inhaltsverzeichnis 1 Kennenlernen der Bedienelemente 2 2 Messungen im Zweikanalbetrieb

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik. 1. Aufgabenstellung. Versuch E7a - Wechselstromwiderstände Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Name: Versuch E7a - Wechselstromwiderstände Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Bestimmen Sie die Impedanz

Mehr

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

Gleichstrom/Wechselstrom

Gleichstrom/Wechselstrom Gleichstrom/Wechselstrom 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 31.05.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Definition des Widerstandes Der

Mehr

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO Seite - 1 - Bestimmung des kapazitiven (Blind-)Widerstandes und (daraus) der KapazitÄt eines Kondensators, / Effektivwerte von WechselstromgrÅÇen 1. Theoretische Grundlagen Bei diesem Experiment soll zunächst

Mehr

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007

Protokoll zum Versuch E7: Elektrische Schwingkreise. Abgabedatum: 24. April 2007 Protokoll zum Versuch E7: Elektrische Schwingkreise Sven E Tobias F Abgabedatum: 24. April 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Physikalischer Zusammenhang 3 2.1 Wechselstromwiderstände (Impedanz)...............

Mehr

Praktikum GEE Grundlagen der Elektrotechnik Teil 3

Praktikum GEE Grundlagen der Elektrotechnik Teil 3 Grundlagen der Elektrotechnik Teil 3 Jede Gruppe benötigt zur Durchführung dieses Versuchs einen USB-Speicherstick! max. 2GB, FAT32 Name: Studienrichtung: Versuch 11 Bedienung des Oszilloskops Versuch

Mehr

Fokussierung des Elektronenstrahls ist mit dem Regler Focus mglich.

Fokussierung des Elektronenstrahls ist mit dem Regler Focus mglich. Theorie Das Oszilloskop: Das Oszilloskop ist ein Messgerät welches Spannungen als Funktion der Zeit erfasst und graphisch darstellen kann. Besonderer Vorteil ist das eine Spannung als Funktion einer zweiten

Mehr

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker

Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom. von Sören Senkovic und Nils Romaker Physikalisches Grundpraktikum II Grundversuch 2.2 Wechselstrom von Sören Senkovic und Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Versuchsdurchführung...........................................

Mehr

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen. Spannung und Strom E: Klasse: Spannung Die elektrische Spannung gibt den nterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei Pole, mit unterschiedlichen Ladungen. uf der

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis TG TECHNOLOGISCHE GRUNDLAGEN Inhaltsverzeichnis 9 Einphasenwechselspannung 9.1 Induktivität einer Drosselspule (Fluoreszenzleuchte) 9.2 Induktivität ohne Eisenkern an Wechselspannung 9.3 Induktivität mit

Mehr

Protokoll zum Versuch. Verwendung des Elektronenstrahl-Oszilloskops

Protokoll zum Versuch. Verwendung des Elektronenstrahl-Oszilloskops Protokoll zum Versuch Verwendung des Elektronenstrahl-Oszilloskops Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Kennenlernen der Bedienelemente Wir haben den Ausgang eines Frequenzgenerators

Mehr

UET-Labor Analogoszilloskop 24.10.2002

UET-Labor Analogoszilloskop 24.10.2002 Inhaltsverzeichnis 1. Einleitung 2. Inventarverzeichnis 3. Messdurchführung 3.1 Messung der Laborspannung 24V 3.2 Messung der Periodendauer 3.3 Messung von Frequenzen mittels Lissajousche Figuren 4. Auswertung

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Versuch 14: Wechselstromwiderstände

Versuch 14: Wechselstromwiderstände Versuch 14: Wechselstromwiderstände Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Grundlagen................................... 3 2.2 Bauteile..................................... 3 2.3 Stromkreise...................................

Mehr

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat?

m kg b) Wie groß muss der Durchmesser der Aluminiumleitung sein, damit sie den gleichen Widerstand wie die Kupferleitung hat? Aufgabe 1: Widerstand einer Leitung In einem Flugzeug soll eine Leitung aus Kupfer gegen eine gleich lange Leitung aus Aluminium ausgetauscht werden. Die Länge der Kupferleitung beträgt 40 m, der Durchmesser

Mehr

P2-61: Operationsverstärker

P2-61: Operationsverstärker Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Auswertung Matthias Ernst Matthias Faulhaber Karlsruhe, den 16.12.2009 Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker

Mehr

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis

Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Praktikum Elektronik 1 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Versuchsdatum: 0. 04. 00 Allgemeines: Empfindlichkeit: gibt an, welche Spannungsänderung am Y- bzw. X-Eingang notwendig ist,

Mehr

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende

Mehr

Wechselstromwiderstände - Formeln

Wechselstromwiderstände - Formeln Wechselstromwiderstände - Formeln Y eitwert jω Induktiver Widerstand jω j ω Kapazitiver Widerstand X ω Induktiver Blindwiderstand X ω Kapazitiver Blindwiderstand U U U I di dt Idt Teilspannungen an Widerstand,

Mehr

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Mehr Informationen zum Titel 6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Bearbeitet von Manfred Grapentin 6.1 Arten und Eigenschaften von elektrischen Widerständen

Mehr

LW7. Wechselstrom Version vom 16. November 2015

LW7. Wechselstrom Version vom 16. November 2015 Wechselstrom Version vom 16. November 2015 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Wechselspannung und Wechselstrom.................

Mehr

E6 WECHSELSPANNUNGSMESSUNGEN

E6 WECHSELSPANNUNGSMESSUNGEN E6 WECHSELSPANNNGSMESSNGEN PHYSIKALISCHE GRNDLAGEN Wichtige physikalische Grundbegriffe: elektrische Spannung, Gleichspannung, Wechselspannung, Frequenz, Amplitude, Phase, Effektivwert, Spitzenwert, Oszilloskop,

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

352 - Halbleiterdiode

352 - Halbleiterdiode 352 - Halbleiterdiode 1. Aufgaben 1.1 Nehmen Sie die Kennlinie einer Si- und einer Ge-Halbleiterdiode auf. 1.2 Untersuchen Sie die Gleichrichtungswirkung einer Si-Halbleiterdiode. 1.3 Glätten Sie die Spannung

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

Oszilloskop/Elektrische Schwingungen

Oszilloskop/Elektrische Schwingungen 11-1 Oszilloskop/Elektrische Schwingungen 1. Vorbereitung : Kathodenstrahloszilloskop; Komplexe Formulierung der Wechselstromlehre; Hoch- und Tiefpaß; Reihenschwingkreis, elektrische Schwingungen. Literatur

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

U C = U o -U R = U o (1 - e - t

U C = U o -U R = U o (1 - e - t 43 VERSUCH 6: KONDENSATOR UND INDUKTIVITÄT - WECHSELSTROM 6A Ein- und Ausschaltvorgänge Wird ein Kondensator der Kapazität C ü- ber einen Widerstand R mit einer konstanten Spannung U o verbunden, so lädt

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

Spannungsstabilisierung

Spannungsstabilisierung Spannungsstabilisierung 28. Januar 2007 Oliver Sieber siebero@phys.ethz.ch 1 Inhaltsverzeichnis 1 Zusammenfassung 4 2 Einführung 4 3 Bau der DC-Spannungsquelle 5 3.1 Halbwellengleichrichter........................

Mehr

1. Ablesen eines Universalmessgerätes und Fehlerberechnung

1. Ablesen eines Universalmessgerätes und Fehlerberechnung Laborübung 1 1-1 1. Ablesen eines Universalmessgerätes und Fehlerberechnung Wie groß ist die angezeigte elektrische Größe in den Bildern 1 bis 6? Mit welchem relativen Messfehler muss in den sechs Ableseübungen

Mehr

- Erwerb von Fertigkeiten bei der meßtechnischen Untersuchung von. - Leistungsbegriffe bei Wechselstrom, Leistungsfaktor

- Erwerb von Fertigkeiten bei der meßtechnischen Untersuchung von. - Leistungsbegriffe bei Wechselstrom, Leistungsfaktor Praktikumsaufgabe Pk 2: R, L, C bei Wechselstrom Versuchsziel:.- - Festigung und Vertiefung der Kenntnisse zum Wechselstromverhalten von R,L,C-Schaltungen - Erwerb von Fertigkeiten bei der meßtechnischen

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

Elektrotechnisches Praktikum II

Elektrotechnisches Praktikum II Elektrotechnisches Praktikum II Versuch 2: Versuchsinhalt 2 2 Versuchsvorbereitung 2 2. Zeitfunktionen................................ 2 2.. Phasenverschiebung......................... 2 2..2 Parameterdarstellung........................

Mehr

4.5 Wechselstromkreise

4.5 Wechselstromkreise 4.5 Wechselstromkreise Wechselstrom in vielen Punkten praktischer: ransformatoren Elektromotoren Frequenz als Referenz... Prinzip der Erzeugung einer sinusförmigen Wechselspannung: V: Wechselstromgenerator

Mehr

Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s.

Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s. Versuch 6 Oszilloskop und Funktionsgenerator Seite 1 Versuch 6: Oszilloskop und Funktionsgenerator Zweck des Versuchs: Umgang mit Oszilloskop und Funktionsgenerator; Einführung in Zusammenhänge Ausstattung

Mehr

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen Physik-Praktikum für Studierende des Studiengangs Fach-Bachelor Chemie Teil Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen Wintersemester 5/6 Carl von Ossietzky niversität Oldenburg Institut für

Mehr

Auswertung P1-33 Oszilloskop

Auswertung P1-33 Oszilloskop Auswertung P1-33 Oszilloskop Michael Prim & Tobias Volkenandt 12. Dezember 2005 Aufgabe 1.1 Triggerung durch Synchronisation In diesem und den beiden folgenden Versuchen sollte die Triggerfunktion des

Mehr

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing.

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing. TFH Berlin Messtechnik Labor Seite 1 von 5 Das Oszilloskop Ort: TFH Berlin Datum: 05.01.04 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00h bis 11.30 Uhr Prof. Dr.-Ing. Klaus Metzger Mirko Grimberg, Udo Frethke,

Mehr

Protokoll zum Grundversuch Wechselstrom

Protokoll zum Grundversuch Wechselstrom Protokoll zum Grundversuch Wechselstrom Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Sommersemester 2007 Grundpraktikum II 15.05.2007 Inhaltsverzeichnis 1 Ziel 2 2 Grundlagen 2 2.1 Wechselstrom................................

Mehr

306 Der elektrische Grundstromkreis

306 Der elektrische Grundstromkreis Friedrich-Schiller-niversität Jena 306 Der elektrische Grundstromkreis Der Lehrinhalt des ersuchs besteht darin, die Eigenschaften eines elektrischen Gleichstromkreises zu vermitteln und insbesondere die

Mehr

E4 Wechselstromwiderstände

E4 Wechselstromwiderstände Physikalische Grundlagen Grundbegriffe (ohmsche, induktive und kapazitive) Leistung im Wechselstromkreis Effektivwerte Zeigerdiagramm Reihen- und Parallelschwingkreis. Die Bestimmung von Widerständen in

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop TFH Berlin Messtechnik Labor Seite 1 von 7 Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop Ort: TFH Berlin Datum: 07.04.2004 Uhrzeit: von 8.00 bis 11.30 Dozent: Kommilitonen: Prof. Dr.-Ing.

Mehr

Versuch 21: Der Transistor

Versuch 21: Der Transistor Versuch 21: Der Transistor Protokoll Namen: Christina Thiede Datum der Durchführung: 18.10.2004 Martin Creutziger Assistent: Alexander Weismann Gruppe: A6 testiert: 1 Einleitung Neben dem Vermitteln eines

Mehr

Praktikum Elektronik für Wirtschaftsingenieure. Messungen mit Multimeter und Oszilloskop

Praktikum Elektronik für Wirtschaftsingenieure. Messungen mit Multimeter und Oszilloskop Praktikum Elektronik für Wirtschaftsingenieure Versuch Messungen mit Multimeter und Oszilloskop 1 Allgemeine Hinweise Die Aufgaben zur Versuchsvorbereitung sind vor dem Versuchstermin von jedem Praktikumsteilnehmer

Mehr

E 1 - Grundversuche Elektrizitätslehre

E 1 - Grundversuche Elektrizitätslehre Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKIKUM FÜR ANFÄNGER Versuch: E 1 - Grundversuche Elektrizitätslehre Mit diesem Versuch sollen Sie in die Messung elektrischer Grundgrößen

Mehr

Praktikumsbericht Nr.6

Praktikumsbericht Nr.6 Praktikumsbericht Nr.6 bei Pro. Dr. Flabb am 29.01.2001 1/13 Geräteliste: Analoge Vielachmessgeräte: R i = Relativer Eingangswiderstand ür Gleichspannung Gk = Genauigkeitsklasse Philips PM 2503 Gk.1 R

Mehr

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen. 4.2 Vorversuche zu Wechselstromwiderständen

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen. 4.2 Vorversuche zu Wechselstromwiderständen Kapitel 4 Elektrizitätslehre 4.1 Grundlagen, Definitionen 4.2 Vorversuche zu Wechselstromwiderständen 4.2.1 Ohmscher Widerstand 4.2.2 Kapazitiver Widerstand 4.2.3 nduktiver Widerstand 4.3 Wechselstromschwingkreise

Mehr

Peter Lawall. Thomas Blenk. Praktikum Messtechnik 1. Hochschule Augsburg. Versuch 4: Oszilloskop. Fachbereich: Elektrotechnik.

Peter Lawall. Thomas Blenk. Praktikum Messtechnik 1. Hochschule Augsburg. Versuch 4: Oszilloskop. Fachbereich: Elektrotechnik. Hochschule Augsburg Fachbereich: Elektrotechnik Arbeitsgruppe: 8 Praktikum Messtechnik 1 Versuch 4: Oszilloskop Arbeitstag :26.11.2009 Einliefertag: 03.12.2009 Peter Lawall Thomas Blenk (Unterschrift)

Mehr

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Spule und Transformator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T301 n eine Spule wird über einen Widerstand eine Gleichspannung angelegt. Welches der nachfolgenden iagramme zeigt den

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop

1. Oszilloskop. Das Oszilloskop besitzt zwei Betriebsarten: Schaltsymbol Oszilloskop . Oszilloskop Grundlagen Ein Oszilloskop ist ein elektronisches Messmittel zur grafischen Darstellung von schnell veränderlichen elektrischen Signalen in einem kartesischen Koordinaten-System (X- Y- Darstellung)

Mehr

E 3a Messungen mit dem Oszilloskop

E 3a Messungen mit dem Oszilloskop Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum E 3a Messungen mit dem Oszilloskop Aufgaben 1. Charakterisieren Sie die an den Ausgängen einer Generatorbox anliegenden Spannungen

Mehr

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit

Mehr

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1.

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1. Wechselstromkreise Christopher Bronner, Frank Essenberger Freie Universität Berlin 29. September 2006 Inhaltsverzeichnis 1 Physikalische Grundlagen 1 2 Aufgaben 5 3 Messprotokoll 5 3.1 Geräte.................................

Mehr

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung

Oszilloskope. Fachhochschule Dortmund Informations- und Elektrotechnik. Versuch 3: Oszilloskope - Einführung Oszilloskope Oszilloskope sind für den Elektroniker die wichtigsten und am vielseitigsten einsetzbaren Meßgeräte. Ihr besonderer Vorteil gegenüber anderen üblichen Meßgeräten liegt darin, daß der zeitliche

Mehr

Versuch VM 5 (Veterinärmedizin) Messungen mit dem Oszilloskop

Versuch VM 5 (Veterinärmedizin) Messungen mit dem Oszilloskop Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 5 (Veterinärmedizin) Messungen mit dem Oszilloskop Aufgaben 1. Um die wichtigsten Bedienelemente des im Versuch verwendeten

Mehr

Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen

Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen 30 April 2014 Elektrizitätslehre II Martin Loeser Laborpraktikum 5 Dynamische Schaltvorgänge bei Kondensatoren und Spulen 1 Lernziele Bei diesem Versuch werden Einschaltvorgänge von Kondensatoren und Spulen

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr