Anwendung der Business Analytics

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Anwendung der Business Analytics"

Transkript

1 Anwendung der Business Analytics TDWI 2013 München Prof. Dr. Carsten Felden Dipl.-Wirt.-Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik Silbermannstraße 2, Freiberg (Sachsen), Deutschland

2 Die Dozenten Univ.-Prof. Dr. Carsten Felden Institut für Wirtschaftsinformatik an der Technischen Universität Bergakademie Freiberg (Sachsen). Geschäftsführer der Marmeladenbaum GmbH (www.marmeladenbaum.de) Gutachter für internationale Journals und eingeladener Sprecher auf internationalen Veranstaltungen im Themengebiet der Business Intelligence. Dipl.-Wirt.-Inf. Claudia Koschtial Institut für Wirtschaftsinformatik an der Technischen Universität Bergakademie Freiberg (Sachsen). Geschäftsführerin der Marmeladenbaum GmbH 2

3 Agenda Einführung und Einordnung Business Analytics Begriffe Analytische Fähigkeiten Hype Cycle Analytischer Prozess Anwendungsfelder und Verfahren Assoziationsanalyse Entscheidungsbaum Neuronale Netze Clusterverfahren Praktischer Teil 3

4 Eine kurze Geschichte der Business Analytics Business Analytics beschreibt den Prozess der so genannten Datenveredelung. Es ist ein strategisches Werkzeug für Entscheidungsträger in Unternehmen. Analyticslösungen kommen branchenübergreifend zum Einsatz. Ziel ist es, Antworten nicht nur auf die Frage: Was war?, sondern auch: Was wird sein? zu finden. [Felden, 2009] 4

5 Vier Typen der analytischen Fähigkeit nach Gartner 5

6 Hype Cycle für Business Intelligence (2007) 6

7 Hype Cycle für Business Intelligence (2011) 7

8 Daten und Datenhaltung Komponenten eines Entscheidungsunterstützungssystems [Hansen/Neumann (2005), S. 785] 8

9 Statistische Grundlagen Maschinelles Lernen und Data Mining I Knowledge Discovery in Databases (KDD) beschreibt den.. non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data.. [Fayyad et al. 1996] Prozess, umfangreiche Datenbestände implizit vorhandenes Wissen entdecken Knowledge Extraction Data Archaeology Data Analysis 9

10 Statistische Grundlagen Prozessmodelle Knowledge Discovery in Databases I Data Mining Interpretation Wissen Transformation Muster Vorverarbeitung Auswahl Transformierte Daten Vorverarbeitete Daten Datenbank Zieldatenbestand 10

11 Statistische Grundlagen Klassische Aufgabenstellungen Aufgaben Verfahren Klassifikation/ Regression Clusterung Abhängigkeitsanalyse Entscheidungsbäume Künstliche Neuronale Netze Clusterverfahren Assoziationsanalyse 11

12 Statistische Grundlagen Datenbereinigung Name Alter Region Stadt Kinder Meier 56 Sachsen Freiberg 3 Schulz 32 Sachsen Freiberg Yes Muster Sachsen Dresden 2 Müller 18 Sachsen Freiburg 4 fehlende Werte fehlerhafte Werte Redundanz 12

13 Agenda Einführung und Einordnung Business Analytics Begriffe Analytische Fähigkeiten Hype Cycle Analytischer Prozess Anwendungsfelder und Verfahren Assoziationsanalyse Entscheidungsbaum Neuronale Netze Clusterverfahren Praktischer Teil 13

14 Analyse des Kundenverhaltens Assoziationsanalyse Ziel der Assoziationsanalyse ist das Erkennen und Bewerten von gemeinsam auftretenden Datenelementen (Items). Items können Elemente von Mengen oder einzelne Attributwerte von Datensätzen sein. Eine Menge von Items wird als Itemset oder auch Itemmenge bezeichnet. Beispiel: Items in Mengen: Warenkorb {Artikel A, Artikel B} Items im Datensatz: (PLZ=47057,..., Käufergruppe=A) Voraussetzung: Vorhandensein einer Datenbasis bestehend aus einzelnen Transaktionen (z. B. Menge von Kassenbons) 14

15 Analyse des Kundenverhaltens Ergebnisse der Assoziationsanalyse Assoziationsregel: allgemeiner: WENN Item a DANN Item b Kurz: {a} {b} WENN Itemset X DANN Itemset Y Kurz: X Y Beispiel: WENN Artikel a und Artikel b gekauft werden, DANN wird auch Artikel c gekauft. 15

16 Analyse des Kundenverhaltens Einsatzgebiete der Assoziationsanalyse Warenkorbanalyse Gesundheitswesen Banken Telekommunikation Technik Text-Mining Web-Log-Mining Welche Verbundkäufe werden getätigt? Welche Behandlungsmethoden werden nacheinander verwendet? Welche Kunden sind abwanderungsgefährdet? Optimierung von Prozessabläufen bei telefonischen Serviceanforderungen Fehlerentdeckung in Fertigungsprozessen Finden von Begriffszusammenhängen Auffinden von Zugriffsmustern auf Web-Sites 16

17 Analyse des Kundenverhaltens Bewertung von Assoziationsregeln Einfache Regeln: WENN Itemset X DANN Itemset Y Die Aussagekraft der Regeln soll bewertet werden, etwa so: Wird Produkt a gekauft, so wird in 75% der Fälle auch Produkt b gekauft! Dies ist im gesamten Datenbestand bei 10% aller Transaktionen zu beobachten. Diese Größen bezeichnet man als Support und Konfidenz. Zu ihrer Definition benötigt man einen Datenbestand D, der aus einzelnen Transaktionen t 1,..., t n besteht. Also D = {t 1,..., t n } mit D = n (Anzahl der Elemente) 17

18 Analyse des Kundenverhaltens Grundstruktur der Algorithmen 1. Bestimme alle Regeln, deren Support größer oder gleich einer vorgegebenen Schranke (MinSup) ist. 2. Bestimme von diesen Regeln diejenigen, deren Konfidenz größer oder gleich einer vorgegebenen Schranke (MinKonf) ist. Die beiden Schranken MinSup und MinKonf müssen vom Anwender vorgegeben werden. Bekannteste Vertreter: Apriori und Apriori-Tid Algorithmus (Agrawal und Srikant (1994)) 18

19 Analyse des Kundenverhaltens Erweiterungen der Assoziationsanalyse Taxonomien Ziel: Betrachtung von Zusatzwissen (Strukturen) in der Menge der Items Taxonomie: Getränke alkoholische Getränke nicht-alkoholische Getränke Backwaren Bier Wein Spirituosen Kaffee Saft Milch Zucker Mehl Ergebnis: Neue, verallgemeinerte Regeln auf Basis der Taxonomie. 19

20 Neukundengewinnung Data Mining im Beziehungslebenszyklus 20

21 Neukundengewinnung Entscheidungsbaumverfahren Ziel der Anwendung von Entscheidungsbaumverfahren ist die Erzeugung eines Modells, durch welches unbekannte Datenobjekte bestimmten vorgegebenen Klassen zugeordnet werden können. Diese Zuordnung geschieht anhand von Regeln, die durch einen Klassifikationsbaum dargestellt werden können. Beispiel Einteilung von Datensätzen, die Angaben über Kunden enthalten, so dass damit die Käufergruppe erkannt werden kann, in die der Kunde voraussichtlich gehört. Voraussetzung: Datenbestand bei dem für jeden Datensatz die zugehörige Klasse bereits bekannt ist. 21

22 Neukundengewinnung Grundstruktur der Algorithmen zum Entscheidungsbaumverfahren Der Gesamtdatenbestand wird in eine Trainingsmenge und eine Testmenge aufgeteilt. Dann wird die Trainingsmenge sukzessive aufgeteilt, so dass daraus homogenere Gruppen von Datensätzen bezüglich der Klassifikationsvariablen entstehen. Die Aufteilung der Datenmengen kann durch einen Baum dargestellt werden, in dem jeder Knoten eine Datenmenge indiziert, dem ein Homogenitätsmaß zugeordnet wird. Erreicht dieses Homogenitätsmaß einen vorgegebenen Wert, so wird der Knoten einer bestimmten Klasse zugeordnet. 22

23 Neukundengewinnung Allgemeiner Aufbau eines Entscheidungsbaum Datensätze gesamt: 1000 kreditwürdig: 500 nicht-kreditwürdig: 500 Attribut A erfüllt Bedingung K 1 Attribut A erfüllt nicht Bedingung K 1 Datensätze gesamt: 700 kreditwürdig: 480 nicht-kreditwürdig: 220 Datensätze gesamt: 300 kreditwürdig: 20 nicht-kreditwürdig: 280 Attribut B erfüllt Bedingung K 2 Attribut B erfüllt nicht Bedingung K 2 Datensätze gesamt: 400 kreditwürdig: 390 nicht-kreditwürdig: 10 Datensätze gesamt: 300 kreditwürdig: 90 nicht-kreditwürdig:

24 Neukundengewinnung Modellevaluation Overfitting Empirische Studien zeigen, dass eine Verbesserung der Fehlklassifikationsquote auf der Trainingsmenge zunächst einhergeht mit einer Verbesserung auf der Testmenge. Ab einem gewissen Punkt steigt die Fehlklassifikationsquote auf der Testmenge dann wieder an. Dieses Phänomen bezeichnet man als Overfitting. Mögliche Gründe prinzipielles Problem fehlerhafte Testdaten (noise) geringe Aussagekraft der Regeln bei zu kleiner Datenbasis 24

25 Neukundengewinnung Neuronale Netze Bei der Erstellung Künstlicher Neuronaler Netze wird versucht, die Arbeitsweise des menschlichen Gehirns nachzubilden. Ein Netz besteht aus künstlichen Neuronen und deren Verknüpfungen. Wesentliches Merkmal der Netze ist ihre Lernfähigkeit. 25

26 Neukundengewinnung McCulloch-Pitts-Neuron Gesamtinput: ergibt sich als gewichtete Summe der Eingangssignale (Inputwerte) x 1,, x j,, x n Aktivierung: Die Aktivierung des Neurons geschieht über die Aktivierungsfunktion f, deren Wert von der Differenz aus Gesamtinput und Schwellenwert θ abhängt. Je nach Aktivierung entsteht ein Outputwert y. 26

27 Neukundengewinnung Vorwärts gerichtete Neuronale Netze Multilayer-Perzeptron Das Multilayer-Perzeptron (MLP) ist ein Spezialfall eines vorwärts gerichteten KNNs, das zur Klassifikation eingesetzt werden kann. Es können drei Schichttypen differenziert werden: Inputschicht, Versteckte Schicht, Outputschicht. Es sind nur Neuronen verschiedener Schichten miteinander verbunden. Die Outputwerte vorgelagerter Neuronen werden über gewichtete Verbindungen an nachgelagerte Neuronen gesendet. Beim vorwärts gerichteten Netz werden Impulse nur in eine Richtung weitergegeben, es gibt keine Schleifen. 27

28 Neukundengewinnung Beispiel Multilayer-Perzeptron 28

29 Neukundengewinnung Lernparadigmen Überwachtes Lernen (supervised learning) Klassifizierung [z.b. Back-Propagation] Bestärkendes Lernen (reinforcement learning) Unüberwachtes Lernen (unsupervised learning) Clusterung [z.b. Self-Organizing-Maps] 29

30 Neukundengewinnung Back-Propagation Die Werte eines Datensatzes werden in die Neuronen der Inputschicht eingegeben. Anschließend über die Neuronen und deren Verbindungen weitergeleitet, bis ein Wert in der Outputschicht erzeugt wurde, der die durch das Netz berechnete Klasse des Datensatzes angibt. (Forward Pass) Dieser Wert wird mit der tatsächlichen Klassenzugehörigkeit verglichen. (Fehlerbestimmung) Bei einer Abweichung von Soll - und Ist -Wert werden ausgehend von den Outputneuronen die zugehörigen Verbindungsgewichte sowie die Verbindungsgewichte der Neuronen vorgelagerter Schichten derart geändert, dass die Abweichung minimiert wird. (Backward Pass) 30

31 Neukundengewinnung Kritische Betrachtung Vorteile Vorwärts gerichtete Künstliche Neuronale Netze können sehr gute Ergebnisse bei der Klassifikation und Prognose erzeugen. Die offene Struktur macht das Modell sehr flexibel. Nachteile Es werden keine expliziten Regeln angegeben. Das Adaptieren der Gewichte geschieht mitunter sehr langsam. Netzstruktur & Gewichtsinitialisierung sind nicht vorgegeben. 31

32 Cluster-Verfahren Idee der Cluster-Verfahren 32

33 Cluster-Verfahren Anwendungsbeispiele Kundensegmentierung Welche Kundenprofile existieren? (Analyse von Kundenattributen) Kaufverhalten Welche Gruppen bzgl. des Kaufverhaltens bestehen? (Analyse von Kaufähnlichkeiten) Technik Finden ähnlicher Oberflächen Text-Mining Finden ähnlicher Texte Web-Log-Mining Auffinden von Benutzergruppen auf Web- Sites 33

34 Cluster-Verfahren Ähnlichkeitsmaße vs. Distanzmaße Um die Ähnlichkeit zweier Datensätze zu bestimmen, werden oftmals geometrische Distanzmaße d herangezogen. Es gilt: kleine Distanz große Ähnlichkeit große Distanz kleine Ähnlichkeit Dabei ist für die Anwendbarkeit der Maße zu beachten, welche Definitionsbereiche die Attribute haben. Unterschieden werden muss zwischen numerischen und nominalen Attributen. 34

35 Cluster-Verfahren Distanzfunktion zweier Datensätze mit nominalen Merkmalen Gegeben seien zwei Datensätze, die Objekte anhand von n nominalen Merkmalen unterscheiden x = (x1, x2,..., xn) und y = (y1, y2,..., yn) Distanz: Anzahl der Attribute, deren Ausprägungen nicht übereinstimmen. Ähnlichkeit: Anzahl der Attribute, deren Ausprägungen übereinstimmen x = (blau, hoch, dick, süß, Mainz) y = (grün, hoch, dick, süß, Essen) d(x, y) = 2 sim(x, y) = 3 35

36 Cluster-Verfahren Dendrogramm zur Darstellung hierarchischer Verfahren 1 2 1, 2 3 3,4 1, 2, 3, 4, 5 4 3, 4, 5 5 agglomerative Methode divisive Methode Schritt 36

37 Cluster-Verfahren Single-Linkage Complete-Linkage Average-Linkage x x x x o o x x x x 37

38 Cluster-Verfahren Algorithmus für ein agglomeratives Verfahren Erstelle die Distanzmatrix. Bilde einen neuen Cluster aus den zwei Objekten bzw. Clustern, die den geringsten Abstand zueinander haben. Bestimme die Distanz zwischen dem neuen Cluster und allen anderen Objekten bzw. Clustern. Wiederhole ab Schritt 2, bis sich alle Objekte in einem einzigen Cluster befinden. 38

39 Cluster-Verfahren Partitionierendes Cluster-Verfahren k-means Wähle K Objekte zufällig als initiale Clustercentroide. Ordne die Objekte jeweils dem Cluster zu, zu dessen Centroid der geringste Abstand vom Objekt besteht. Bestimme in den Clustern die aktuellen Centroide. Prüfe, ob alle Objekte den Clustern mit dem geringsten Abstand zum Centroiden zugeordnet sind, wenn nein, springe zu 2. Problem: Abhängigkeit von der Auswahl der initialen Centroide und der Reihenfolge der Werte. 39

40 Text Mining Das Data Mining, als eine Phase im KDD-Prozess, dient der Erkenntnisgewinnung aus umfangreichen Datenbeständen, wobei diese auf Grundlage strukturierter Daten durchgeführt wird. Die Methoden des Data Mining wurden nicht entwickelt, um unstrukturierte Daten zu verarbeiten. Liegen Textdokumente als Basis zur inhaltlichen Entdeckung bisher unbekannter Informationen vor, wird daher das Text Mining angewendet. Im Gegensatz zum Data Mining sind die durch das Text Mining aufgespürten, unbekannten Informationen nicht für jeden unbekannt. Der Autor des Dokumentes kannte die Information und legte sie schriftlich nieder. Wichtig ist, dass die ermittelten Informationen für den Rezipienten neu sind. 40

41 Text Mining Das Vektormodell, oft auch als algebraisches Modell bezeichnet, erzeugt einen Vektor im mehrdimensionalen Raum. Jeder Deskriptor eines Index stellt eine Dimension dieses Vektors dar. Dieser spannt einen Dokumentenraum auf. Hierbei wird die Termhäufigkeit als Stärke der Ausprägung einer Dimension genutzt und durch den Begriff Gewicht ausgedrückt. 41

42 Text Mining Dokument Vektor Mr Brown, the former Agriculture Secretary, told the BBC he would be prepared to oppose the government on the issue of variable fees. He is among the Labour backbenchers and several former ministers who fear the fees may deter students from poorer backgrounds from going to the best institutions. They claim the variable rate charged for different courses could cause a "two-tier" system agriculture market government freedom fees students rate system country policy Dimension Gewicht d j freq ij t i 42

43 Text Mining und Intelligente Software Agenten Das Probabilistische Modell integriert die Beziehungen der Deskriptoren in die Bewertung und geht nicht von der Annahme der Unabhängigkeit zwischen den Deskriptoren aus. Im Ergebnis werden Wahrscheinlichkeiten ermittelt, welche die Relevanz von Dokumenten für den Nutzer aufzeigen. Um Aussagen über die Wahrscheinlichkeit treffen zu können, ist zumindest für eine Teilmenge der Dokumente die Relevanz zu bestimmen. 43

44 Text Mining und Intelligente Software Agenten Beispiele: Entscheidungsbaum; Support Vector Machines; Rocchio Algorithmus; k-nn Algorithmus; Multilayer Perceptron; HyperPipes. 44

45 Text Mining Zulässigkeit beschränkt auf deutsche Zeichen Anwendung einer Stoppwortliste Eliminierung bei einer Wortlänge < 3 Eliminierung bei Termfrequenz #1 pro Text Anwendung von Wortstämmen Eliminierung der oberen 5 Prozent der Verteilungskurve Anzahl der verbleibenden Worte Nr Prozent Sonderzeichen

46 Text Mining 80, , ,0000 SVM 65,0000 Voted Perceptron k-nn (k=1) J48 60, , ,0000 naive Bayes HyperPipes AdaBoost M1 SimpleLogistic MLP Rocchio 45, ,

47 Agenda Einführung und Einordnung Business Analytics Begriffe Analytische Fähigkeiten Hype Cycle Analytischer Prozess Anwendungsfelder und Verfahren Assoziationsanalyse Entscheidungsbaum Neuronale Netze Clusterverfahren Praktischer Teil 47

48 Fragen? 48

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Predictive Modeling mit künstlich neuronalen Netzen

Predictive Modeling mit künstlich neuronalen Netzen München, 22. 24. Juni 2015 Predictive Modeling mit künstlich neuronalen Netzen Technische Universität Bergakademie Freiberg (Sachsen) Institut für Wirtschaftsinformatik Silbermannstraße 2, 09599 Freiberg

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen 7. Clusteranalyse (= Häufungsanalyse; Clustering-Verfahren) wird der multivariaten Statistik zugeordnet Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut,

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Knowledge Discovery. Lösungsblatt 1

Knowledge Discovery. Lösungsblatt 1 Universität Kassel Fachbereich Mathematik/nformatik Fachgebiet Wissensverarbeitung Hertie-Stiftungslehrstuhl Wilhelmshöher Allee 73 34121 Kassel Email: hotho@cs.uni-kassel.de Tel.: ++49 561 804-6252 Dr.

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Institut für Statistik LMU München Sommersemester 2013 Zielsetzung

Mehr

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih Data Mining mit Rapidminer im Direktmarketing ein erster Versuch Hasan Tercan und Hans-Peter Weih Motivation und Ziele des Projekts Anwendung von Data Mining im Versicherungssektor Unternehmen: Standard

Mehr

WEKA A Machine Learning Interface for Data Mining

WEKA A Machine Learning Interface for Data Mining WEKA A Machine Learning Interface for Data Mining Frank Eibe, Mark Hall, Geoffrey Holmes, Richard Kirkby, Bernhard Pfahringer, Ian H. Witten Reinhard Klaus Losse Künstliche Intelligenz II WS 2009/2010

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Maschinelles Lernen und Data Mining: Methoden und Anwendungen

Maschinelles Lernen und Data Mining: Methoden und Anwendungen Maschinelles Lernen und Data Mining: Methoden und Anwendungen Eyke Hüllermeier Knowledge Engineering & Bioinformatics Fachbereich Mathematik und Informatik GFFT-Jahrestagung, Wesel, 17. Januar 2008 Knowledge

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

Clusteranalyse. Clusteranalyse. Fragestellung und Aufgaben. Abgrenzung Clusteranalyse - Diskriminanzanalyse. Rohdatenmatrix und Distanzmatrix

Clusteranalyse. Clusteranalyse. Fragestellung und Aufgaben. Abgrenzung Clusteranalyse - Diskriminanzanalyse. Rohdatenmatrix und Distanzmatrix TECHNISCHE UNIVERSITÄT MÜNCHEN-WEIHENSTEPHAN MATHEMATIK UND STATISTIK INFORMATIONS- UND DOKUMENTATIONSZENTRUM R. Biometrische und Ökonometrische Methoden II SS 00 Fragestellung und Aufgaben Abgrenzung

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

Assoziationsregeln & Sequenzielle Muster. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007

Assoziationsregeln & Sequenzielle Muster. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007 Assoziationsregeln & Sequenzielle Muster 0 Übersicht Grundlagen für Assoziationsregeln Apriori Algorithmus Verschiedene Datenformate Finden von Assoziationsregeln mit mehren unteren Schranken für Unterstützung

Mehr

Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014

Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014 Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014 Aufgabe 1. Data Mining a) Mit welchen Aufgabenstellungen befasst sich Data Mining? b) Was versteht man unter Transparenz einer Wissensrepräsentation?

Mehr

Dominik Pretzsch TU Chemnitz 2011

Dominik Pretzsch TU Chemnitz 2011 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Machine Learning - Maschinen besser als das menschliche Gehirn?

Machine Learning - Maschinen besser als das menschliche Gehirn? Machine Learning - Maschinen besser als das menschliche Gehirn? Seminar Big Data Science Tobias Stähle 23. Mai 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Data Mining - Clustering. Sven Elvers

Data Mining - Clustering. Sven Elvers Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 2 Agenda Data Mining Clustering Aktuelle Arbeiten Thesis Outline 3 Data Mining Entdecken versteckter Informationen, Muster und Zusammenhänge

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Data Mining auf Datenströmen Andreas M. Weiner

Data Mining auf Datenströmen Andreas M. Weiner Technische Universität Kaiserslautern Fachbereich Informatik Lehrgebiet Datenverwaltungssysteme Integriertes Seminar Datenbanken und Informationssysteme Sommersemester 2005 Thema: Data Streams Andreas

Mehr

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini

TEXTKLASSIFIKATION. WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini TEXTKLASSIFIKATION WS 2011/12 Computerlinguistik I Deasy Sukarya & Tania Bellini GLIEDERUNG 1. Allgemeines Was ist Textklassifikation? 2. Aufbau eines Textklassifikationssystems 3. Arten von Textklassifikationssystemen

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Clustern. Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass:

Clustern. Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass: Text-Clustern 1 Clustern Teile nicht kategorisierte Beispiele in disjunkte Untermengen, so genannte Cluster, ein, so dass: Beispiele innerhalb eines Clusters sich sehr ähnlich Beispiele in verschiedenen

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

Exploration und Klassifikation von BigData

Exploration und Klassifikation von BigData Exploration und Klassifikation von BigData Inhalt Einführung Daten Data Mining: Vorbereitungen Clustering Konvexe Hülle Fragen Google: Riesige Datenmengen (2009: Prozessieren von 24 Petabytes pro Tag)

Mehr

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme

Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Studienprojekt Invisible Web (Dipl.-Inform. Gudrun Fischer - WS 2003/04) Blockseminar

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalse k-means-algorithmus Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalse Support

Mehr

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus FernUniversität in Hagen Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln Thema 1.1.1 Der Apriori-Algorithmus Referentin: Olga Riener Olga Riener. Thema 1.1.1. Der

Mehr

Seminar zum Thema Künstliche Intelligenz:

Seminar zum Thema Künstliche Intelligenz: Wolfgang Ginolas Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 Wolfgang Ginolas 1 Beispiel Was ist eine Clusteranalyse Ein einfacher Algorithmus 2 bei verschieden

Mehr

Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008. Wintersemester 2008/2009

Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008. Wintersemester 2008/2009 Dr. Andreas Hotho, Robert Jäschke Fachgebiet Wissensverarbeitung 30.10.2008 1. Übung Knowledge Discovery Wintersemester 2008/2009 Vorbemerkungen Vorlesungsfolien und Übungsblätter können Sie im Internet

Mehr

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein Alles für den Kunden Analyse von Kundendaten Katrin Plickert, Heiko Hartenstein Zum Verständnis 9. Februar 2007 Heiko Hartenstein, Katrin Plickert 2 Quelle: Heilmann, Kempner, Baars: Business and Competitive

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold Algorithms for Pattern Mining AprioriTID Stefan George, Felix Leupold Gliederung 2 Einleitung Support / Confidence Apriori ApriorTID Implementierung Performance Erweiterung Zusammenfassung Einleitung 3

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Apriori-Algorithmus zur Entdeckung von Assoziationsregeln

Apriori-Algorithmus zur Entdeckung von Assoziationsregeln Apriori-Algorithmus zur Entdeckung von PG 42 Wissensmanagment Lehrstuhl für Künstliche Intelligenz 22. Oktober 21 Gliederung Motivation Formale Problemdarstellung Apriori-Algorithmus Beispiel Varianten

Mehr

Vorlesung. Data und Web Mining. Kurzinformation zur. Univ.-Prof. Dr. Ralph Bergmann. Lehrstuhl für Wirtschaftsinformatik II

Vorlesung. Data und Web Mining. Kurzinformation zur. Univ.-Prof. Dr. Ralph Bergmann.  Lehrstuhl für Wirtschaftsinformatik II Kurzinformation zur Vorlesung Data und Web Mining Univ.-Prof. Dr. Ralph Bergmann www.wi2.uni-trier.de - I - 1 - Die Ausgangssituation (1) Unternehmen und Organisationen haben enorme Datenmengen angesammelt

Mehr

Mathematische Grundlagen III

Mathematische Grundlagen III Mathematische Grundlagen III Maschinelles Lernen III: Clustering Vera Demberg Universität des Saarlandes 7. Juli 202 Vera Demberg (UdS) Mathe III 7. Juli 202 / 35 Clustering vs. Klassifikation In den letzten

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Räumliches Data Mining

Räumliches Data Mining Räumliches Data Mining Spatial Data Mining Data Mining = Suche nach "interessanten Mustern" in sehr großen Datensätzen => explorative Datenanlyse auch: Knowledge Discovery in Databases (KDD) verbreitete

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr.

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr. LEIBNIZ UNIVERSITÄT HANNOVER FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIK INSTITUT FÜR PRAKTISCHE INFORMATIK FACHGEBIET DATENBANKEN UND INFORMATIONSSYSTEME Masterarbeit im Studiengang Informatik Kombinationen

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln

Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln Praktikum: Data Warehousing und Data Mining Clusteranalyse Clusteranalyse Idee Bestimmung von Gruppen ähnlicher Tupel in multidimensionalen Datensätzen.

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Matrikelnr: Name: Vorname: Aufgabe 1 2 3 4 Summe Maximal erreichbare 20 30 30 20 100 Punktzahl Erreichte Punktzahl. Note:

Matrikelnr: Name: Vorname: Aufgabe 1 2 3 4 Summe Maximal erreichbare 20 30 30 20 100 Punktzahl Erreichte Punktzahl. Note: Fakultät für Wirtschaftswissenschaft Matrikelnr: Name: Vorname: : Modul 32711 Business Intelligence Termin: 28.03.2014, 9:00 11:00 Uhr Prüfer: Univ.-Prof. Dr. U. Baumöl Aufbau und Bewertung der Aufgabe

Mehr

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ

Mehr

Data Mining als Arbeitsprozess

Data Mining als Arbeitsprozess Data Mining als Arbeitsprozess Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 31. Dezember 2015 In Unternehmen werden umfangreichere Aktivitäten oder Projekte im Bereich des Data Mining

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 -

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 - Vorlesung Grundlagen betrieblicher Informationssysteme Prof. Dr. Hans Czap Email: Hans.Czap@uni-trier.de - II - 1 - Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Neuronale Netze (I) Biologisches Neuronales Netz

Neuronale Netze (I) Biologisches Neuronales Netz Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2012, SS 2012 1 Data Mining Pipeline Planung Aufbereitung Modellbildung Auswertung Wir wollen nützliches Wissen

Mehr

Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume

Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume Data Mining Künstliche Neuronale Netze vs. Entscheidungsbäume Grundseminar HAW Master Informatik 18.04.2017 Inhaltsübersicht Data Mining & Begriffswelt des Data Mining Klassifikation & Klassifikatoren

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Wilhelm Nüsser (Hrsg.) Carsten Weigand (Hrsg.) Raphael Fockel (Autor) Methoden des Data Mining im praktischen Einsatz

Wilhelm Nüsser (Hrsg.) Carsten Weigand (Hrsg.) Raphael Fockel (Autor) Methoden des Data Mining im praktischen Einsatz Wilhelm Nüsser (Hrsg.) Carsten Weigand (Hrsg.) Raphael Fockel (Autor) Methoden des Data Mining im praktischen Einsatz FHDW-Fachbericht Band 1/2009 Raphael Fockel Wilhelm Nüsser (Hrsg.) Carsten Weigand

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalyse k-means-algorithmus Canopy Clustering Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalyse

Mehr

Knowledge Discovery In Databases. Data Mining - Der moderne Goldrausch?

Knowledge Discovery In Databases. Data Mining - Der moderne Goldrausch? Oberseminar Data Mining 07. April 2010 Methodik des Data Mining Knowledge Discovery In Databases oder auch Data Mining - Der moderne Goldrausch? Data Mining...? Hochleistungsrechnen Geoinformationssysteme

Mehr

Clusteranalyse. Multivariate Datenanalyse. Prof. Dr. Dietmar Maringer. Abteilung für Quantitative Methoden, WWZ der Universität Basel

Clusteranalyse. Multivariate Datenanalyse. Prof. Dr. Dietmar Maringer. Abteilung für Quantitative Methoden, WWZ der Universität Basel Clusteranalyse Multivariate Datenanalyse Prof. Dr. Dietmar Maringer Abteilung für Quantitative Methoden, WWZ der Universität Basel Herbstsemester 2013 D Maringer: Datenanalyse Clusteranalyse (1) Ausgangssituation

Mehr

6.6 Vorlesung: Von OLAP zu Mining

6.6 Vorlesung: Von OLAP zu Mining 6.6 Vorlesung: Von OLAP zu Mining Definition des Begriffs Data Mining. Wichtige Data Mining-Problemstellungen, Zusammenhang zu Data Warehousing,. OHO - 1 Definition Data Mining Menge von Techniken zum

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

Business Analytics im E-Commerce

Business Analytics im E-Commerce Business Analytics im E-Commerce Kunde, Kontext und sein Verhalten verstehen für personalisierte Kundenansprache Janusz Michalewicz CEO Über die Firma Crehler Erstellung von Onlineshops Analyse von Transaktionsdaten

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede. Daniel Meschenmoser

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede. Daniel Meschenmoser Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Daniel Meschenmoser Übersicht Gemeinsamkeiten von Data Mining und Statistik Unterschiede zwischen Data Mining und Statistik Assoziationsregeln

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Einführung in Data Mining Ulf Leser Wissensmanagement in der Bioinformatik Wo sind wir? Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung des

Mehr

Clustering Seminar für Statistik

Clustering Seminar für Statistik Clustering Markus Kalisch 03.12.2014 1 Ziel von Clustering Finde Gruppen, sodas Elemente innerhalb der gleichen Gruppe möglichst ähnlich sind und Elemente von verschiedenen Gruppen möglichst verschieden

Mehr

Seminar Visual Analytics and Visual Data Mining

Seminar Visual Analytics and Visual Data Mining Seminar Visual Analytics and Visual Data Mining Dozenten:, AG Visual Computing Steffen Oeltze, AG Visualisierung Organisatorisches Seminar für Diplom und Bachelor-Studenten (max. 18) (leider nicht für

Mehr

Klassifikation und Ähnlichkeitssuche

Klassifikation und Ähnlichkeitssuche Klassifikation und Ähnlichkeitssuche Vorlesung XIII Allgemeines Ziel Rationale Zusammenfassung von Molekülen in Gruppen auf der Basis bestimmter Eigenschaften Auswahl von repräsentativen Molekülen Strukturell

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Web Data Mining. Alexander Hinneburg Sommersemester 2007

Web Data Mining. Alexander Hinneburg Sommersemester 2007 Web Data Mining Alexander Hinneburg Sommersemester 2007 Termine Vorlesung Mi. 10:00-11:30 Raum?? Übung Mi. 11:45-13:15 Raum?? Klausuren Mittwoch, 23. Mai Donnerstag, 12. Juli Buch Bing Liu: Web Data Mining

Mehr

Einführung in das Data Mining Clustering / Clusteranalyse

Einführung in das Data Mining Clustering / Clusteranalyse Einführung in das Data Mining Clustering / Clusteranalyse Sascha Szott Fachgebiet Informationssysteme HPI Potsdam 21. Mai 2008 Teil I Einführung Clustering / Clusteranalyse Ausgangspunkt: Menge O von Objekten

Mehr

Mining High-Speed Data Streams

Mining High-Speed Data Streams Mining High-Speed Data Streams Pedro Domingos & Geoff Hulten Departement of Computer Science & Engineering University of Washington Datum : 212006 Seminar: Maschinelles Lernen und symbolische Ansätze Vortragender:

Mehr

Proseminar - Data Mining

Proseminar - Data Mining Proseminar - Data Mining SCCS, Fakultät für Informatik Technische Universität München SS 2014, SS 2014 1 Data Mining: Beispiele (1) Hausnummererkennung (Klassifikation) Source: http://arxiv.org/abs/1312.6082,

Mehr

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig

Vektormodelle. Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Vektormodelle Universität zu Köln HS: Systeme der maschinellen Sprachverarbeitung Prof. Dr. J. Rolshoven Referentin: Alena Geduldig Gliederung Vektormodelle Vector-Space-Model Suffix Tree Document Model

Mehr

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens

Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Seminar Künstliche Intelligenz WS 2013/14 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 19.12.2013 Allgemeine Problemstellung

Mehr

Datenbanken-Themen im OS "Data Mining" SS 2010

Datenbanken-Themen im OS Data Mining SS 2010 Prof. Dr.-Ing. Thomas Kudraß HTWK Leipzig, FIMN Datenbanken-Themen im OS "Data Mining" SS 2010 Die Vorträge sollten eine Dauer von 60 Minuten (Einzelvortrag) bzw. 45 Minuten (Doppelvortrag) haben. Nachfolgend

Mehr

Data Mining im Einzelhandel Methoden und Werkzeuge

Data Mining im Einzelhandel Methoden und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Professur Technische Informationssysteme Proseminar Technische Informationssysteme Data Mining im Einzelhandel Methoden und Werkzeuge Betreuer: Dipl.-Ing.

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04.

Big Data Analytics Roadshow. Nils Grabbert. Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Düsseldorf, 24.04. Folie Retargeting intelligent Wie man mit einer analytischen Datenbank im Retargeting mehr erreicht. Big Data Analytics Roadshow Düsseldorf, 24.04.2012 Nils Grabbert Director Data Science Der Retargeting

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Unüberwachtes Lernen: Clustern von Attributen

INTELLIGENTE DATENANALYSE IN MATLAB. Unüberwachtes Lernen: Clustern von Attributen INTELLIGENTE DATENANALYSE IN MATLAB Unüberwachtes Lernen: Clustern von Attributen Literatur J. Han, M. Kamber: Data Mining Concepts and Techniques. J. Han et. al: Mining Frequent Patterns without Candidate

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

5. Assoziationsregeln

5. Assoziationsregeln 5. Generieren von Assoziationsregeln Grundbegriffe 5. Assoziationsregeln Assoziationsregeln beschreiben gewisse Zusammenhänge und Regelmäßigkeiten zwischen verschiedenen Dingen, z.b. den Artikeln eines

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Universität Ulm Seminararbeit zum Thema Data Mining und Statistik: Gemeinsamkeiten und Unterschiede vorgelegt von: Daniel Meschenmoser betreut von: Dr. Tomas Hrycej Dr. Matthias Grabert Ulm, im Februar

Mehr

Datenbanken Unit 10: Ranking und Data Mining Erstellen und Ändern von Datenbanken

Datenbanken Unit 10: Ranking und Data Mining Erstellen und Ändern von Datenbanken Datenbanken Unit 10: Ranking und Data Mining Erstellen und Ändern von Datenbanken 7. VI. 2016 Organisatorisches nächste Woche am 14. Juni Abschlusstest (Gruppe 1: 10:00 11:15, Gruppe 2: 11:30 12:45 ) Übungsblatt

Mehr

Präsentation zur Diplomprüfung. Thema der Diplomarbeit:

Präsentation zur Diplomprüfung. Thema der Diplomarbeit: Präsentation zur Diplomprüfung Thema der Diplomarbeit: Analyse der Einsatzmöglichkeiten von Data Mining- Verfahren innerhalb einer Unternehmens - Balanced Scorecard und Entwicklung eines Empfehlungskatalogs.

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Informationsflut bewältigen - Textmining in der Praxis

Informationsflut bewältigen - Textmining in der Praxis Informationsflut bewältigen - Textmining in der Praxis Christiane Theusinger Business Unit Data Mining & CRM Solutions SAS Deutschland Ulrich Reincke Manager Business Data Mining Solutions SAS Deutschland

Mehr