Geometrie-Dossier Symmetrie in der Ebene

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Geometrie-Dossier Symmetrie in der Ebene"

Transkript

1 Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier orientiert ich am Unterricht und liefert eine Theorie-Zuammenfaun. ei Kontruktionen ind natürlich viele Wee mölich, hier wurde al Muterlöun jeweil ein mölicht einfacher We ewählt. einfache ufaben ind mit einem ekennzeichnet chwieriere ufaben ind mit einem ekennzeichnet. ie ufaben müen in der Freizeit (oder in der Hauaufabentunde) elöt werden. Sie können jederzeit zur Kontrolle abeeben werden, die Löunen können aber auch elbtändi verlichen werden. Fraen dürfen natürlich auch immer etellt werden. chtun: Kontruktionen unbedint mit Zirkel, Matab, epitztem leitift durchführen. Feine Striche verwenden! eachten: Kontruktionen: Löunen rot (weitere Löunen in ähnlichen Farben, orane, elb, etc.) Skizzen: Geebene GRÜN, Geuchte ROT. Ret leitift oder chwarzer Fineliner.

2 1. Symmetrie und bbildun: eriffe 1.1 Symmetrie Symmetrie it eine Eienchaft einer Fiur. Wenn du alo eine Fiur anchaut, ie in keiner rt und Weie verändert kannt du entweder fettellen, da die Fiur auf irend eine rt ymmetrich it (achenymmetrich, drehymmetrich oder punktymmetrich) oder ie it e nicht. Symmetrie it alo eine paive Eienchaft (wo man nicht machen mu, e it entweder da oder nicht). 1.2 bbildun Im Geenatz zur Symmetrie it die bbildun eine dynamiche, aktive Sache. ie bbildun produziert ein ild, macht alo au einer Oriinalfiur eine neue ildfiur (die dann zuätzlich zur Oriinalfiur da it). Eine bbildun it zum eipiel dein Spieelbild, wenn du am Moren im adezimmer teht (e entteht ein neue ild von dir!). In Kürze: Symmetrie: Eienchaft einer Fiur. ie Fiur it ymmetrich oder nicht. bbildun: Erzeut eine neue ildfiur. Jede Fiur kann abebildet werden. 2. chenymmetrie und Geradenpieelun 2.1 chenymmetrie Eine Fiur it achenymmetrich, wenn ie ich o falten lät, da die beiden Hälften der Fiur ich volltändi abdecken. er Falz it dann die Symmetrieache. Sehen wir un die beiden untentehenden Fiuren an: Fiur 1 (achenymmetrich) Fiur 2 (nicht achenymmetrich) iee Fiur it achenymmetrich, denn ie lät ich o falten, da die beiden Hälften ich volltändi bedecken (Faltz entlan der einezeichneten che ). Wenn wir diee Fiur entlan der che falten, wird der Fortatz auf der linken Seite vortehen. ie beiden Hälften ind alo nicht deckunleich. dieer Fortatz tört die Symmetrie ie Faltun verläuft dabei wie folt: ie Faltun verläuft dabei wie folt: oier Symmetrie.doc.Räz Seite 2

3 2.2 Geradenpieelun ie Geradenpieelun it eine bbildun, die au einer Oriinalfiur eine achenymmetriche ildfiur erzeut (a bedeutet alo, da die Oriinalfiur nach der bbildun achenymmetrich it zur ildfiur. abei it die Spieelache nachher die Symmetrieache). In der untentehenden Fiur findet du ein Oriinalfiur (die uanfiur ), welche durch Geradenpieelun abebildet wurde. uf diee Weie it die ildfiur ( da Erebni der Geradenpieelun ) enttanden. Wenn man jetzt entlan der Symmetrieache da latt falten würde, würden die beiden Fiuren wieder deckunleich) er Umlaufinn der Fiur ändert (o wie beim Spieelbild alle eitenverkehrt it) Wie aber eht man vor, wenn man eine Fiur mittel Geradenpieelun abbilden will? 1 2 Zeichne eine Senkrechte (=Lot) auf die Symmetrieache, welche durch den Punkt eht. 3 Nimm den btand von der Symmetrieache zum Punkt in den Zirkel. Trae ihn auf die andere Seite ab. So entteht der ildpunkt. 4 ie Schritte 1 und 2 wiederholt du für jeden Eckpunkt. (lternative für Schritt 2: Parallel verchieben) Jetzt kannt du alle ildpunkt miteinander verbinden und bit ferti. eachte: Gerade und ihre ilderade chneiden ich auf der Symmetrieache! Markiere die Löun rot.! oier Symmetrie.doc.Räz Seite 3

4 offizielle bbildunvorchrift (ezeichnunen beziehen ich auf die Fiur anz oben auf Seite 3): Man erhält den ildpunkt eine Punkte indem man durch eine enkrechte Gerade auf die che S (LOT) zeichnet. er Schnittpunkt dieer Lottrecke und der che it der Fupunkt P. uf der Lottrecke trät man nun die Strecke P von P au auf die andere Seite ab und erhält o ie Oriinalfiur und die ildfiur ind jetzt achenymmetrich bezülich der Symmetrieache. ie brint un zur Frae, welche Eienchaften Oriinal- und der ildfiur nun haben müen, weil ie eben achenymmetrich ind: Eienchaften von Oriinal- und ildfiur (ezeichnunen beziehen ich auf die Fiur anz oben auf Seite 3): 1. Oriinal und ildfiur ind deckunleich (=konruent) (a Zeichen bedeutet konruent) 2. ie Symmetrieache halbiert die Verbinduntrecken von, uw und bildet mit ihnen rechte Winkel ( it Mittelenkrechte von, uw.) lle Senkrechten ind zueinander parallel. 3. ie Symmetrieache halbiert den Winkel zwichen der Geraden und ihrer ilderaden. Sie it omit Winkelhalbierende von Q ( bedeutet: Winkel) 4. lle ildtrecken ind leich lan wie die Oriinaltrecken (länentreu), alle Winkel bleiben erhalten (winkeltreu). 5. er Schnittpunkt von Geraden mit ihren ilderaden liet auf der Symmetrieache. (wobei zur che parallele Geraden auf zur che parallelen ilderaden abebildet werden.. Wichtie zuätzliche eriffe und erifferklärunen: In der Geometrie werden immer wieder verchiedene eriffe verwendet, die eine anz betimmte edeutun haben. arum it e wichti, diee eriffe zu kennen. ie für diee Thema wichtien eriffe findet du darum hier! Entfernun zweier Punkte: ie Verbinduntrecke heit Entfernun der Punkte und. iee Entfernun wird mit bezeichnet. er Quertrich it alo ein Symbol für einen Mewert ). Lot (Lottrecke) und Fupunkt: F ie Senkrechte auf eine Gerade (oder auf eine Strecke) wird al Lot oder Lottrecke bezeichnet. (Hier: Lot auf durch den Punkt ). er Schnittpunkt von Lottrecke und Gerade heit Fupunkt F. btand eine Punkte von einer Gerade (oder Strecke): F ie kleinte Entfernun de Punkte von der Gerade heit btand de Punkte von. (ie wird mit dem Symbol bechrieben). nder eat: er btand de Punkte von der Geraden bezeichnet die kleinte Entfernun von zu einem Punkt von. oier Symmetrie.doc.Räz Seite 4

5 ufaben chenymmetrie und Geradenpieelun: 1. Spiele die eebenen Fiuren an der Symmetrieache : a) b) c) d) oier Symmetrie.doc.Räz Seite 5

6 2. Geeben ind die Punkte, und da ild von =. Kontruiere den ildpunkt und lae alle Kontruktionlinien tehen 3. Kontruiere die Symmetrieache und da ild der Geraden 4. Geeben it da Viereck. Kontruiere da achenymmetriche ild dieer Fiur, wobei die Ecke mit der Ecke zuammenfällt.: 5. Kontruiere da achenymmetriche ild der Geraden p, q und r. Verbinde danach alle Schnittpunkte der Geraden zu einem Fünfeck. emale den enttandenen Stern rot. q p r 6. Suche den kürzeten We von nach, a) wobei die Gerade berührt werden mu b) wobei zuert, dann h berührt werden mu h oier Symmetrie.doc.Räz Seite 6

7 3. rehymmetrie und rehun (rehpieelun) 3.1 rehymmetrie Eine Fiur it drehymmetrich, wenn ie ich o drehen lät, da ie ich nach einer rehun um einen Winkel (der nicht 360 oder ein Vielfache davon) wieder volltändi abdeckt. er Punkt, um den man edreht hat, it dann der rehpunkt, der kleinte Winkel, um den man drehen mu, damit die Fiur ich volltändi abdeckt, heit dann rehwinkel. Sehen wir un die beiden untentehenden Fiuren an: Fiur 1 (drehymmetrich) Fiur 2 (nicht drehymmetrich) iee Fiur it drehymmetrich, denn ie lät ich o drehen, da die edrehte Fiur die urprünliche Fiur wieder abdeckt. rehen wir diee Fiur um den Punkt M, o wird ie ert nach einer vollen rehun (360 ) wieder zur volltändien eckun kommen. ie rehun erfolt um den Punkt (rehpunkt). abei öffnet ich der rehwinkel α. er rehwinkel α= 120 erzeut keine deckunleiche Fiur! uch mit 240 wird e nicht klappen, der Fortatz tört die Symmetrie! α α ie edrehte Fiur deckt die urprünliche Fiur volltändi ab. (iee Fiur würde ich auch weiterdrehen laen, e ibt weitere zwei rehwinkel, die diee Fiur o dreht, da ie ich volltändi abdeckt. ennoch wird normalerweie nur der kleinte rehwinkel aneeben). In dieem Fall it der rehwinkel α = 120 (a reieck kommt in 3 Poitionen volltändi zur eckun. a eine volle rehun = 360 it, o entpricht uner α = 360 : 3 = 120 Ert die volltändie rehun um 360 brint die Fiur wieder zur eckun. ie ilt aber für jede beliebie Fiur und it darum kein Grund, da eine Fiur al drehymmetrich ilt. Eine Fiur mit einem rehwinkel von 360 oder einem Vielfachen von 360 ilt NIHT al drehymmetrich. ie rehfolie it ein ute Hilfmittel, um drehymmetriche Fiuren zu erkennen! oier Symmetrie.doc.Räz Seite 7

8 rehun (rehpieelun) ie rehun it eine bbildun, die au einer Oriinalfiur eine drehymmetriche ildfiur erzeut (a bedeutet alo, da die Oriinalfiur nach der bbildun drehymmetrich it zur ildfiur). In der untentehenden Fiur findet du ein Oriinalfiur (die uanfiur ), welche durch rehun abebildet wurde. uf diee Weie it die ildfiur ( da Erebni der rehun ) enttanden. pezielle rehwinkel: volle rehun 360 halbe rehun: 180 Vierteldrehun: 90 uw. er Umlaufinn der Fiur bleibt erhalten (die Fiur wird ja blo edreht) Um eine rehun durchzuführen, müen wir folende Gröen kennen: 1. der rehpunkt (Um welchen Punkt dreht man?) 2. der rehwinkel α in (Um welchen Winkel dreht man?) 3. der rehinn (lo die Richtun, in welche man drehen oll, aneeben al Uhrzeier- oder Geenuhrzeierinn). Wie aber eht man vor, wenn man eine Fiur mittel rehun abbilden will? Hier wird eine rehun um den Punkt im Uhrzeierinn um 105 verlant. Verbinde den rehpunkt mit allen Eckpunkten der Oriinalfiur und zeichne für jeden Punkt einen rehwe mit dem Zirkel (bei eintecken) ein. Jetzt mit du den rehwinkel für den erten Punkt (hier P) mit dem Geodreieck ab. So erhältt du P. Genau o findet du auch die anderen ildpunkte. Verbinde die ildpunkte miteinander und markiere die Löun mit rot. chte beim Übertraen der ildpunkte anz enau, da du die richtie Wanderbahn de Oriinalpunkte erwicht. So kannt du Fehler vermeiden! oier Symmetrie.doc.Räz Seite 8

9 offizielle bbildunvorchrift (ezeichnunen beziehen ich auf die Fiur anz oben auf Seite 8): Man erhält den ildpunkt eine Punkte indem man die Strecke um den rehwinkel α um in rehrichtun dreht da heit, man trät den Winkel α in die entprechende Richtun ab (Uhrzeier- oder Geenuhrzeierinn) Objekte ind nur punktweie drehbar (da heit, man mu jeden Punkt einzeln drehen, man kommt auf keinem anderen We zum Ziel) ie Oriinalfiur und die ildfiur ind jetzt drehymmetrich bezülich de rehpunkte und dem rehwinkel α. ie brint un zur Frae, welche Eienchaften Oriinal- und der ildfiur nun haben müen, weil ie eben drehymmetrich ind: Eienchaften von Oriinal- und ildfiur (ezeichnunen beziehen ich auf die Fiur anz oben auf Seite 8): 1. Oriinal und ildfiur ind deckunleich (=konruent) (a Zeichen bedeutet konruent, da Zeichen bedeutet reieck ) 2. Oriinal und ild haben leichen Umlaufinn. 3. lle ildtrecken ind leich lan wie die Oriinaltrecken (länentreu), alle Winkel bleiben erhalten (winkeltreu). 4. Geraden werden nicht auf parallele Geraden abebildet. ufaben rehymmetrie und rehun: 1. rehe da reieck: a) Um 70 im Uhrzeierinn um b) um 40 im Geenuhrzeierinn um 2. rehe die Fiur: a) Um 145 im Uhrzeierinn um den b) um 50 im Geenuhrzeierinn um den Schnitt- Schnittpunkt der iaonalen punkt von und oier Symmetrie.doc.Räz Seite 9

10 3. rehe die Gerade a) um 75 im Geenuhrzeierinn b) um 110 im Uhrzeierinn 4. rehe die Gerade o, a) da enkrecht auf zu tehen kommt b) da parallel zu zu lieen kommt 5. rehe die Gerade o, a) da enkrecht auf h zu tehen kommt b) da parallel zu h zu lieen kommt h h Fraen / emerkunen: oier Symmetrie.doc.Räz Seite 10

11 4. Punktymmetrie und Punktpieelun 4.1 Punktymmetrie Eine Fiur it punktymmetrich, wenn ie ich nach einer rehun um 180 wieder volltändi abdeckt. Hierzu ibt e kein beondere eipiel, denn rehunen hat du erade eben behandelt. Wenn du alo jetzt nicht anz icher bit, chaue unter rehun und rehymmetrie nach. 4.2 Punktpieelun ie Punktpieelun it ein Spezialfall der rehun (rehun um 180 ). Entprechend kann man jede Punktpieelun al rehun behandeln. ennoch it der Voran der Punktpieelun noch eine Spur einfacher und darum wird dieer Voran peziell behandelt: In der untentehenden Fiur findet du ein Oriinalfiur (die uanfiur ), welche durch Punktpieelun abebildet wurde. uf diee Weie it die ildfiur ( da Erebni der Punktpieelun ) enttanden. er Umlaufinn der Fiur bleibt erhalten (die Fiur wird ja blo um 180 edreht) ezeichnunänderun bei der Punktpieelun im Verleich zur rehun: der rehpunkt heit neu: Zentrum Z Wie enau it nun diee eänderte Vorehen? 1 2 Verbinde da Symmetriezentrum Z mit allen Eckpunkten der Oriinalfiur (Zeichne diee Verbindunen al Geraden ein!) 3 Mit dem Zirkel trät du die Entfernun der Eckpunkte der Oriinalfiur zu Z auf die andere Seite ab (Hier ezeit für Z). So erhältt du den jeweilien ildpunkt. uf diee Weie erhältt du alle ildpunkte, diee kannt du verbinden. Markiere die Löun rot. ei der Punktpieelun kannt du, obald du einen ildpunkt efunden hat, mit Parallelverchieben weiterarbeiten ( it parallel zu, it parallel zu und o weiter) oier Symmetrie.doc.Räz Seite 11

12 offizielle bbildunvorchrift (ezeichnunen beziehen ich auf die Fiur anz oben auf Seite 11): Man erhält den ildpunkt eine Punkte indem man die Strecke Z über Z hinau um ich elber verlänert Z wird dann Mittelpunkt der Strecke. ie Oriinalfiur und die ildfiur ind jetzt punktymmetrich bezülich de Symmetriezentrum Z. ie brint un zur Frae, welche Eienchaften Oriinal- und der ildfiur nun haben müen, weil ie eben punktymmetrich ind: Eienchaften von Oriinal- und ildfiur (ezeichnunen beziehen ich auf die Fiur anz oben auf Seite 11): 1. Oriinal und ildfiur ind deckunleich (=konruent) (a Zeichen bedeutet konruent, da Zeichen bedeutet reieck ) 2. Oriinal und ild haben leichen Umlaufinn. 3. lle ildtrecken ind leich lan wie die Oriinaltrecken (länentreu), alle Winkel bleiben erhalten (winkeltreu). 4. Jede Geraden wird auf eine parallele Geraden abebildet 5. Jede Verbinduntrecke entprechender Punkte eht durch da Zentrum Z und wird von Z halbiert ufaben Punktymmetrie und Punktpieelun: 1. Spiele da eebene Vieleck am Punkt Z: 2. Spiele da eebene Vieleck am Punkt Z: oier Symmetrie.doc.Räz Seite 12

13 3. Spiele da eebene Vieleck am Punkt Z, den du erhältt, wenn du die Mittelenkrechte von E mit der Mittelenkrechten von chneidet: 4. Spiele die eebene Fiur am Schnittpunkt von E mit der Mittelenkrechten von. oier Symmetrie.doc.Räz Seite 13

14 5. a Vieleck E wird mit Punktpieelun abebildet. Vom ild kennt du den Punkt. Kontruiere da Symmetriezentrum Z und die anze ildfiur. 6. Zeichne eine Strecke, deren Mittelpunkt P it und deren Endpunkte auf den Schenkeln p und q de Winkel lieen. p 7. Kontruiere eine Strecke, deren Mittelpunkt P it und deren Endpunkte auf je einer der Rechteckeiten lieen. q oier Symmetrie.doc.Räz Seite 14

Geometrie-Dossier 1 Kongruenzabbildungen (angepasst an das Lehrmittel Mathematik 1)

Geometrie-Dossier 1 Kongruenzabbildungen (angepasst an das Lehrmittel Mathematik 1) Name: Geometrie-oier 1 Konruenzabbildunen (anepat an da Lehrmittel Mathematik 1) Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun

Mehr

b) Vorgehen genau wie oben, in diesem Fall hat es einfach 5 Eckpunkte, die man abbilden muss.

b) Vorgehen genau wie oben, in diesem Fall hat es einfach 5 Eckpunkte, die man abbilden muss. Lösunen Geometrie-Dossier Symmetrie in der Ebene Seite 5 Aufaben Achsensymmetrie und Geradenspieelun (Lösunen sind verkleinert ezeichnet) 1 a) Vorehen emäss Theorie: 1. Lotstrecken auf die Symmetrieachse

Mehr

Seiten 4/5 Konstruktion von Parallelenvierecken

Seiten 4/5 Konstruktion von Parallelenvierecken a) echteck mit kizze: eiten 4/5 Kontruktion von arallelenvierecken Löunen Geometrie-oier Vierecke 1. verbinden und verdoppeln (iaonale wird von halbiert!) 2. verbinden und verlänern 3. k(, r=) (iaonalen

Mehr

Seite 5 Aufgaben Achsensymmetrie und Geradenspiegelung (Lösungen sind verkleinert gezeichnet) 1 a) Vorgehen gemäss Theorie:

Seite 5 Aufgaben Achsensymmetrie und Geradenspiegelung (Lösungen sind verkleinert gezeichnet) 1 a) Vorgehen gemäss Theorie: Lösunen Geometrie-Dossier Konruenzabbildunen Seite 5 Aufaben Achsensymmetrie und Geradenspieelun (Lösunen sind verkleinert ezeichnet) 1 a) Vorehen emäss Theorie: 1. Lotstrecken auf die Symmetrieachse s

Mehr

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel?

2. Ein U-Boot hat eine Ausstiegsöffnung mit einem Durchmesser von 0,6 m. Mit welcher Kraft drückt das Wasser in 20 m Tiefe auf den Verschlussdeckel? Schwerdruck, Auftrieb. In allen 5 Gefäßen teht die Flüikeit leich hoch. Verleiche folende Drücke a Boden der Gefäße iteinander: a) p, p, p b) p, p c) p, p 5. Ein U-Boot hat eine Autieöffnun it eine Durcheer

Mehr

Optik. Was ist ein Modell? Strahlenoptik. Gliederung. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl. Licht und Schatten

Optik. Was ist ein Modell? Strahlenoptik. Gliederung. Modelle in der Physik. Modell Lichtstrahl. Modell Lichtstrahl. Licht und Schatten liederun Optik Strahlenoptik Modell Lihttrahl Reflexion rehun Totalreflexion ildenttehun an Linen Optihe eräte Aufaben Link Quellen Löunen Modelle in der Phyik Modell Lihttrahl vereinfahte Dartellunen

Mehr

Optische Instrumente

Optische Instrumente Optiche Intrumente Für die verchiedenten Anwendunen werden Kombinationen au n und anderen optichen Elementen eineetzt. In dieem Abchnitt werden einie dieer optichen Intrumente voretellt. In vielen Fällen

Mehr

Kreise Winkel Drehung

Kreise Winkel Drehung Kreise Winkel Drehun.) Der Kreis: ufabe: Zeichne in ein Koordinatensystem folende Punkte ein: M(4/) ; (/) ; (6/8) ; D(/8) ; E(6/) 9 8 D Durchmesser (d) 7 6 M Sehne (s) 4 Radius (r) E - 4 6 7 8 9 a.) Zeichne

Mehr

Geometrie-Dossier Der Satz des Pythagoras

Geometrie-Dossier Der Satz des Pythagoras Geometrie-Doier Der Satz de Pythagora Name: Inhalt: Wer war Pythagora? Der Satz de Pythagora mit Beweien Anwendung de Satz von Pythagora in der Ebene Anwendung de Satz von Pythagora im Raum Kontruktion

Mehr

Test für medizinische Studiengänge II Originalversion II des TMS. 5. aktualisierte Auflage 2008 Hogrefe Verlag ISBN: 978-3-8017-2169-5

Test für medizinische Studiengänge II Originalversion II des TMS. 5. aktualisierte Auflage 2008 Hogrefe Verlag ISBN: 978-3-8017-2169-5 Löunwee und Erklärunen für die Aufaben 7-96 ( Quantitative und formale Probleme ) Seite - 55 de Übunbuche Tet für mediziniche Studienäne II Oriinalverion II de TMS 5. aktualiierte Auflae 008 Horefe Verla

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Download. Mathe an Stationen Umgang mit Zirkel. Grundkonstruktionen Zirkel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Umgang mit Zirkel. Grundkonstruktionen Zirkel. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco ettner, Erik Dines Mathe an Stationen Uman mit Zirkel Zirkel Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Zirkel Zirkel Dieser Download ist ein uszu aus dem Oriinaltitel

Mehr

Der Konstruktionsbericht

Der Konstruktionsbericht Der Konstruktionsbericht Philipp Gressly Freimann 11. November 2016 Inhaltsverzeichnis 1 Einleitun 1 2 Grundkonstruktionen (G1, G2, G3) 2 2.1 G1: Punkte wählen (leistift)...................... 3 2.2 G2:

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer.

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer. Wertteigerung Frei Hau. Der Kotenloe Glafaeranchlu für Haueigentümer. Darüber freuen ich nicht nur Ihre Mieter. 40 Millimeter, 1.000 Vorteile. Im Bereich der Kommunikation it Glafaer die Zukunft. 12.000

Mehr

Download. Mathe an Stationen Umgang mit Geodreieck. Einführung Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Mathe an Stationen Umgang mit Geodreieck. Einführung Geodreieck. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dines Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Downloadauszu aus dem Oriinaltitel: Mathe an Stationen Uman mit Geodreieck Einführun Geodreieck Dieser Download

Mehr

Beobachten und Messen mit dem Mikroskop

Beobachten und Messen mit dem Mikroskop Phyikaliche Grundpraktikum Veruch 006 Veruchprotokolle Beobachten und een mit dem ikrokop Aufgaben 1. Betimmen de ildungmaßtabe der vorhandenen ektive mit Hilfe eine echraubenokular. Vergleich mit den

Mehr

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z)

a) b) c) d) e) f) g) h) i) j) k) l) s) t) u) v) w) x) y) z) Aufabe 1: a) b) c) d) e) f) ) h) i) j) k) l) m) n) o) p) q) r) s) t) u) v) w) x) y) z) a) Welche der Fiuren a) z) ist achsensymmetrisch? Trae die Symmetrieachsen ein. b) Gib an, welche der Fiuren a) z)

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Techniche Univerität München Fakultät für Informatik Forchung- und Lehreinheit Informatik IX Thema: Morphologiche Operationen Proeminar: Grundlagen Bildvertehen/Bildgetaltung Johanne Michael Kohl Betreuer:

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Ebene Geometrie

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Ebene Geometrie Inhaltsverzeichnis Grundwissen bene Geometrie Grundlaen der Geometrie 1 Grundberiffe 2 Koordinatensystem 3 Senkrechte Geraden 4 Parallele Geraden 5 bstand 6 Vermischte Übunen zu Linien 7 Winkelarten 8

Mehr

LU 08 Parallelogramme untersuchen

LU 08 Parallelogramme untersuchen 1 LU 08 Paralleloramme untersuchen LU 08 Paralleloramme untersuchen Ich kann... eriffe: 1 die nebenstehenden eriffe erklären und zeichnen Punkt, Gerade, Halberade oder Strahl, Strecke, iaonale, Umfan,

Mehr

30 Vierecke. Zeichne die Figuren in Originalgröße. Quadrat s = 6 cm. Raute s = 5 cm, e = 8 cm. Parallelogramm a = 10 cm, b = 5 cm, h a = 4 cm

30 Vierecke. Zeichne die Figuren in Originalgröße. Quadrat s = 6 cm. Raute s = 5 cm, e = 8 cm. Parallelogramm a = 10 cm, b = 5 cm, h a = 4 cm Vierecke Parallelogramme ind Vierecke mit zwei Paaren paralleler Seiten. Auch Rauten, Quadrate und Rechtecke ind Vierecke, je doch mit weiteren peziellen Eigenchaften. 1 Zeichne die Figuren in Originalgröße.

Mehr

Mechanik 2. Addition von Geschwindigkeiten 1

Mechanik 2. Addition von Geschwindigkeiten 1 Mechanik. Addition on Gechwindigkeiten 1. Addition on Gechwindigkeiten Wa beeinflut die Gechwindigkeit de Boote? a. Wind b. Waergechwindigkeit Haben beide die gleiche Richtung, o addieren ie ich. Haben

Mehr

Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht.

Geradenspiegelung: Diese Abbildung haben wir schon untersucht. Punktspiegelung: Die beiden Spiegelungsachsen schneiden sich senkrecht. 17 25 Die 5 Typen on Isometrien Geradenspieelun: Diese Abbildun haben wir schon untersucht unktspieelun: Die beiden Spieelunsachsen schneiden sich senkrecht Rotation (Drehun): Die beiden Spieelunsachsen

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Einführung in die Schaltalgebra

Einführung in die Schaltalgebra Einführung in die chltlger GUNDBEGIFFE: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 ECHENEGELN - - - - - - - - - - - - - - - - - - - - - - - -

Mehr

Grundwissen Klasse 7

Grundwissen Klasse 7 Grundwissen Klasse 7 Zahlenmenen = {1; 2; 3; 4; 5; 6;... } Die ene der natürlichen Zahlen. = {... 3; 2; 1; 0; + 1; + 2; + 3;...} Die ene der anzen Zahlen. Die ene der rationalen Zahlen. ultiplikation und

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

PHYSIK Wurfbewegungen 1

PHYSIK Wurfbewegungen 1 PHYSIK Wurfbewegungen 1 Senkrechter Wurf nach unten Senkrechter Wurf nach oben Datei Nr. 9111 Auführliche Löungen und Drucköglichkeit nur auf CD Friedrich W. Buckel Augut Internatgynaiu Schloß Torgelow

Mehr

Definition. Wichtige Beziehungen. Geometrische Konstruktion

Definition. Wichtige Beziehungen. Geometrische Konstruktion Mathematik/Informatik Gierhardt Goldener Schnitt und Kreiteilung Definition Eine Strecke mit der Länge r oll nach dem Verfahren de Goldenen Schnitt geteilt werden. Dann verhält ich die Geamttreckenlänge

Mehr

Download. Mathematik Üben Klasse 5 Spiegelung. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein

Download. Mathematik Üben Klasse 5 Spiegelung. Differenzierte Materialien für das ganze Schuljahr. Martin Gehstein Download Martin Gehstein Mathematik Üben Klasse 5 Spieelun Differenzierte Materialien für das anze Schuljahr Downloadauszu aus dem Oriinaltitel: Mathematik üben Klasse 5 Spieelun Differenzierte Materialien

Mehr

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13

Übungen zur Klassischen Theoretischen Physik III (Theorie C Elektrodynamik) WS 12-13 Karlsruher Institut für Technoloie Institut für Theorie der Kondensierten Materie Übunen zur Klassischen Theoretischen Physik III Theorie C Elektrodynamik WS -3 Prof. Dr. Alexander Mirlin Blatt 4 Dr. Ior

Mehr

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4.

Download. Mathe an Stationen Handlungsorientierte Materialien für die Klassen 3 und 4. Mathe an Stationen SPEZIAL Geometrie 3-4. Download Carolin Donat Mathe an Stationen SPEZIAL Geometrie 3-4 Das Geodreieck zielt üben Anforderunen des ch Geometrie erfüllen wichtie Inhalte und leiten zuleich Ihre eiten trotz unterschiedlicher Lern

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Teilnehmer: Phili Bannach Heinrich-Hertz-Oberchule) Levin Keller Herder-Oberchule) Phili Kende Herder-Oberchule) Carten Kubbernuh Andrea-Oberchule) Giang Nguyen Herder-Oberchule)

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004 Pro. Dr. F. Koch Dr. H. E. Porteanu koch@ph.tum.de porteanu@ph.tum.de WS 004-005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 1-19.11.004 OPTIK geometriche und phyikaliche Optik C. Polariation Al tranverale

Mehr

Elektrisches Feld P = IU= RI 2 = U2 R C = Q U

Elektrisches Feld P = IU= RI 2 = U2 R C = Q U Elektriche Feld Formeln E-Lehre I Stromtärke I Q t Ohmcher Widertand R U I Elektriche Leitung (inkl. ohmcher Widertand) E-Feld/Kondeator P IU RI 2 U2 R Elektriche Feldtärke Kapazität eine Kondenator ~E

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

Kundeninformationen zu Secure Mail

Kundeninformationen zu Secure Mail Kreiparkae Trauntein-Trotberg -1- Kreiparkae Trauntein-Trotberg Allgemeine Kaum einer macht ich beim Verenden einer E-Mail Gedanken über die Sicherheit. Dabei it eine normale E- Mail ungefähr o icher und

Mehr

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor Hochchule Augburg Veruch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikchaltungen mit dem Bipolartranitor Phyikaliche Praktikum Die Funktionweie von Bipolartranitoren ollte vor Veruch 9 im Theorieteil

Mehr

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können

Energiefreisetzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfusion freigesetzt. Wasserstoffkerne(Protonen) können Energiefreietzung In der Sonne, wie in allen anderen Sternen auch, wird die Energie durch Kernfuion freigeetzt. Waertoffkerne(Protonen) können bei güntigen Bedingungen zu Heliumkernen verchmelzen, dabei

Mehr

Übungen zur Vertiefung der Geometrie (Geometrie II) WS 2006/ Oktober 2006 Blatt 1

Übungen zur Vertiefung der Geometrie (Geometrie II) WS 2006/ Oktober 2006 Blatt 1 Übungen zur Vertiefung der Geometrie (Geometrie II) WS 2006/07 23. Oktober 2006 latt 1 1. lternative efinition der zentrichen Streckung Zeigen Sie (unter Vorauetzung der Strahlenätze): Jede bijektive,

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

PHYSIK Geradlinige Bewegungen 3

PHYSIK Geradlinige Bewegungen 3 7 PHYSIK Geradlinige Bewegungen 3 Gleichäßig bechleunigte Bewegungen it Anfanggechwindigkeit Datei Nr. 93 Friedrich W. Buckel Juli Internatgynaiu Schloß Torgelow Inhalt Grundlagen: Bechleunigte Bewegungen

Mehr

Anleitung. zur. Konfiguration. des. WLAN Repeaters

Anleitung. zur. Konfiguration. des. WLAN Repeaters Anleitung zur Konfiguration de WLAN Repeater (Art. Nr. SD-REP-2 ) Stand: 06.06.07 Inhaltverzeichni. Eintellungen WLAN Router. Einloggen WLAN Router.2 IP-Eintellungen WLAN-Router.3 Kanal WLAN-Router.4 WLAN

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs Brutkreb Genetiche Urachen, erhöhte Riiken Informationen über familiär bedingten Brut- & Eiertockkreb Brutkreb: Wie und wo er entteht Wenn bei der Zellteilung ein Fehler paiert Alle Zellen unere Körper

Mehr

Geometrie-Dossier Kreis 2

Geometrie-Dossier Kreis 2 Geometrie-Dossier Kreis 2 Name: Inhalt: Konstruktion im Kreis (mit Tangenten, Sekanten, Passanten und Sehnen) Grundaufgaben Verwendung: Dieses Geometriedossier orientiert sich am Unterricht und liefert

Mehr

Thema: Winkel in der Geometrie:

Thema: Winkel in der Geometrie: Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild

Mehr

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt,

Mehr

Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie

Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie Skript Beispiele Musteraufgaben Seite 1 Impressum Mathefritz Verlag Jörg Christmann Pfaffenkopfstr. 21E 66125 Saarbrücken verlag@mathefritz.de

Mehr

f a m t Sahle Wohnen Albert Sahle Uwe Sahle GBR

f a m t Sahle Wohnen Albert Sahle Uwe Sahle GBR J u n r g g f b u a m e r n t i e g H Sahle Wohnen Albert Sahle Uwe Sahle GBR Ihre 1A Adree J u n r g b u a m H Auf den Blick kommt e an Wer da Ziel kennt, kann entcheiden. Wer entcheidet, findet Ruhe.

Mehr

DM280-1F Luftkissenfahrbahn

DM280-1F Luftkissenfahrbahn DM80-F Luftkienfahrbahn Die Luftkienfahrbahn DM80-F dient zur Demontration von Veruchen zur Dynamik und Kinematik geradliniger Bewegung feter Körper. Diee Anleitung oll Sie mit der Bedienung und den Demontrationmöglichkeiten

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Beispiel 1 Modellbildung und Identifikation

Beispiel 1 Modellbildung und Identifikation Beipiel Moellbilung un Ientifikation Für eine GaFlutrecke oll ein mathematiche Moell ermittelt weren. Einganggröße er trecke it eine tellpannung u t. Auganggröße er trecke it er momentane GaFlu q. u t

Mehr

Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot

Ich mache eine saubere, klare Konstruktionszeichnungen und zeichne die Lösungen rot Mathplan 8.3 Geometrie GTZ Kongruenzabbildungen Winkel Name: 128 Hilfmittel : Geometrie 2 / B 8 Zeitvorchlag: 2 Wochen von: Lernkontrolle am: Probe 8.3 bi 90 Wichtige Punkte: Ich mache eine aubere, klare

Mehr

Generisches Programmieren

Generisches Programmieren Generiche Programmieren homa Röfer Generiche Klaen und Interface Generiche ypen ypebound Wildcard-ypen Überetzung genericher Klaen Grenzen genericher ypen Polymorphe Methoden Rückblick Vererbung Pakete

Mehr

Aufnahmeprüfung FHNW 2013: Physik

Aufnahmeprüfung FHNW 2013: Physik Muterlöungen Phyik Aufnahmeprüfung FHW 03 Aufnahmeprüfung FHW 03: Phyik Aufgabe Da nebentehende Diagramm zeigt den Gechwindigkeit-Zeit-Verlauf für ein Schienenfahrzeug. a ) Skizzieren Sie qualitativ richtig

Mehr

1. Lineare Funktionen

1. Lineare Funktionen Grundwissen zu den Geraden. Lineare Funktionen Geraden sind die Graphen linearer Funktionen. Dazu müssen wir zuerst den Beriff Funktion und dann den Beriff linear klären.. Funktion Eine Funktion ist eine

Mehr

Wig. Die Platzierung des Buchstabenbildes. Zurichtung des Buchstabens. Die Grundlage bildet das Geviert. Es ist, je nach Anwenderprogramm,

Wig. Die Platzierung des Buchstabenbildes. Zurichtung des Buchstabens. Die Grundlage bildet das Geviert. Es ist, je nach Anwenderprogramm, 2 ZEICHENABSTAND WORTABSTAND ZEILENABSTAND SCHRIFTFAMILIE SCHRIFTKORREKTUR SATZART AUSZEICHNUNGEN SCHRIFTMISCHEN GLOSSAR ZEICHENABSTAND ZEICHENABSTAND M Vorbreite Nachbreite Dicktenaufbau In QuarkXPre

Mehr

Inhalt. Vision ME Benutzerhandbuch s

Inhalt. Vision ME Benutzerhandbuch s Benutzerhandbuch Inhalt 1. Einleitung...2 1.1. Automatiche Anmeldung bei Viion ME...2 2. Schüler dazu einladen, einer Klae beizutreten...3 2.1. Schüler in der Klae anzeigen...6 2.2. Die App au Schülericht...7

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 7. Klasse in 5 Minuten Grundbegriffe Wie viele äußere Begrenzungsflächen und ußenkanten haben die Körper? a) Würfel b) risma c) Zylinder d) uader e) yramide f) Kugel 4 M 5 Welche

Mehr

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte

6. Klasse 1. Schularbeit 1999-10-20 Gruppe A + 40.! Bestimme das Monotonieverhalten und berechen den Grenzwert! 4 Punkte 6. Klae 1. Schularbeit 1999-10-0 Gruppe A 1) Betrachte da Wettrennen zwichen Achille und der Schildkröte für folgende Angaben: Gechwindigkeit von Achille 10 m, Gechwindigkeit der Schildkröte m Vorprung

Mehr

TU Ilmenau Physikalisches Grundpraktikum Versuch O3 Institut für Physik. Mikroskop Seite 1

TU Ilmenau Physikalisches Grundpraktikum Versuch O3 Institut für Physik. Mikroskop Seite 1 TU Ilmenau aliche Grundpraktikum Veruch O3 Mikrkp Seite 1 1. Aufgabentellung 1.1. Die rennweite f de Mikrkpbjektiv 8x it durch Meung der Abbildungmaßtäbe unterchiedliche Zwichenbildweiten zu betimmen.

Mehr

Fehlerrechnung in der Optik

Fehlerrechnung in der Optik HTL Saalfelden Fehlerrechnun in der Optik Seite von 6 Heinrich Schmidhuber heinrich_schmidh@hotmail.com Fehlerrechnun in der Optik Mathematische / Fachliche Inhalte in Stichworten: Fehlerarten, Fehlerfortplanzun,

Mehr

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen?

In welcher Zeit könnte der Sportwagen demnach von 0 auf 100 km beschleunigen? Arbeit, Leitung und Wirkunggrad und Energie. Welche Leitung erbringt ein Auto da bei einer geamten Fahrwidertandkraft von 200 N mit einer Gechwindigkeit von 72 km fährt? h 2: Ein Latkran wird mit einem

Mehr

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von:

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von: Protokoll zur Laborübung Verahrentechnik Übung: Filtration Betreuer: Dr. Gerd Mauchitz Durchgeührt von: Marion Pucher Mtk.Nr.:015440 Kennzahl: S6 Mtk.Nr.:015435 Kennzahl: S9 Datum der Übung:.06.004 1/11

Mehr

Du hast schon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln:

Du hast schon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln: Fragen mit do/doe Du hat chon einige Möglichkeiten kennen gelernt, um einen Satz in eine Frage zu verwandeln: Bp.: We can play football in the garden. Can we play football in the garden? I mut learn the

Mehr

Dünne Linsen und Spiegel

Dünne Linsen und Spiegel Versuch 005 Dünne Linsen und Spieel Ral Erleach Auaen. Charakterisieren der drei eeenen Linsen mittels Bildweiten-, Bessel- und Autokollimationsverahren.. Bestätien der Linsenleichun. 3. Bestimmen des

Mehr

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?)

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) 12.10.2009, Oliver Seif nach einer Vorlage von H.Hischer/A. Lambert 1 Das Werkzeug Computer (dynamische Geometriesoftware,

Mehr

Aufgaben zu den Würfen. Aufgaben

Aufgaben zu den Würfen. Aufgaben Aufaben zu den Würfen Aufaben. Ein Körper wird i der Gecwindikei 8 - nac oben eworfen. Vo Lufwiderand ee an ab. Berecnen Sie die Wurföe und die Zei bi zu Erreicen de öcen Punke der Ban. Berecnen Sie die

Mehr

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013 Dynamiche Unternehmenmodellierung und -imulation (ehemal: Buine Dynamic - Dynamiche Modellierung und Simulation komplexer Gechäftyteme, Arbeitwienchaft V) Lehreinheit 09 Prozeimulation : Prozeimulation

Mehr

banking n So funktioniert es am iphone & ipad best banking: Welche Infrastruktur stellt Smart Engine zur Verfügung?

banking n So funktioniert es am iphone & ipad best banking: Welche Infrastruktur stellt Smart Engine zur Verfügung? banking KundenbindungOnline-Vergleich- und Einkaufmöglichkeiten verändern da längt und ucht nach effizienten Kundenzugängen. Smart Managing Partner von Smart Engine, die zahlreichen Vorteile bet banking:

Mehr

F Winkelsätze. 1 Nebenwinkel und Scheitelwinkel

F Winkelsätze. 1 Nebenwinkel und Scheitelwinkel F Winkelätze 1 Nebenwinkel und Scheitelwinkel Zwei nicht parallele Geraden bilden tet vier Schnittwinkel. Dabei untercheidet man zwichen Scheitel- und Nebenwinkeln. eipiel : γ δ Nebenwinkel Nebenwinkel

Mehr

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch ool" Ope

Liebe Lehrerin, lieber Lehrer, dieses Unterrichtsmaterial ist speziell auf die Boardstory und das Buch ool Ope Ab heute ind wir ol Liebe Lehrerin, lieber Lehrer, diee Unterrihtmaterial it peziell auf die Boardtory und da Buh "Ab heute in ind wir r oo " von Suan Ope pel-götz augelegt. Die Arbeitblätter untertützen

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Mein Computerheft. Arbeiten mit Paint.NET. Ich kann ein Bildbearbeitungsprogramm öffnen. Öffne Paint.NET mit einem Doppelklick!

Mein Computerheft. Arbeiten mit Paint.NET. Ich kann ein Bildbearbeitungsprogramm öffnen. Öffne Paint.NET mit einem Doppelklick! Mein Computerheft Arbeiten mit Paint.NET Name: 1a Ich kann ein Bildbearbeitungsprogramm öffnen. Öffne Paint.NET mit einem Doppelklick! Titelleiste Menüleiste Symbolleiste Paint. NET ist ein Programm zur

Mehr

Übersicht. Wo lebt die Schildkröte? Wie programmiert man die Schildkröte? Wo lebt die Schildkröte? Wie programmiert man die Schildkröte?

Übersicht. Wo lebt die Schildkröte? Wie programmiert man die Schildkröte? Wo lebt die Schildkröte? Wie programmiert man die Schildkröte? Übersicht Wo lebt die Schildkröte? Wie programmiert man die Schildkröte? Schildkröten-Befehle Aufgaben Wo lebt die Schildkröte? Auf dem Bildschirm! Beispiel: Wie programmiert man die Schildkröte? Mit Schildkröten-Befehlen,

Mehr

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob

Bestimmung der Molaren Masse nach Dumas (MOL) Gruppe 8 Simone Lingitz, Sebastian Jakob Bestiun der Molaren Masse nach Duas (MO Gruppe 8 Sione initz, Sebastian Jakob 1. Grundlaen In diese ersuch wird nach de erfahren von Duas die Molare Masse von hlorofor bestit. Dazu wird anenoen, daß hlorofor

Mehr

MATHEMATIK 1 LINEARE FUNKTION

MATHEMATIK 1 LINEARE FUNKTION PS - ATHEATIK P. Rendulić 009 LINEARE FUNKTION ATHEATIK LINEARE FUNKTION. Geradenleichun Eine Geradenleichun ist die atheatische Gleichun die eine Gerade i kartesischen Koordinatensste eindeuti beschreibt.

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

MATHEMATIK 1 LINEARE FUNKTION

MATHEMATIK 1 LINEARE FUNKTION PS - ATHEATIK P. Rendulić 007 LINEARE FUNKTION ATHEATIK LINEARE FUNKTION. Geradenleichun Eine Geradenleichun ist die atheatische Gleichun die eine Gerade i kartesischen Koordinatensste eindeuti beschreibt.

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

.RQ]HSWI UGLH,PSOHPHQWLHUXQJHLQHU2QOLQH6XFKH DXIHLQHPJUR HQ'DWHQEHVWDQG

.RQ]HSWI UGLH,PSOHPHQWLHUXQJHLQHU2QOLQH6XFKH DXIHLQHPJUR HQ'DWHQEHVWDQG a.rq]hswi UGLH,PSOHPHQWLHUXQJHLQHU2QOLQH6XFKH DXIHLQHPJUR HQ'DWHQEHVWDQG,QKDOWVYHU]HLFKQLV A Aufgabentellung & Ziel... 2 B Allgemeine Har- un Softwareanforerungen... 2 B.1 RDBMS (Datenbankytem)... 2 B.2

Mehr

Affine (lineare) Funktionen und Funktionenscharen

Affine (lineare) Funktionen und Funktionenscharen Aine (lineare) Funktionen Funktionenscharen 1. Erkläre olende Berie: a) Ursprunserade b) Steiun bzw. Steiunsdreieck c) steiende u. allende erade d) eradenbüschel, Parallelenschar e) y-achsenabschnitt )

Mehr

( ) = ( ) ( ) ( ) ( )

( ) = ( ) ( ) ( ) ( ) R. Brinkmann http://brinkmann-du.de Seite 0.0.0 Löungen Grundaufgaben für lineare und quadratiche Funktionen I e: E e f( x) = x+ Py 0 f( x) = x+ Px 0 E E E E E6 E7 E8 E9 E0 f x = mx + b mit m = und P(

Mehr

Wie kommt der Strom zu uns?

Wie kommt der Strom zu uns? Infoblatt Wie kommt der Strom zu uns? Bis Strom aus der Steckdose kommt, hat er einen weiten Weg hinter sich. Strom wird im Generator des Kraftwerkes erzeugt. Bestimmt kannst du dir vorstellen, dass hier

Mehr

Fröbelstern Fotofaltkurs Schritt für Schritt aus der Zeitschrift LC 431, Seite 64/65

Fröbelstern Fotofaltkurs Schritt für Schritt aus der Zeitschrift LC 431, Seite 64/65 OZ-Verlags-GmbH Papierstreifen. Die Enden des vierten gefalteten Papierstreifens weiter durch den zweiten gefalteten Streifen oben ziehen. 1 Die vier Papierstreifen jeweils waagerecht in der Mitte falten.

Mehr

4.3 Systeme von starren Körpern. Aufgaben

4.3 Systeme von starren Körpern. Aufgaben Technische Mechanik 3 4.3-1 Prof. Dr. Wandiner ufabe 1: 4.3 Ssteme von starren Körpern ufaben h S L h D L L L D h H L H SH Ein PKW der Masse m mit Vorderradantrieb zieht einen Seelfluzeuanhäner der Masse

Mehr

Physik GK 11, Klausur 01 Kinetik Lösung

Physik GK 11, Klausur 01 Kinetik Lösung Phyik GK 11, Klauur 1 Kinetik Löun 18.1.211 Aufabe 1: Beweuntypen 1.1 Erkläre, warum die eradlinie, leichförmie Beweun ein Spezialfall für eine eradlinie, leichmäßi bechleunite Beweun it. - die eradlinie,

Mehr

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2016/2017 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 206/207 DES LANDES HESSEN 3. RUNDE LÖSUNGEN AUFGABENGRUPPE A. a) L { 2; ; 0; ;...}, denn b) L Z G, denn. Fall: 3 (x 7) (x 3)(x 7) x 7 oder 3 x 3 x 7 oder x 6 2. Fall: 3 (x 7) < (x

Mehr

Demo-Text für Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes

Demo-Text für  Geometrie Winkel und Dreiecke. Teil 1 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Mit Index am Ende des Textes Teil 1 it Index am Ende des Textes Stand: 22. Februar 212 Datei Nr. 1111 Friedric Buckel Geometrie Winkel und Dreiecke INTERNETBIBLITHEK FÜR SCHULTHETIK www.mate-cd.de Inalt 1. Dreunen durc Winkel messen

Mehr

c) Alle vier Traversierungsverfahren können auf unsortierte Binärbäume angewendet

c) Alle vier Traversierungsverfahren können auf unsortierte Binärbäume angewendet Aufabe 3.8 (8WOERTERBUCHPROFESSIONAL) Lernziele Õ Abtraktion Õ Inordnun-Traverierun Õ Breitentraverierun Õ Rekurion Wiederholunfraen 1. Welche Auae it richti? a) Die Breitentraverierun kann nur auf ortierte

Mehr

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie

Symmetrien. Verschiedene Arten von Symmetrie. Achsensymmetrie Punktsymmetrie Symmetrien Ist ein Gesicht symmetrisch? Welches ist das von Ferdinand Hodler gezeichnete Originalbild seiner Frau erthe? Weshalb? Verschiedene rten von Symmetrie Sind Schmetterling und Propeller gleich

Mehr

Kreistangente. Tangente an Graph. Winkel(markierung)

Kreistangente. Tangente an Graph. Winkel(markierung) Kreistangente Skizziere auf der Kreislinie ein T. Der erste Teilstrich deutet die Lage der Tangente an. Der letzte Teilstrich verläuft senkrecht dazu. sketchometry erzeugt einen Gleiter und eine Tangete

Mehr

Stochastische Überraschungen beim Spiel BINGO

Stochastische Überraschungen beim Spiel BINGO Stochatiche Überrachungen beim Spiel BINGO NORBERT HENZE, KARLSRUHE, UND HANS HUMENBERGER, WIEN Zuammenfaung: In dieem Beitrag wird da bekannte Spiel BINGO erläutert und näher analyiert. Augehend vom konkreten

Mehr