Mathematik sehen und verstehen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik sehen und verstehen"

Transkript

1 Mathematik sehen und verstehen Schlüssel zur Welt Bearbeitet von Dörte Haftendorn 1. Auflage Taschenbuch. x, 341 S. Paperback ISBN Format (B x L): 16,8 x 24 cm Weitere Fachgebiete > Mathematik > Mathematik Allgemein Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, ebooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.

2 2 Kryptografie Abb. 2.1 Anzapfen der Kommunikation nützt nichts Kryptografie in unserer Welt Ein namhaftes Werk zur deutschen Rechtschreibung schreibt in seiner Auflage von 2006 das Folgende: Kryp to gra fie, die;-,...ien (Psychol. absichtslos entstandene Kritzelzeichnung bei Erwachsenen; Disziplin der Informatik; veraltet für Geheimschrift) Dieselbe arg unvollkommene Definition enthält das Fremdwörterbuch desselben Verlages, aber auch das Rechtschreibwerk eines anderen großen Herstellers. Der Brockhaus allerdings beschreibt Kryptografie und Kryptologie in seiner Auflage von 1990 schon zutreffend als die Lehre von der Entwicklung und Bewertung von Verschlüsselungsverfahren zum Schutz von Daten. Jedenfalls steckt das griechische Wort kryptikos darin, das verborgen, geheim heißt. Kryptografie ist also das verborgene Schreiben und Kryptologie heißt die Lehre vom Geheimen. Zusammen trifft dies den Sachverhalt auch wirklich. Heute hat sich Kryptografie als allgemeine Bezeichnung durchgesetzt. Beutelspacher et al. formulieren in ihrem Buch [Beutelspacher 2] den Satz: Kryptografie ist eine öffentliche mathematische Wissenschaft, in der Vertrauen geschaffen, übertragen und erhalten wird. Genau hier liegen die Ziele dieses Kapitels: Sie die Öffentlichkeit sollen so viel verstehen können, dass Sie nicht blind vertrauen müssen.

3 10 2. Kryptografie 2.1 Die alte und die neue Kryptografie Vermutlich haben Menschen schon immer Nachrichten ausgetauscht, die nicht jeder erfahren durfte. Einige einfallsreiche Verfahren der abendländischen Geschichte sind bekannt. Bei der griechischen Skytala wurde ein langes Band um einen Stab gewickelt und dann in Längsrichtung des Stabes beschriftet. Nach dem Abwickeln erschienen die Buchstaben in nicht zu deutender Reihenfolge auf dem Band. Wer aber den passenden Stab hatte, wickelte das Band wieder auf und las bequem die Nachricht. Verschlüsselungen mit Alphabetverschiebung haben eine lange Tradition und sind immer mehr verfeinert worden (dazu mehr im nächsten Absatz). Bei uninformierten Gegenspielern nützte schon das Verwenden erfundener Zeichen anstelle der Buchstaben. Beliebt waren auch immer wieder unsichtbare Tinten, die durch chemische Prozesse sichtbar gemacht werden konnten. Immer aber mussten im Vorhinein Vereinbarungen zwischen Sender und Empfänger der verschlüsselten Nachricht getroffen werden, deren Kenntnis zum Entschlüsseln notwendig war, aber in unberechtigte Hände gelangen konnten. Hier lag die entscheidende Schwachstelle der alten Kryptografie. Bis in die siebziger Jahre des 20. Jahrhunderts konnte man sich eine durchgreifende Lösung dieses Problems auch nicht vorstellen. Seitdem aber gibt es die Kryptografie mit öffentlichen Schlüsseln. Jeder darf diese Schlüssel kennen, auch ein potenzieller Angreifer, der unerlaubt das kryptografische Geheimnis ausspähen will. Dieser Mister X, so wird er oft bezeichnet, darf sogar genau das Verfahren kennen, nach dem Sender und Empfänger vorgehen. Da heute immer Computer im Spiel sind, besteht auch die Sorge, das Anzapfen der Leitungen könnte Mister X etwas nützen. Aber auch das nützt ihm rein gar nichts. Voraussetzung ist allerdings, dass Sender und Empfänger das entsprechende kryptografische Protokoll sinnvoll befolgen, und nicht etwa ihre privaten Schlüssel für jemand anderen zugänglich machen. Auch der Kommunikationspartner, mit dem ein Geheimnis geteilt werden soll, erfährt niemals die privaten Schlüssel. Ein Mindestmaß an Einsicht, was bei der Ver- und Entschlüsselung geschieht, wird deshalb sicher hilfreich sein. Bei der Public-Key-Kryptografie wird mit öffentlichen Schlüsseln die in eine Zahl umgewandelte Nachricht auf besondere Weise verrechnet. Dabei spielen große Primzahlen mit mehr als 150 Stellen eine Rolle. Mit kleinen Primzahlen wie 17 oder 23 sind das Vorgehen und das besondere Rechnen durchaus verstehbar. In diesem Kapitel unternehmeich den Versuch, Ihnendie moderne Kryptografie verständlich zu machen. Alphabetische Verschlüsselung Wir werden zunächst die alphabetische Verschlüsselung verfeinern und verwandeln, damit Sie die von der alten Kryptografie nicht überwundene Hürde besser verstehen. Um militärische Informationen geheim zu übermitteln, verwendete Cäsar eine einfache Verschlüsselungsidee: Das Alphabet wurde, wie in Abb. 2.2 gezeigt, um einige Buchstaben verschoben. Die Information, dass aus dem A ein L wird, reichte schon aus, um aus dem Wort MATHE den Geheimtext XLESP zu machen. So konnte dann ein Bote mit einer geheimen Nachricht von VZPWY nach ECTPC reiten. Wenn dem Gegner, der

4 2.1 Die alte und die neue Kryptografie 11 Abb. 2.2 Monoalphabetische Verschlüsselung einen solchen Boten abfing, dieses Prinzip der monoalphabetischen Verschlüsselung bekannt war, konnte er spätestens nach 25 Versuchen den Text lesen. Unsere Computer könnten gleich alle möglichen Rückübersetzungen nennen und der Nutzer wählt die einzige leserliche aus. Ein weiterer Erfolg versprechender Angriff kann über die Buchstabenhäufigkeit erfolgen. Im Deutschen ist E der bei Weitem häufigste Buchstabe. Es folgen N und R. Bei den obigen verschlüsselten Wörtern kommen P und C am häufigsten vor, es könnte sich um E, N oder R handeln. So ist es ja auch. Die Kurzworte IN, AN, UND, AUF,... sind in Kryptogrammen leicht kenntlich, so dass man ohne Wortgrenzen verschlüsseln muss. Damit kann man die Sicherheit ein Abb. 2.3 Vigenère-Quadrat, polyalphabetische Verschlüsselung

5 12 2. Kryptografie wenig erhöhen, bei längeren Geheimtexten kommt man aber dennoch leicht zur Entschlüsselung. Eine bessere Idee sind polyalphabetische Verschlüsselungen. Vigenère schlägt um 1550 die Verwendung eines Buchstabenquadrates vor. Betrachten Sie Abb Ein Schlüsselwort gibt Buchstabe für Buchstabe an, mit welcher Zeile der Klartext verschlüsselt werden soll. Hier wird wegen GALLIA als Erstes die Zeile verwendet, bei der das schwarze G unter dem roten A steht. Damit wird der Klartextbuchstabe K in Q umgewandelt. Als Verständnishilfe sind oben die ersten Schritte nummeriert. So ergibt sich: K L E O P A T R A C O R M E U M Q L P Z X A X J T Q A E U W X U WennKleopatra nunweiß, dasssiedenanfang desbuchesde bello gallico von Cäsar als Schlüsselwort nehmen soll, kann sie das Kryptogramm lesen. Die Vigenère-Verschlüsselung kann bei kurzen Schlüsselwörtern, die dann immer wiederholt werden, recht einfach geknackt werden. Zuerst versucht man die Blöcke zu bilden, die die Länge des Schlüsselwortes haben. Dann nimmt man wieder die Häufigkeitsanalyse. Besonders wegen der Unterstützung durch Computer gilt die polyalphabetische Verschlüsselung mit kurzen Schlüsselwörtern als unsicher. Wenn man aber als Schlüssel den Text aus Cäsars Buch immer weiter fortlaufend verwendet, dann klappt dieser Angriff nicht. Noch besser wäre es, statt des Buchtextes eine zufällige Buchstabenfolge zu nehmen. Leider müssen dann aber Sender und Empfänger dieselbe Folge haben. Das ist schwer zu bewerkstelligen. Nimmt man Zahlen statt Buchstaben, kann man leichter zufällige Folgen bilden und übermitteln, wie wir unten sehen werden. Um einen Text in Zahlen zu übersetzen, kann man einfach dasselbe Verfahren verwenden, das sowieso bei unseren Computern üblich ist. Der sogenannte ASCII-Code (American Standard Code for Information Interchange) reicht in seinem Grundtyp bis zur Nummer 127. Hier ist von der ASCII- Nummer die Zahl 28 abgezogen, damit die Verschlüsselung mit zweistelligen Zahlen möglich ist. Mit höheren Nummern als sie Abb. 2.4 entsprechen folgen noch die Kleinbuchstaben und andere Zeichen. Abb. 2.4 ASCII-Code minus 28 Nun verschlüsseln wir mit Abb. 2.5 die Ziffern einzeln. Sei m die Nachricht (message), als Wort istes RABE, s der Schlüssel und c die verschlüsselte Nachricht (ciphertext), der Code. Die Vorgehensweise ist eigentlich dieselbe wie beim Vigenère-Quadrat aus Abb. 2.3, nur haben wir es jetzt durch die Zahlen bequemer als mit den Buchstaben. Wir müssen nur einzeln zu jeder Ziffer der Nachricht m die darunter stehende Ziffer des Schlüssels addieren und dabei die Zehnerüberträge ignorieren. Man nennt dieses Vorgehen auch Addition modulo 10. In Abschnitt 2.3 widmen wir uns ausführlich dem modulo-rechnen.

6 2.1 Die alte und die neue Kryptografie 13 Abb. 2.5 Vigenère-Quadrat mit Zahlen Bemerkenswert ist, wie sich das antike Alphabetverschieben in ein mathematisches Vorgehen verwandelt hat. Verschlüsseln mit dem One-Time-Pad Die verschlüsselte Nachricht könnte der Angreifer gern abfangen, sie enthält für jemanden, der den Schlüssel nicht kennt, keinerlei Information. Denn jede andere Nachricht m kann bei passendem Schlüssel s genau diese verschlüsselte Nachricht c ergeben. Machen Sie sich anhand der Abb. 2.6 klar, dass zur Textnachricht MAUS ein Schlüssel s konstruiert werden kann, der auch zu c führt. Abb. 2.6 Auch MAUS wird zum Code von RABE Hier ist der Schlüssel acht Stellen lang und das Verfahren kann Worte mit vier Buchstaben unknackbar verschlüsseln. Bleibt man auch bei längeren Nachrichten bei einem so kurzen Schlüssel, so kann ein Angreifer die Schlüssellänge herausbekommen und dann doch mit der Beachtung der Buchstabenhäufigkeiten Erfolg haben. Also nimmt man keine kurzen Schlüssel.

7 14 2. Kryptografie Das One-Time-Pad ist eine Verschlüsselungsmethode, bei der jede Schlüsselziffer nur einmal zum Verschlüsseln einer Ziffer der Nachricht verwendet wird. Abb. 2.7 One-Time-Pad als Abreißkalender Wenn jeder Schlüssel möglich ist, ist das One-Time-Pad mit unserer obigen Überlegung als sicher nachgewiesen. Die Zahlenfolge für den Schlüssel muss so lang sein wie die Nachricht. Und der Angreifer darf keine Schlüsselziffer vorhersagen können. Stellen Sie sich vor, zufällige Schlüsselziffern stünden auf einem Abreißkalender wie in Abb. 2.7, dessen Blätter Sie einzeln verwenden und dann wegwerfen. Nun widmen wir uns der Schwierigkeit, dass der Empfänger eine identische Kopie dieses Abreißkalenders braucht. Quasizufällige Zahlenfolgen kann man mit Computern leicht erzeugen. Mit quasizufällig meint man, dass die Zahlenfolge für einen Angreifer nicht erratbar ist, dass sie aber in Wahrheit durch einen Algorithmus, ein Rechenverfahren, erzeugt wird. Es eignen sich z. B. die Ziffern der Kreiszahl π von irgendeiner Startstelle aus, sagen wir ab der Stelle Die beiden Kommunikationspartner starten dann die π-berechnung oder allgemeiner einen Zufallszahlengenerator an derselben Stelle. Nun haben wir also den identischen Abreißkalender mit zufällig erscheinenden Ziffern, aber es bleibt noch das Problem, wie die Startstelle unangreifbar sicher übermittelt werden kann. Genau hier kommt die alte Kryptografie nicht weiter haben Diffie und Hellman das Problem der sicheren Schlüsselvereinbarung gelöst, wie Sie in Abschnitt sehen und verstehen können. Damit ist das Zeitalter der modernen Kryptografie eingeläutet, die sich vollständig von der Idee der verborgenen Muster löst undals Werkzeuge große Primzahlenund das modulo-rechnen etabliert. 2.2 Primzahlen Ein natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler hat, nämlich die 1 und sich selbst. Damit ist 2 die kleinste Primzahl und auch die einzige gerade Zahl unter den Primzahlen. Alle anderen geraden Zahlen haben ja die 2 als dritten möglichen Teiler. Die nachfolgenden Primzahlen sind 3, 5, 7, 11, 13, 17, 19,..., dabei sagen die drei Pünktchen nur, dass noch weitere Primzahlen folgen. Nicht gemeint ist, dass nun die 21 folgt,

2 Kryptografie. Kryptografie in unserer Welt. Ein namhaftes Werk zur deutschen Rechtschreibung schreibt in seiner Auflage von 2006 das Folgende:

2 Kryptografie. Kryptografie in unserer Welt. Ein namhaftes Werk zur deutschen Rechtschreibung schreibt in seiner Auflage von 2006 das Folgende: 2 Kryptografie Abb. 2.1 Anzapfen der Kommunikation nützt nichts Kryptografie in unserer Welt Ein namhaftes Werk zur deutschen Rechtschreibung schreibt in seiner Auflage von 2006 das Folgende: Kryp to gra

Mehr

Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln

Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln V-Verschlüsslung Lehreinheit Verschlüsselung mit symmetrischen Schlüsseln Zeitrahmen 70 Minuten Zielgruppe Sekundarstufe I Sekundarstufe II Inhaltliche Voraussetzung V1 Caesar-Chiffre Für Punkt 2: Addieren/Subtrahieren

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09 Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3

Mehr

Seminar für LAK. Angewandte Mathematik

Seminar für LAK. Angewandte Mathematik LV-Nummer: 250115 Wintersemester 2009/2010 Ao. Univ.-Prof. Dr. Peter Schmitt Seminar für LAK Angewandte Mathematik Martin Kletzmayr Matrikelnummer: 0304008 Studienkennzahl: A 190 313 406 Email: martin.kletzmayr@gmx.net

Mehr

Filme der Kindheit Kindheit im Film

Filme der Kindheit Kindheit im Film Kinder- und Jugendkultur, -literatur und -medien 66 Filme der Kindheit Kindheit im Film Beispiele aus Skandinavien, Mittel- und Osteuropa Bearbeitet von Christine Gölz, Anja Tippner, Karin Hoff 1. Auflage

Mehr

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May Kryptologie Verschlüsselungstechniken von Cäsar bis heute Inhalt Was ist Kryptologie Caesar Verschlüsselung Entschlüsselungsverfahren Die Chiffrierscheibe Bestimmung der Sprache Vigenére Verschlüsselung

Mehr

Cacherhochschule CHS. Teil II polyalphabetische Substitutionschiffren

Cacherhochschule CHS. Teil II polyalphabetische Substitutionschiffren Cacherhochschule CHS Multi-Mystery Rätselhilfe -Event Teil II polyalphabetische Substitutionschiffren Herzlich willkommen! Kurz zur Erinnerung: Teil I behandelte Chiffren und Codes Polybios, Vanity, ROT

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

Office 2016 für Mac Das Profibuch

Office 2016 für Mac Das Profibuch Edition SmartBooks Office 2016 für Mac Das Profibuch Mehr herausholen aus Word, Excel, PowerPoint, OneNote und Outlook Bearbeitet von Horst-Dieter Radke 1. Auflage 2015. Taschenbuch. XIV, 380 S. Paperback

Mehr

Kryptologie. Nicolas Bellm. 24. November 2005

Kryptologie. Nicolas Bellm. 24. November 2005 24. November 2005 Inhalt Einleitung 1 Einleitung 2 Klassische Skytale Monoalphabetische Verfahren Polyalphabetische Verfahren 3 Moderne Symmetrische Assymetrische 4 Ausblick Einleitung Einleitung Die ist

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012 Symmetrische und Asymmetrische Kryptographie Technik Seminar 2012 Inhalt Symmetrische Kryptographie Transpositionchiffre Substitutionchiffre Aktuelle Verfahren zur Verschlüsselung Hash-Funktionen Message

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

Klassische Verschlüsselungsverfahren

Klassische Verschlüsselungsverfahren Klassische Verschlüsselungsverfahren Matthias Rainer 20.11.2007 Inhaltsverzeichnis 1 Grundlagen 2 2 Substitutionschiffren 2 2.1 Monoalphabetische Substitutionen....................... 3 2.1.1 Verschiebechiffren............................

Mehr

Kreatives Gestalten mit Flash 5.0

Kreatives Gestalten mit Flash 5.0 Kreatives Gestalten mit Flash 5.0 Animationen, Effekte und Anwendungen für das WWW Bearbeitet von Isolde Kommer 1. Auflage 2000. Buch. 444 S. Hardcover ISBN 978 3 446 21463 7 Format (B x L): 20,1 x 23,6

Mehr

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Agenda 1. Kerckhoff sches Prinzip 2. Kommunikationsszenario 3. Wichtige Begriffe 4. Sicherheitsmechanismen 1. Symmetrische Verschlüsselung

Mehr

Der Kälteanlagenbauer

Der Kälteanlagenbauer Der Kälteanlagenbauer Band : Grundkenntnisse Bearbeitet von Karl Breidenbach., überarbeitete und erweiterte Auflage. Buch. XXVIII, S. Gebunden ISBN 00 Format (B x L):,0 x,0 cm Zu Inhaltsverzeichnis schnell

Mehr

Die Unternehmergesellschaft

Die Unternehmergesellschaft Die Unternehmergesellschaft Recht, Besteuerung, Gestaltungspraxis Bearbeitet von Prof. Dr. Dr. hc. Michael Preißer, Gültan Acar 1. Auflage 2016. Buch. 300 S. Hardcover ISBN 978 3 7910 3445 4 Format (B

Mehr

1. Asymmetrische Verschlüsselung einfach erklärt

1. Asymmetrische Verschlüsselung einfach erklärt 1. Asymmetrische Verschlüsselung einfach erklärt Das Prinzip der asymmetrischen Verschlüsselung beruht im Wesentlichen darauf, dass sich jeder Kommunikationspartner jeweils ein Schlüsselpaar (bestehend

Mehr

JavaScript kinderleicht!

JavaScript kinderleicht! JavaScript kinderleicht! Einfach programmieren lernen mit der Sprache des Web Bearbeitet von Nick Morgan 1. Auflage 2015. Taschenbuch. XX, 284 S. Paperback ISBN 978 3 86490 240 6 Format (B x L): 16,5 x

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10)

Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10) Fakultät für Mathematik und Informatik Univeristät Würzburg Am Hubland, 97 074 Würzburg Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10) Worum geht

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Langenscheidt Training plus, Mathe 6. Klasse

Langenscheidt Training plus, Mathe 6. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x

Mehr

1. Klassische Kryptographie: Caesar-Verschlüsselung

1. Klassische Kryptographie: Caesar-Verschlüsselung 1. Klassische Kryptographie: Caesar-Verschlüsselung Das Bestreben, Botschaften für andere unlesbar zu versenden, hat zur Entwicklung einer Wissenschaft rund um die Verschlüsselung von Nachrichten geführt,

Mehr

Einfache kryptographische Verfahren

Einfache kryptographische Verfahren Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b

Mehr

IT Sicherheitsmanagement

IT Sicherheitsmanagement mitp Professional IT Sicherheitsmanagement Arbeitsplatz IT Security Manager Bearbeitet von Thomas W. Harich 1. Auflage 2012. Buch. 472 S. Hardcover ISBN 978 3 8266 9193 5 Format (B x L): 17 x 24 cm Gewicht:

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Mit Python von Caesar zur Public-Key Kryptographie

Mit Python von Caesar zur Public-Key Kryptographie Mit Python von Caesar zur Public-Key Kryptographie Thomas Grischott KSS 30. Juni 2008 1 Die Caesarverschiebung Caesar hat Nachrichten an seine Feldherren verschlüsselt, indem er jeden Buchstaben um drei

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Exkurs Kryptographie

Exkurs Kryptographie Exkurs Kryptographie Am Anfang Konventionelle Krytographie Julius Cäsar mißtraute seinen Boten Ersetzen der Buchstaben einer Nachricht durch den dritten folgenden im Alphabet z. B. ABCDEFGHIJKLMNOPQRSTUVWXYZ

Mehr

Schulungspaket ISO 9001

Schulungspaket ISO 9001 Schulungspaket ISO 9001 PPT-Präsentationen Übungen Dokumentationsvorlagen Bearbeitet von Jens Harmeier 1. Auflage 2014. Onlineprodukt. ISBN 978 3 8111 6740 7 Wirtschaft > Management > Qualitätsmanagement

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

Wie bleibt unser Geheimnis geheim?

Wie bleibt unser Geheimnis geheim? Wie bleibt unser Geheimnis geheim? Jan Tobias Mühlberg Wie bleibt unser Geheimnis geheim? MuT, Wintersemester 2009/10 Jan Tobias Mühlberg & Johannes Schwalb muehlber@swt-bamberg.de Lehrstuhl: Prof. Lüttgen,

Mehr

Business. Projektmanagement. Grundlagen, Methoden und Techniken. Bearbeitet von Rolf Meier

Business. Projektmanagement. Grundlagen, Methoden und Techniken. Bearbeitet von Rolf Meier Business Projektmanagement Grundlagen, Methoden und Techniken. Bearbeitet von Rolf Meier 2., Überarbeitete Auflage des Titels 978-3-89749-431-2 2009. Buch. 128 S. Hardcover ISBN 978 3 86936 016 4 Format

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

1.1. Von den Anfängen der Verschlüsselung bis zur modernen Kryptografie

1.1. Von den Anfängen der Verschlüsselung bis zur modernen Kryptografie Dr. Anita Dorfmayr, Universität Wien Von Cäsar bis RSA Verschlüsselung von der 1. bis zur 8. Klasse Anwendungsorientierter Mathematikunterricht kann nicht nur Motivation und Interesse der Schüler/innen

Mehr

Science goes Business

Science goes Business Science goes Business Vom Wissenschaftler zum Unternehmer Bearbeitet von Annette Jensen, Winfried Kretschmer 1. Auflage 2001. Taschenbuch. 213 S. Paperback ISBN 978 3 446 21739 3 Format (B x L): 15,1 x

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Das Gesetz der Beziehung

Das Gesetz der Beziehung Das Gesetz der Beziehung Wie Sie bekommen, was Sie wollen - in Harmonie mit anderen Menschen Bearbeitet von Michael J. Losier, Juliane Molitor 1. Auflage 2009. Buch. 192 S. Hardcover ISBN 978 3 7787 9211

Mehr

Basistraining Vektorgrafik

Basistraining Vektorgrafik Basistraining Vektorgrafik Der kreative Pfad zu besseren Grafiken Bearbeitet von Von Glitschka 1. Auflage 2014. Taschenbuch. XVI, 234 S. Paperback ISBN 978 3 86490 182 9 Format (B x L): 18,5 x 24,5 cm

Mehr

ANLEITUNG FÜR EINE GEHEIMSCHRIFT

ANLEITUNG FÜR EINE GEHEIMSCHRIFT NIVEAU G Thema: Geheimnisse ANLEITUNG FÜR EINE GEHEIMSCHRIFT Möglicher Ablauf Einstieg Bildimpuls: Folie Verschlüsselung in einer geheimen Botschaft präsentieren (vgl. Folie/Anhang) spontane Äußerungen

Mehr

Datenschutzunterweisung kompakt

Datenschutzunterweisung kompakt Datenschutzunterweisung kompakt Mitarbeiter gekonnt und dauerhaft sensibilisieren Bearbeitet von Oliver Schonschek, Jochen Brandt, Harald Eul 1. Auflage 2015. CD. ISBN 978 3 8245 8092 7 Format (B x L):

Mehr

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13.

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13. Von Cäsar bis RSA Chiffrierung von der 1. bis zur 8. Klasse Dr. Anita Dorfmayr Universität Wien Lehrerfortbildungstag der ÖMG Wien, 13. April 2007 Gliederung Einführung Geschichte Zielsetzungen der Kryptografie

Mehr

Kryptographie und Verschlüsselung

Kryptographie und Verschlüsselung 7-it Kryptographie und Verschlüsselung Jörg Thomas 7-it Kryptographie und Verschlüsselung Begriffsbildung Geschichte Ziel moderner Kryptographie Sicherheit Public-Key-Kryptographie Ausblick Begriffsbildung

Mehr

Einführung in die verschlüsselte Kommunikation

Einführung in die verschlüsselte Kommunikation Einführung in die verschlüsselte Kommunikation Loofmann AFRA Berlin 25.10.2013 Loofmann (AFRA Berlin) Creative Common BY-NC-SA 2.0 25.10.2013 1 / 37 Ziele des Vortrages Wie funktioniert Verschlüsselung?

Mehr

Kryptologie. GFS im Fach Mathematik. Nicolas Bellm. 12. November - 16. November 2005

Kryptologie. GFS im Fach Mathematik. Nicolas Bellm. 12. November - 16. November 2005 Kryptologie GFS im Fach Mathematik Nicolas Bellm 12. November - 16. November 2005 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Aufgaben zu Stellenwertsystemen

Aufgaben zu Stellenwertsystemen Aufgaben zu Stellenwertsystemen Aufgabe 1 a) Zähle im Dualsystem von 1 bis 16! b) Die Zahl 32 wird durch (100000) 2 dargestellt. Zähle im Dualsystem von 33 bis 48! Zähle schriftlich! Aufgabe 2 Wandle die

Mehr

Geschäftsprozessmanagement mit Visio, ViFlow und MS Project

Geschäftsprozessmanagement mit Visio, ViFlow und MS Project Geschäftsprozessmanagement mit Visio, ViFlow und MS Project Bearbeitet von Josef Schwab 2., aktualisierte und erweiterte Auflage 2005. Taschenbuch. XXXII, 280 S. Paperback ISBN 978 3 446 40464 9 Format

Mehr

Agile Unternehmen durch Business Rules

Agile Unternehmen durch Business Rules Xpert.press Agile Unternehmen durch Business Rules Der Business Rules Ansatz Bearbeitet von Markus Schacher, Patrick Grässle 1. Auflage 2006. Buch. xiv, 340 S. Hardcover ISBN 978 3 540 25676 2 Format (B

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

Verschlüsselungsverfahren

Verschlüsselungsverfahren Verschlüsselungsverfahren Herrn Breder hat es nach dem Studium nach München verschlagen. Seine Studienkollegin Frau Ahrend wohnt in Heidelberg. Da beide beruflich sehr stark einspannt sind, gibt es keine

Mehr

Grundkurs Programmieren in Java

Grundkurs Programmieren in Java Grundkurs Programmieren in Java Band 1: Der Einstieg in Programmierung und Objektorientierung Bearbeitet von Dietmar Ratz, Jens Scheffler, Detlef Seese 1. Auflage 2001. Taschenbuch. 463 S. Paperback ISBN

Mehr

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Kryptographie Motivation Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Geheimzahlen (Geldkarten, Mobiltelefon) Zugriffsdaten (Login-Daten, Passwörter)

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

KRYPTOLOGIE KRYPTOLOGIE

KRYPTOLOGIE KRYPTOLOGIE KRYPTOLOGIE Die Kryptologie beschäftigt sich mit dem Verschlüsseln von Nachrichten. Sie zerfällt in zwei Gebiete: die Kryptographie, die sich mit dem Erstellen von Verschlüsselungsverfahren beschäftigt,

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Handbuch Farbkomposition - Webfarben

Handbuch Farbkomposition - Webfarben Handbuch Farbkomposition - Webfarben Bearbeitet von Helen Weber 1. Auflage 2008. Taschenbuch. 304 S. Paperback ISBN 978 3 8266 5957 7 Format (B x L): 17 x 24 cm Gewicht: 654 g Zu Inhaltsverzeichnis schnell

Mehr

Facharbeit Mathematik - Kryptologie. Thorsten Ferres MSS94

Facharbeit Mathematik - Kryptologie. Thorsten Ferres MSS94 Facharbeit Mathematik - Kryptologie Thorsten Ferres MSS94 Facharbeit Mathematik - Kryptologie 1 Kryptologie - Was ist das für eine Wissenschaft? 3 Welche Algorithmen gibt es - was sind Algorithmen? 5 Substitutionsalgorithmen

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (2)

Grundlagen der Verschlüsselung und Authentifizierung (2) Grundlagen der Verschlüsselung und Authentifizierung (2) Ausarbeitung im Seminar Konzepte von Betriebssystem-Komponenten Benjamin Klink 21. Juli 2010 Inhaltsverzeichnis 1 Einleitung 1 2 Asymmetrische Verschlüsselung

Mehr

DES der vergangene Standard für Bitblock-Chiffren

DES der vergangene Standard für Bitblock-Chiffren DES der vergangene Standard für Bitblock-Chiffren Klaus Pommerening Fachbereich Mathematik der Johannes-Gutenberg-Universität Saarstraße 1 D-55099 Mainz Vorlesung Kryptologie 1. März 1991, letzte Änderung:

Mehr

Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik

Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik Facharbeit Informatik Public Key Verschlüsselung Speziell: PGP Ole Mallow Basiskurs Informatik Seite 1 von 9 Inhaltsverzeichnis Inhaltsverzeichnis...2 1. Allgemein...3 1.1 Was ist Public Key Verschlüsselung?...3

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation

VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation VON 07. März 2013 & Kryptographie Powerpoint-Präsentation 1 Allgemeines über die Kryptographie kryptós= griechisch verborgen, geheim gráphein= griechisch schreiben Kryptographie + Kryptoanalyse= Kryptologie

Mehr

Taxi Businessplan. Sicher im Finanzierungsgespräch und erfolgreiche Unternehmenskontrolle. Bearbeitet von Jürgen Hartmann, Stefan Köller

Taxi Businessplan. Sicher im Finanzierungsgespräch und erfolgreiche Unternehmenskontrolle. Bearbeitet von Jürgen Hartmann, Stefan Köller Taxi Businessplan Sicher im Finanzierungsgespräch und erfolgreiche Unternehmenskontrolle Bearbeitet von Jürgen Hartmann, Stefan Köller 1. Auflage 2012. Buch. 112 S. Kartoniert ISBN 978 3 941418 98 1 Wirtschaft

Mehr

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie

IT-Sicherheit: Kryptographie. Asymmetrische Kryptographie IT-Sicherheit: Kryptographie Asymmetrische Kryptographie Fragen zur Übung 5 C oder Java? Ja (gerne auch Python); Tips waren allerdings nur für C Wie ist das mit der nonce? Genau! (Die Erkennung und geeignete

Mehr

Kryptografie & Kryptoanalyse. Eine Einführung in die klassische Kryptologie

Kryptografie & Kryptoanalyse. Eine Einführung in die klassische Kryptologie Kryptografie & Kryptoanalyse Eine Einführung in die klassische Kryptologie Ziele Anhand historischer Verschlüsselungsverfahren Grundprinzipien der Kryptografie kennen lernen. Klassische Analysemethoden

Mehr

Umstellung des Schlüsselpaares der Elektronischen Unterschrift von A003 (768 Bit) auf A004 (1024 Bit)

Umstellung des Schlüsselpaares der Elektronischen Unterschrift von A003 (768 Bit) auf A004 (1024 Bit) Umstellung des Schlüsselpaares der Elektronischen Unterschrift von A003 (768 Bit) auf A004 (1024 Bit) 1. Einleitung Die Elektronische Unterschrift (EU) dient zur Autorisierung und Integritätsprüfung von

Mehr

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel

4 RSA und PGP. Die Mathematik von RSA an einem Beispiel 4 RSA und PGP Im Juni 1991 wurde das Programm PGP (für pretty good privacy ) von Phil Zimmermann ins Internet gestellt. Es ermöglichte jedermann, e-mails derart gut zu verschlüsseln, dass nicht einmal

Mehr

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen

SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen SSL/TLS Sicherheit Warum es sich lohnt, sich mit Ciphersuites zu beschäftigen Immo FaUl Wehrenberg immo@ctdo.de Chaostreff Dortmund 16. Juli 2009 Immo FaUl Wehrenberg immo@ctdo.de (CTDO) SSL/TLS Sicherheit

Mehr

Kryptografie und Kryptoanalyse

Kryptografie und Kryptoanalyse Kryptografie und Kryptoanalyse Gruppenunterricht zum Thema: Kryptografie und Kryptoanalyse Fach: Informatik, Informationssicherheit Schultyp: Sekundarstufe II (Gymnasien, Berufsschulen) letzte Klassen,

Mehr

Abruf und Versand von Mails mit Verschlüsselung

Abruf und Versand von Mails mit Verschlüsselung Bedienungstip: Verschlüsselung Seite 1 Abruf und Versand von Mails mit Verschlüsselung Die folgende Beschreibung erklärt, wie man mit den üblichen Mailprogrammen die E- Mailabfrage und den E-Mail-Versand

Mehr

Einführung in die moderne Kryptographie

Einführung in die moderne Kryptographie c by Rolf Haenni (2006) Seite 1 Von der Caesar-Verschlüsselung zum Online-Banking: Einführung in die moderne Kryptographie Prof. Rolf Haenni Reasoning under UNcertainty Group Institute of Computer Science

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Koordinatenmesstechnik und CAX-Anwendungen in der Produktion

Koordinatenmesstechnik und CAX-Anwendungen in der Produktion Koordinatenmesstechnik und CAX-Anwendungen in der Produktion Grundlagen, Schnittstellen und Integration Bearbeitet von Tilo Pfeifer, Dietrich Imkamp 1. Auflage 2004. Buch. 184 S. Hardcover ISBN 978 3 446

Mehr

4 Codierung nach Viginere (Lösung)

4 Codierung nach Viginere (Lösung) Kapitel 4 Codierung nach Viginere (Lösung) Seite 1/14 4 Codierung nach Viginere (Lösung) 4.1 Einführung Blaise de Vigenère lebte von 1523 bis 1596 in Frankreich und war nach dem Studium bei verschiedenen

Mehr

Kryptographie eine erste Ubersicht

Kryptographie eine erste Ubersicht Kryptographie eine erste Ubersicht KGV bedeutet: Details erfahren Sie in der Kryptographie-Vorlesung. Abgrenzung Steganographie: Das Kommunikationsmedium wird verborgen. Klassische Beispiele: Ein Bote

Mehr

Kryptologie. 2. Sicherstellung, dass eine Nachricht unverfälscht beim Empfänger ankommt: Integrität.

Kryptologie. 2. Sicherstellung, dass eine Nachricht unverfälscht beim Empfänger ankommt: Integrität. Kryptologie Zur Terminologie Die Begriffe KRYPTOLOGIE und KRYPTOGRAPHIE entstammen den griechischen Wörtern kryptos (geheim), logos (Wort, Sinn) und graphein (schreiben). Kryptographie ist die Lehre vom

Mehr

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem

20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem 20. Algorithmus der Woche Online-Algorithmen: Was ist es wert, die Zukunft zu kennen? Das Ski-Problem Autor Susanne Albers, Universität Freiburg Swen Schmelzer, Universität Freiburg In diesem Jahr möchte

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Springer-Lehrbuch Grundwissen Mathematik Ein Vorkurs für Fachhochschule und Universität Bearbeitet von Jan van de Craats, Rob Bosch, Petra de Jong, Theo de Jong 1st Edition. 2010. Taschenbuch. x, 326 S.

Mehr

Kryptographie. eine kurze Einführung von Christof Schowalter A. WOZU KRYPTOGRAPHIE? 2 B. BEZEICHNUNGEN UND FACHBEGRIFFE 2

Kryptographie. eine kurze Einführung von Christof Schowalter A. WOZU KRYPTOGRAPHIE? 2 B. BEZEICHNUNGEN UND FACHBEGRIFFE 2 Kryptographie eine kurze Einführung von Christof Schowalter A. WOZU KRYPTOGRAPHIE? 2 B. BEZEICHNUNGEN UND FACHBEGRIFFE 2 C. KLASSISCHE KRYPTOGRAPHIE 3 1. Verschiebechiffre 3 2. Schlüsselwort 4 3. Tauschchiffren

Mehr

4 Kryptologie. Übersicht

4 Kryptologie. Übersicht 4 Kryptologie Übersicht 4.1 Der erweiterte euklidische Algorithmus................................ 38 4.2 Rechnen mit Restklassen modulo p................................... 39 4.3 Der kleine Satz von

Mehr

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1

Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Wie Sie beliebig viele PINs, die nur aus Ziffern bestehen dürfen, mit einem beliebigen Kennwort verschlüsseln: Schritt 1 Zunächst einmal: Keine Angst, die Beschreibung des Verfahrens sieht komplizierter

Mehr

M. Graefenhan 2000-12-07. Übungen zu C. Blatt 3. Musterlösung

M. Graefenhan 2000-12-07. Übungen zu C. Blatt 3. Musterlösung M. Graefenhan 2000-12-07 Aufgabe Lösungsweg Übungen zu C Blatt 3 Musterlösung Schreiben Sie ein Programm, das die Häufigkeit von Zeichen in einem eingelesenen String feststellt. Benutzen Sie dazu ein zweidimensionales

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

Datenverschlüsselung - Einstieg

Datenverschlüsselung - Einstieg Datenverschlüsselung - Einstieg Dr. Thomas Schwotzer 21. November 2011 1 Die Gefahren Bevor wir beginnen: Auch diese Lecture Note kann das Lesen eines Buches nicht ersetzen. Es wird [1] wärmestens empfohlen.

Mehr

Polyalphabetische Verschlüsselung und Stochastik THORSTEN MEHLICH, BOCHUM

Polyalphabetische Verschlüsselung und Stochastik THORSTEN MEHLICH, BOCHUM Literatur http://pisa.ipn.uni-kiel.de/zusfsg_pisa006_national. pdf Profil Das Magazin für Gymnasium und Gesellschaft, 1/008, S. 6 ff. HENZE, N. ( 6 006): Stochastik für Einsteiger. Wiesbaden: Vieweg. MEYER,

Mehr

PRIMZAHLEN PATRICK WEGENER

PRIMZAHLEN PATRICK WEGENER PRIMZAHLEN PATRICK WEGENER 1. Einführung: Was sind Primzahlen? Eine ganze Zahl p, welche größer als 1 ist, heißt Primzahl, wenn sie nur durch 1 und sich selbst teilbar ist. Mit teilbar meinen wir hier

Mehr

PeDaS Personal Data Safe. - Bedienungsanleitung -

PeDaS Personal Data Safe. - Bedienungsanleitung - PeDaS Personal Data Safe - Bedienungsanleitung - PeDaS Bedienungsanleitung v1.0 1/12 OWITA GmbH 2008 1 Initialisierung einer neuen SmartCard Starten Sie die PeDaS-Anwendung, nachdem Sie eine neue noch

Mehr