Informatik II Dynamische Programmierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Informatik II Dynamische Programmierung"

Transkript

1 lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit Tabulierug " Programmierug" hat ichts mit "Programmiere" zu tu, soder mit "Verfahre" Vergleiche "lieares Programmiere", "Iteger-Programmiere" (alles Begriffe aus der Optimierugstheorie) Typische Awedug für dyamisches Programmiere: Optimierug. Zachma Iformatik 2 SS Dyamische Programmierug 2

2 Matrix hai Multiplicatio Problem (MMP) egebe: eie Folge (Kette) A, A 2,, A vo Matrize mit verschiedee Dimesioe esucht: das Produkt A. A. 2. A Aufgabe: Orgaisiere die Multiplikatioe so, daß möglichst weig skalare Multiplikatioe ausgeführt werde. eerelle Idee hier: utze Assoziativität aus. Defiitio: Ei Matrizeprodukt heißt vollstädig geklammert, we es etweder eie eizele Matrix oder das geklammerte Produkt zweier vollstädig geklammerter Matrizeprodukte ist.. Zachma Iformatik 2 SS Dyamische Programmierug Multiplikatio zweier Matrize p A q q B r = r p # Eigabe: p q Matrix A, q r Matrix B # Ausgabe: p r Matrix = A B for i i rage(,p ): for j i rage(,r ): [i,j] = for k i rage(,q ): [i,j] += A[i,k] * B[k,j] Azahl der Muliplikatioe ud Additioe = p q r Bem: für 2 -Matrize werde hier Multiplikatioe beötigt, es geht auch mit O( 2.78 ). Zachma Iformatik 2 SS Dyamische Programmierug 4 2

3 Beispiel Berechug des Produkts vo A, A 2, A mit A : Matrix A 2 : 5 Matrix A : 5 5 Matrix. Klammerug ((A A 2 )A ) erfordert 2. Klammerug (A (A 2 A )) erfordert A' = (A A 2 ) 5 Mult. A' A 25 Mult. A'' = (A 2A ) 25 Mult. A A'' 5 Mult. Summe: 75 Mult. Summe: 75 Mult.. Zachma Iformatik 2 SS Dyamische Programmierug 5 Problemstellug egebe: Folge vo Matrize A, A 2,, A ud die Dimesioe p, p,, p, wobei Matrix A i Dimesio p i- p i hat esucht: eie Multiplikatiosreihefolge, die die Azahl der Multiplikatioe miimiert Beachte: der Algorithmus führt die Multiplikatioe icht aus, er bestimmt ur die optimale Reihefolge! Verallgemeierug: ermittle die optimale Ausführugsreihefolge für eie Mege vo Operatioe Z.B. im ompilerbau: ode-optimierug Bei Datebake: Afrageoptimierug. Zachma Iformatik 2 SS Dyamische Programmierug 6

4 Beispiel für A A 2 A Alle vollstädig geklammerte Matrizeprodukte der Folge A, A 2, A, A 4 sid: Klammeruge etspreche strukturell verschiedee Auswertugsbäume: A A 4 A A 4 etc A A 2 A A 4 A A 2 A A 4 A 4 A 2 A A 4 A 4 A 2 A A A 2 A A 4 A A A 4 A 2 A A A 2. Zachma Iformatik 2 SS Dyamische Programmierug 7 Azahl der verschiedee Klammeruge P() sei die Azahl der verschiedee Klammeruge vo A A k A k + A : Defiitio: P( +)=: = -te atala'sche Zahl Es gilt (o. Bew.): P( +)= π + O 5 Folge: Fide der optimale Klammerug durch Ausprobiere aller Möglichkeite ist silos. Zachma Iformatik 2 SS Dyamische Programmierug 8 4

5 Die Struktur der optimale Klammerug Sei A i j das Produkt der Matrize i bis j; A i j ist eie p i- p j -Matrix Behauptug: Jede optimale Lösug des MMP ethält optimale Lösuge vo Teilprobleme Aders gesagt: Jede optimale Lösug des MMP setzt sich zusamme aus optimale Lösuge vo bestimmte Teilprobleme. Zachma Iformatik 2 SS Dyamische Programmierug 9 Beweis (durch Widerspruch) Sei eie optimale Lösug so geklammert A i j = (A i k ) (A k+ j ), i k < j Behauptug: die Klammerug ierhalb A i k muß ihrerseits optimal sei A.: die Klammerug vo A i k ierhalb der optimale Lösug zu A i j sei icht optimal Es gibt bessere Klammerug vo A i k mit gerigere Koste Setze diese Teillösug i Lösug zu A i j = (A i k ) (A k+ j ) ei Ergibt eie bessere Lösug Widerspruch zur Aahme der Optimalität der ursprügliche Lösug zu A i j. Zachma Iformatik 2 SS Dyamische Programmierug 5

6 Eie rekursive Lösug Auf der höchste Stufe werde 2 Matrize multipliziert, d.h., für jedes k, k -, ist (A ) = ((A k ) (A k+ )) Die optimale Koste köe beschriebe werde als i = j Folge ethält ur eie Matrix, keie Koste i < j ka geteilt werde, idem jedes k, i k < j betrachtet wird: Koste für ei bestimmtes k = "Koste liks" + "Koste rechts" Koste für die Matrix-Multiplikatio (A i k ). (A k+ j ) Daraus lässt sich die folgede rekursive Regel ableite: m[i,j] sei die miimale Azahl vo Operatioe zur Berechug des Teilprodukts A i j. Zachma Iformatik 2 SS Dyamische Programmierug Ei aiver rekursiver Algorithmus # Iput p = Vektor der Array-röße # Output m[i,j] = optimale Koste für die # Multiplikatio der Arrays i,.., j def mcm_rek( p, i, j ): if i = j: retur m = for k i rage( i,j ): q = p[i-]*p[k]*p[j] + \ mcm_rek( p, i, k ) + \ mcm_rek( p, k+, j ) if q < m: m = q retur m Aufruf für das gesamte Problem: mcm_rek( p,, ). Zachma Iformatik 2 SS Dyamische Programmierug 2 6

7 Laufzeit des aive rekursive Algorithmus Sei T() die Azahl der Schritte zur Berechug vo mcm_rek für Eigabefolge der Läge Expoetielle Laufzeit!. Zachma Iformatik 2 SS Dyamische Programmierug Formulierug mittels Dyamischer Programmierug Beobachtug: die Azahl der Teilprobleme A i j (+) mit i j ist ur Θ 2 2 Folgerug: der aive rekursive Algo berechet viele Teilprobleme mehrfach! Idee: Bottom-up-Berechug der optimale Lösug: Speichere Teillösuge i eier Tabelle j i Daher "dyamische Programmierug" Welche Tabelleeiträge werde für m[i,j] beötigt? Hier: bottom-up = vo der Diagoale ach "rechts obe". Zachma Iformatik 2 SS Dyamische Programmierug 4 7

8 Berechugsbeispiel A : 5 A 2 : 5 5 A : 5 5 A 4 : 5 A 5 : 2 A 6 : 2 25 p = (, 5, 5, 5,, 2, 25) j i m Zachma Iformatik 2 SS Dyamische Programmierug 5 ewiug der optimale Reihefolge Speichere die Positio für die beste Treug, d.h., dejeige Wert k, der zum miimale Wert vo m[i,j] führt Speichere dazu i eiem zweite Array s[i,j] dieses optimale k: s[i,j] wird ur für Folge mit midestes 2 Matrize ud j > i beötigt m s s[i,j] gibt a, welche Multiplikatio zuletzt ausgeführt werde soll Für s[i,j] = k ud die Teilfolge A i j ist es optimal, zuerst A i k, daach A k+ j ud zum Schluss die beide Teilergebisse zu multipliziere:. Zachma Iformatik 2 SS Dyamische Programmierug 6 8

9 Algorithmus mittels dyamischer Programmierug = le(p) - for i i rage(, + ): # assume m has dim (+). (+) m[i,i] = for L i rage( 2,+ ): # cosider chais of legth L for i i rage(,-l ): j = i+l- # le = L j-i = L- m[i,j] = for k i rage( i,j ): q = m[i,k] + m[k+,j] + p[i-]*p[k]*p[j] if q < m[i,j]: m[i,j] = q s[i,j] = k Komplexität: es gibt geschachtelte Schleife, die jeweils höchstes -mal durchlaufe werde, die Laufzeit beträgt also O( ). Zachma Iformatik 2 SS Dyamische Programmierug 7 Beispiel egebe: die Folge vo Dimesioe (5, 4, 6, 2, 7) Multiplikatio vo A (5 4), A 2 (4 6), A (6 2) ud A 4 (2 7) Optimale Folge ist ((A (A 2 A ))A 4 ) j 2 4 j A 4 A i s[i,j] 2 2 i 2 m[i,j] A 2 A A A 2 A 2 A 2 optimale Folge. Zachma Iformatik 2 SS Dyamische Programmierug 8 9

10 Die Techik der dyamische Programmierug Rekursiver Asatz: Löse eies Problems durch Löse mehrerer kleierer Teilprobleme, aus dee sich die Lösug für das Ausgagsproblem zusammesetzt Häufiger Effekt: Mehrfachberechuge vo Lösuge Bottom-up-Berechug: fügt Lösuge kleierer Uterprobleme zusamme, um größere Uterprobleme zu löse ud liefert so eie Lösug für das gesamte Problem Methode: iterative Erstellug eier Tabelle. Zachma Iformatik 2 SS Dyamische Programmierug 9 Wichtige Begriffe Optimale Uterstruktur (optimal substructure): Ei Problem besitzt die (Eigeschaft der) optimale Substruktur, bzw. gehorcht dem Prizip der Optimalität : :. Die Lösug eies Problems setzt sich aus de Lösuge vo Teilprobleme zusamme - Bsp. MMP: gesuchte Klammerug vo A A setzt sich zusamme aus der Klammerug eier (bestimmte) Teilkette A A k ud eier Teilkette A k+ A 2. We die Lösug optimal ist, da müsse auch die Teillösuge optimal sei! - Bsp. MMP: wir habe folgede Behauptug bewiese: Falls Klammerug zu A A k icht optimal Klammerug zu A A (die gemäß A. Teillsg zu A A k ethält) ka icht optimal sei. Zachma Iformatik 2 SS Dyamische Programmierug 2

11 Achtug: die zweite Bedigug (Teillösuge müsse optimal sei) ist machmal icht erfüllt: Beispiel: lägster Pfad durch eie raphe a b Aufgabe hier: bestimme lägste Pfad vo a ach c d c Im Beispiel rechts: Lösug besteht aus Teilpfade a b ud b c Aber diese sid icht optimale(!) Lösuge der etspr. Teilprobleme - Optimale (d.h., lägste) Lösug für a b = a d c b. Zachma Iformatik 2 SS Dyamische Programmierug 2 Uabhägigkeit der Teillösuge: Die Teilprobleme heiße (im Sie der Dy. Progr.) uabhägig : : die Optimierug des eie Teilproblems beeiflußt icht die Optimierug des adere (z.b. bei der Wahl der Uterteilug) - Bsp. MMP: die Wahl der Klammerug für A A k ist völlig uabhägig vo der Klammerug für A k+ A - egebsp. "lägster Pfad": die optimale Lsg für a b (ämlich a d c b) immt der optimale Lsg für b c Elemete weg a d b c. Zachma Iformatik 2 SS Dyamische Programmierug 22

12 Überlappede Teilprobleme: Ei Problem wird zerlegt i Uterprobleme, diese wieder i Uter- Uterprobleme, usw. Ab irgedeiem rad müsse dieselbe Uter-Uterprobleme mehrfach vorkomme, sost ergibt das DP wahrscheilich keie effiziete Lösug - Bsp. MMP: Rekursiosbaum ethält viele überlappede Teilprobleme Zachma Iformatik 2 SS Dyamische Programmierug 2 Rekostruktio der optimale Lösug: Optimale Lösug für esamtproblem beihaltet Schritte:. Etscheidug treffe zur Zerlegug des Problems i Teile 2. Optimale Wert für Teilprobleme bereche. Optimale Wert für esamtproblem "zusammesetze" Dyamische Programmierug berechet zuächst oft ur de "Weg" zur optimale Lösug, aber - im zweite Schritt wird da die optimale Lösug mittels diese Weges berechet; - dazu Etscheiduge eifach i Phase speicher ud i Phase 2 da "abspiele" m s - Beispiel: MMP Speichere Idex k, der zum optimale Wert führt i zweitem Array s. Zachma Iformatik 2 SS Dyamische Programmierug 24 2

13 Schritte bei der dyamische Programmierug. harakterisiere die (rekursive) Struktur der optimale Lösug (Prizip der optimale Substruktur) 2. Defiiere de Wert eier optimale Lösug rekursiv. Trasformiere die rekursive Methode i eie iterative bottom-up Methode, bei der alle Zwischeergebisse i eier Tabelle gespeichert werde. Zachma Iformatik 2 SS Dyamische Programmierug 25 Das Rucksack-Problem (Kapsack Problem) Das Problem: "Die Qual der Wahl" Beispiel: ei Dieb raubt eie Lade aus; um möglichst flexibel zu sei, hat er für die Beute ur eie Rucksack dabei Im Lade fidet er egestäde; der i-te egestad hat de Wert v i ud das ewicht w i Sei Rucksack ka höchstes das ewicht c trage w i ud c sid gaze Zahle (die v i köe aus sei) Aufgabe: welche egestäde sollte für de maximale Profit gewählt werde?. Zachma Iformatik 2 SS Dyamische Programmierug 8

14 Beispiel Rucksack = 6 = 8 = 22 Fazit: es ist keie gute Strategie, das Objekt mit dem beste Verhältis Profit:ewicht als erstes zu wähle. Zachma Iformatik 2 SS Dyamische Programmierug 9 Eiige Variate des Kapsack-Problems Fractioal Kapsack Problem: Der Dieb ka Teile der egestäde mitehme Lösugsalgo später (mit reedy-strategie) - Kapsack Problem: Biäre Etscheidug zwische ud : jeder egestad wird vollstädig geomme oder gar icht Formale Problemstellug: x i = / : egestad i ist (icht) im Rucksack. Zachma Iformatik 2 SS Dyamische Programmierug 4 4

15 Die rekursive Lösug Betrachte de erste egestad i=; es gibt zwei Möglichkeite:. Der egestad wird i de Rucksack gepackt (x =) Rest-Problem: 2. Der egestad wird icht i de Rucksack gepackt (x =) Rest-Problem: Bereche beide Fälle, wähle de bessere. Zachma Iformatik 2 SS Dyamische Programmierug 4 Der Rekursiosbaum vorhadee Rest-Kapazität Wert des Rucksacks c Objekt c c - w v 2 c c - w 2 v 2 c - w v c - w - w 2 v + v 2 c c - w v c - w v c - w - w v + v. Zachma Iformatik 2 SS Dyamische Programmierug 42 5

Dynamische Programmierung Matrixkettenprodukt

Dynamische Programmierung Matrixkettenprodukt Dyamische Programmierug Matrixketteprodukt Das Optimalitätsprizip Typische Awedug für dyamisches Programmiere: Optimierugsprobleme Eie optimale Lösug für das Ausgagsproblem setzt sich aus optimale Lösuge

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Computer-Graphik 2 SS 10

Computer-Graphik 2 SS 10 5/3/10 lausthal omputer-raphik I. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Frühe Beispiele / Motivatio Beispiele für : Parameter t auf der erade Kotevektor bei B-Splies u,v-parameter bei

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Dynamisches Programmieren Stand

Dynamisches Programmieren Stand Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem:

Mehr

3. Inkrementelle Algorithmen

3. Inkrementelle Algorithmen 3. Ikremetelle Algorithme Defiitio 3.1: Bei eiem ikremetelle Algorithmus wird sukzessive die Teillösug für die erste i Objekte aus der bereits bekate Teillösug für die erste i-1 Objekte berechet, i=1,,.

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 3 Peter Hartmann Lösugsskizze Mathematik für Iformatiker 5. Aufl. Kapitel 3 Peter Hartma Verstädisfrage. Ka ma ei Axiom beweise? Nei!. Ka ei Beweis eier Aussage richtig sei, we im Iduktiosschluss die Iduktiosaahme icht

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

Ney: Datenstrukturen und Algorithmen, SS 2004

Ney: Datenstrukturen und Algorithmen, SS 2004 1.4 Etwurfsmethode Für de gute Etwurf ka ma kaum strege Regel agebe, aber es gibt eiige Prizipie, die ma je ach Zielsetzug eisetze ka ud die uterschiedliche Vorzüge habe. Wir werde folgede typische Methode

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1

Mathematische Rekursion. Rekursion. Rekursion in C++ Mathematische Rekursion. Definition. 1, falls n 1. n! = n (n-1)!, falls n > 1 Mathematische Rekursio Rekursio o Viele mathematische Fuktioe sid sehr atürlich rekursiv defiierbar, d.h. o die Fuktio erscheit i ihrer eigee Defiitio. Mathematische Rekursio o Viele mathematische Fuktioe

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id,

Kreisabbildungen. S 1 f S 1. Beispiele: (1) f = id, F = id, Kreisabbilduge Im Folgede sehe wir us eie gaz spezielle Klasse vo dyamische Systeme a: Abbilduge auf dem Kreis. Diese sid eifach geug, so dass wir sie och recht leicht aalysiere köe, habe aber adererseits

Mehr

Tutoraufgabe 1 (Rekursionsgleichungen):

Tutoraufgabe 1 (Rekursionsgleichungen): Prof. aa Dr. E. Ábrahám Datestrukture ud Algorithme SS4 Lösug - Übug F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe (Rekursiosgleichuge): Gebe Sie die Rekursiosgleichuge für die Laufzeit der folgede

Mehr

Kapitel 5. Ausrichten

Kapitel 5. Ausrichten Kapitel 5 Ausrichte Sucht ma i eier Datebak ach Zeichekette (Wörter, Name, Gesequeze), möchte ma oft aders als i de voragegagee Kapitel uterstellt icht ur exakte Treer, soder auch ähliche Vorkomme de.

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Kapitel 10. Rekursion

Kapitel 10. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 1/14 1 Kapitel 10 Rekursio Rekursio Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 1/14 Ziele Das Prizip der rekursive

Mehr

Skriptum zur ANALYSIS 1

Skriptum zur ANALYSIS 1 Skriptum zur ANALYSIS 1 Güter Lettl WS 2017/2018 1. Grudbegriffe der Megelehre ud der Logik 1.1 Naive Megelehre [Sch-St 4.1] Defiitio eier Mege ach Georg Cator (1845 1918):,,Eie Mege M ist eie Zusammefassug

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst

3 T (d 1, l 2. ) + (6 + 2) falls d > 0 7 sonst. n 2. 4T ( n 2 ) + log 2 (n), falls n > 1 1, sonst Prof. aa Dr. Ir. Joost-Pieter Katoe Datestrukture ud Algorithme SS5 Tutoriumslösug - Übug 3 (Abgabe 3.05.05 Christia Dehert, Friedrich Gretz, Bejami Kamiski, Thomas Ströder Tutoraufgabe (Rekursiosgleichuge:

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Iduktio ud Rekursio Teil II WS 2009/200 Prof. Dr. Margarita Espoda Prof. Dr. Margarita Espoda Iduktio über Bäue Defiitio: a) Ei eizeler Blatt-Kote ist ei Bau o b) Falls t, t 2,,t Bäue sid, da ist

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Das Erstellen von Folgen mit der Last Answer Funktion

Das Erstellen von Folgen mit der Last Answer Funktion Schülerarbeitsblatt Wisseschaftlicher Recher EL-W5 WriteView Das Erstelle vo Folge mit der Last Aswer Fuktio 5 9 Die obige Folge wird ach eier eifache Regel gebildet: Zu jedem Glied wird addiert. Über

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Übung 1 Algorithmen II

Übung 1 Algorithmen II Yaroslav Akhremtsev, Demia Hespe yaroslav.akhremtsev@kit.edu, hespe@kit.edu Mit Folie vo Michael Axtma (teilweise) http://algo2.iti.kit.edu/algorithmeii_ws17.php - 0 Akhremtsev, Hespe: KIT Uiversität des

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz Vorlesug 4 6 + 9 April Bei w,, w m, v R ; (w,, w m =: A R (,m ud ieres Produkt = euklidisches Produkt schrieb sich das Approximatiosproblem so: Fide w = Wiederholug: m ζ k w k mit w v w v w spa{w,, w m

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Kombinatorik und Polynommultiplikation

Kombinatorik und Polynommultiplikation Kombiatorik ud Polyommultiplikatio 3 Vorträge für Schüler SS 2004 W Pleske RWTH Aache, Lehrstuhl B für Mathematik 3 Eiige Zählprizipie ud Ausblicke Wir habe bislag gesehe, was die Multiomialkoeffiziete

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Elementare Beweismethoden - Direkter Beweis, Widerspruchsbeweis, Vollständige Induktion -

Elementare Beweismethoden - Direkter Beweis, Widerspruchsbeweis, Vollständige Induktion - Th. Kuschel Prosemiar SS 06 Elemetare Beweismethode Seite vo 7 7.04.06 Elemetare Beweismethode - Direter Beweis, Widerspruchsbeweis, Vollstädige Idutio - 0. Vorbemerug zum Begriff des (allgemeie) Beweises

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechug vo Eigewerte 4.6 Berechug vo Eigewerte I diesem Abschitt befasse wir us mit dem Eigewertproblem: zu gegebeer Matrix A R sid die Eigewerte (ud gegebeefalls Eigevektore) gesucht. Wir erier a

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10

Musterlösung. Testklausur Vorkurs Informatik, Testklausur Vorkurs Informatik Musterlösung. Seite 1 von 10 Musterlösug Name, Vorame, Matrikelummer Agabe sid freiwillig) Bitte ubedigt leserlich ausfülle Testklausur Vorkurs Iformatik, 27.09.20 Testklausur Vorkurs Iformatik 27.09.20 Musterlösug eite vo 0 Musterlösug

Mehr

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009 Uiversität Karlsruhe TH Istitut für Kryptographie ud Sicherheit Willi Geiselma Vorlesug Marius Hillebrad Übug Lösuge zu Übugsblatt 2 Sigale, Codes ud Chiffre II Sommersemester 2009 Übug vom 26. Mai 2009

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

10 Aussagen mit Quantoren und

10 Aussagen mit Quantoren und 0 Aussage mit Quatore ud 0.6. Eisatz vo (bereits bekater) Eistezaussage Bisher hatte wir Eistezbeweise geführt, idem wir ei passedes Objekt agegebe habe ( Setze... ). Stattdesse ka ma auch auf bereits

Mehr

Wörterbuchmethoden und Lempel-Ziv-Codierung

Wörterbuchmethoden und Lempel-Ziv-Codierung Kapitel 3 Wörterbuchmethode ud Lempel-Ziv-Codierug I diesem Abschitt lere wir allgemei Wörterbuchmethode zur Kompressio ud isbesodere die Lempel-Ziv (LZ))-Codierug kee. Wörterbuchmethode sid ei eifaches

Mehr

Kapitel 11. Rekursion

Kapitel 11. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Kapitel 11 Rekursio Rekursio 1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 16/17 Ziele Das Prizip der rekursive

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung /9/ lausthal Informatik II Dynamische Programmierung. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Zweite Technik für den Algorithmenentwurf Zur Herkunft des Begriffes: " Programmierung"

Mehr

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln.

Kombinatorik. Systematisches Abzählen und Anordnen einer endlichen Menge von Objekten unter Beachtung vorgegebener Regeln. Systematisches Abzähle ud Aorde eier edliche Mege vo Objekte uter Beachtug vorgegebeer Regel Permutatioe Variatioe Kombiatioe Permutatioe: Eie eieideutige (bijektive) Abbildug eier edliche Mege i sich

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Zusammenfassung: Gleichungen und Ungleichungen

Zusammenfassung: Gleichungen und Ungleichungen LGÖ Ks VMa Schuljahr 6/7 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Eperte 8 Polyomgleichuge ud -ugleichuge

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Teil VII : Zeitkomplexität von Algorithmen

Teil VII : Zeitkomplexität von Algorithmen Teil VII : Zeitkomplexität vo Algorithme. Algorithme ud ihr Berechugsaufwad. Aufwadsabschätzug Wachstum vo Fuktioe. Aufwad vo Suchalgorithme K. Murma, H. Neuma, Fakultät für Iformatik, Uiversität Ulm,

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Kapitel 11. Rekursion

Kapitel 11. Rekursion Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 17/18 Kapitel 11 Rekursio Rekursio 1 Eiführug i die Iformatik: Programmierug ud Software-Etwicklug, WS 17/18 Ziele Das Prizip der rekursive

Mehr

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen

Prof. Dr. Wolfgang Konen Mathematik 1, WS Wozu InformatikerInnen Folgen brauchen Prof. Dr. Wolfgag Koe Mathematik WS0 0.0.0. Zahlefolge.. Wozu IformatikerIe Folge brauche Kovergez vo Folge ist die Grudlage der Aalysis (Differetial- ud Itegralrechug) Traszedete Gleichuge wie l x 50

Mehr

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering

Basisfall Vergleichsbasiertes Sortieren Programmieraufgabe Algorithm Engineering Basisfall Vergleichsbasiertes Sortiere Programmieraufgabe Algorithm Egieerig Deis Felsig 013-0-07 1 Eileitug I dieser Programmieraufgabe sollte Basisfälle für vergleichsbasiertes Sortiere utersucht werde.

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Merge-Sort und Binäres Suchen

Merge-Sort und Binäres Suchen Merge-Sort ud Biäres Suche Ei Bericht vo Daiel Haeh Mediziische Iformatik, Prosemiar WS 05/06 Ihaltsverzeichis I. Eileitug 3 II. III. IV. i. Das Divide-ad-coquer -Verfahre Merge-Sort i. Eileitug ii. Fuktiosweise

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt.

Die Wurzel einer Zahl a ist die Zahl, die mit sich selbst malgenommen wieder a ergibt. Wurzel Wurzelexpoet Radikad oder auch Basis Die Wurzel eier Zahl a ist die Zahl, die mit sich selbst malgeomme wieder a ergibt. Die -te Wurzel et ma auch Quadratwurzel, dabei lässt ma die (als Wurzelexpoet)

Mehr

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß

Der Satz von Stone-Weierstraß. 1 Approximationssatz von Weierstraß Der Satz vo Stoe-Weierstraß Vortrag zum Prosemiar Aalysis, 28.06.2010 Valetia Gerber, Sabria Kielma Aus der Vorlesug Aalysis I ud II kee wir das Kozept des Approximieres. Us wurde die Begriffe Taylor-

Mehr