Mathematik sehen und verstehen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik sehen und verstehen"

Transkript

1 Mathematik sehen und verstehen Schlüssel zur Welt Bearbeitet von Dörte Haftendorn 1. Auflage Taschenbuch. x, 341 S. Paperback ISBN Format (B x L): 16,8 x 24 cm Weitere Fachgebiete > Mathematik > Mathematik Allgemein Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, ebooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.

2 2 Kryptografie Abb. 2.1 Anzapfen der Kommunikation nützt nichts Kryptografie in unserer Welt Ein namhaftes Werk zur deutschen Rechtschreibung schreibt in seiner Auflage von 2006 das Folgende: Kryp to gra fie, die;-,...ien (Psychol. absichtslos entstandene Kritzelzeichnung bei Erwachsenen; Disziplin der Informatik; veraltet für Geheimschrift) Dieselbe arg unvollkommene Definition enthält das Fremdwörterbuch desselben Verlages, aber auch das Rechtschreibwerk eines anderen großen Herstellers. Der Brockhaus allerdings beschreibt Kryptografie und Kryptologie in seiner Auflage von 1990 schon zutreffend als die Lehre von der Entwicklung und Bewertung von Verschlüsselungsverfahren zum Schutz von Daten. Jedenfalls steckt das griechische Wort kryptikos darin, das verborgen, geheim heißt. Kryptografie ist also das verborgene Schreiben und Kryptologie heißt die Lehre vom Geheimen. Zusammen trifft dies den Sachverhalt auch wirklich. Heute hat sich Kryptografie als allgemeine Bezeichnung durchgesetzt. Beutelspacher et al. formulieren in ihrem Buch [Beutelspacher 2] den Satz: Kryptografie ist eine öffentliche mathematische Wissenschaft, in der Vertrauen geschaffen, übertragen und erhalten wird. Genau hier liegen die Ziele dieses Kapitels: Sie die Öffentlichkeit sollen so viel verstehen können, dass Sie nicht blind vertrauen müssen.

3 10 2. Kryptografie 2.1 Die alte und die neue Kryptografie Vermutlich haben Menschen schon immer Nachrichten ausgetauscht, die nicht jeder erfahren durfte. Einige einfallsreiche Verfahren der abendländischen Geschichte sind bekannt. Bei der griechischen Skytala wurde ein langes Band um einen Stab gewickelt und dann in Längsrichtung des Stabes beschriftet. Nach dem Abwickeln erschienen die Buchstaben in nicht zu deutender Reihenfolge auf dem Band. Wer aber den passenden Stab hatte, wickelte das Band wieder auf und las bequem die Nachricht. Verschlüsselungen mit Alphabetverschiebung haben eine lange Tradition und sind immer mehr verfeinert worden (dazu mehr im nächsten Absatz). Bei uninformierten Gegenspielern nützte schon das Verwenden erfundener Zeichen anstelle der Buchstaben. Beliebt waren auch immer wieder unsichtbare Tinten, die durch chemische Prozesse sichtbar gemacht werden konnten. Immer aber mussten im Vorhinein Vereinbarungen zwischen Sender und Empfänger der verschlüsselten Nachricht getroffen werden, deren Kenntnis zum Entschlüsseln notwendig war, aber in unberechtigte Hände gelangen konnten. Hier lag die entscheidende Schwachstelle der alten Kryptografie. Bis in die siebziger Jahre des 20. Jahrhunderts konnte man sich eine durchgreifende Lösung dieses Problems auch nicht vorstellen. Seitdem aber gibt es die Kryptografie mit öffentlichen Schlüsseln. Jeder darf diese Schlüssel kennen, auch ein potenzieller Angreifer, der unerlaubt das kryptografische Geheimnis ausspähen will. Dieser Mister X, so wird er oft bezeichnet, darf sogar genau das Verfahren kennen, nach dem Sender und Empfänger vorgehen. Da heute immer Computer im Spiel sind, besteht auch die Sorge, das Anzapfen der Leitungen könnte Mister X etwas nützen. Aber auch das nützt ihm rein gar nichts. Voraussetzung ist allerdings, dass Sender und Empfänger das entsprechende kryptografische Protokoll sinnvoll befolgen, und nicht etwa ihre privaten Schlüssel für jemand anderen zugänglich machen. Auch der Kommunikationspartner, mit dem ein Geheimnis geteilt werden soll, erfährt niemals die privaten Schlüssel. Ein Mindestmaß an Einsicht, was bei der Ver- und Entschlüsselung geschieht, wird deshalb sicher hilfreich sein. Bei der Public-Key-Kryptografie wird mit öffentlichen Schlüsseln die in eine Zahl umgewandelte Nachricht auf besondere Weise verrechnet. Dabei spielen große Primzahlen mit mehr als 150 Stellen eine Rolle. Mit kleinen Primzahlen wie 17 oder 23 sind das Vorgehen und das besondere Rechnen durchaus verstehbar. In diesem Kapitel unternehmeich den Versuch, Ihnendie moderne Kryptografie verständlich zu machen. Alphabetische Verschlüsselung Wir werden zunächst die alphabetische Verschlüsselung verfeinern und verwandeln, damit Sie die von der alten Kryptografie nicht überwundene Hürde besser verstehen. Um militärische Informationen geheim zu übermitteln, verwendete Cäsar eine einfache Verschlüsselungsidee: Das Alphabet wurde, wie in Abb. 2.2 gezeigt, um einige Buchstaben verschoben. Die Information, dass aus dem A ein L wird, reichte schon aus, um aus dem Wort MATHE den Geheimtext XLESP zu machen. So konnte dann ein Bote mit einer geheimen Nachricht von VZPWY nach ECTPC reiten. Wenn dem Gegner, der

4 2.1 Die alte und die neue Kryptografie 11 Abb. 2.2 Monoalphabetische Verschlüsselung einen solchen Boten abfing, dieses Prinzip der monoalphabetischen Verschlüsselung bekannt war, konnte er spätestens nach 25 Versuchen den Text lesen. Unsere Computer könnten gleich alle möglichen Rückübersetzungen nennen und der Nutzer wählt die einzige leserliche aus. Ein weiterer Erfolg versprechender Angriff kann über die Buchstabenhäufigkeit erfolgen. Im Deutschen ist E der bei Weitem häufigste Buchstabe. Es folgen N und R. Bei den obigen verschlüsselten Wörtern kommen P und C am häufigsten vor, es könnte sich um E, N oder R handeln. So ist es ja auch. Die Kurzworte IN, AN, UND, AUF,... sind in Kryptogrammen leicht kenntlich, so dass man ohne Wortgrenzen verschlüsseln muss. Damit kann man die Sicherheit ein Abb. 2.3 Vigenère-Quadrat, polyalphabetische Verschlüsselung

5 12 2. Kryptografie wenig erhöhen, bei längeren Geheimtexten kommt man aber dennoch leicht zur Entschlüsselung. Eine bessere Idee sind polyalphabetische Verschlüsselungen. Vigenère schlägt um 1550 die Verwendung eines Buchstabenquadrates vor. Betrachten Sie Abb Ein Schlüsselwort gibt Buchstabe für Buchstabe an, mit welcher Zeile der Klartext verschlüsselt werden soll. Hier wird wegen GALLIA als Erstes die Zeile verwendet, bei der das schwarze G unter dem roten A steht. Damit wird der Klartextbuchstabe K in Q umgewandelt. Als Verständnishilfe sind oben die ersten Schritte nummeriert. So ergibt sich: K L E O P A T R A C O R M E U M Q L P Z X A X J T Q A E U W X U WennKleopatra nunweiß, dasssiedenanfang desbuchesde bello gallico von Cäsar als Schlüsselwort nehmen soll, kann sie das Kryptogramm lesen. Die Vigenère-Verschlüsselung kann bei kurzen Schlüsselwörtern, die dann immer wiederholt werden, recht einfach geknackt werden. Zuerst versucht man die Blöcke zu bilden, die die Länge des Schlüsselwortes haben. Dann nimmt man wieder die Häufigkeitsanalyse. Besonders wegen der Unterstützung durch Computer gilt die polyalphabetische Verschlüsselung mit kurzen Schlüsselwörtern als unsicher. Wenn man aber als Schlüssel den Text aus Cäsars Buch immer weiter fortlaufend verwendet, dann klappt dieser Angriff nicht. Noch besser wäre es, statt des Buchtextes eine zufällige Buchstabenfolge zu nehmen. Leider müssen dann aber Sender und Empfänger dieselbe Folge haben. Das ist schwer zu bewerkstelligen. Nimmt man Zahlen statt Buchstaben, kann man leichter zufällige Folgen bilden und übermitteln, wie wir unten sehen werden. Um einen Text in Zahlen zu übersetzen, kann man einfach dasselbe Verfahren verwenden, das sowieso bei unseren Computern üblich ist. Der sogenannte ASCII-Code (American Standard Code for Information Interchange) reicht in seinem Grundtyp bis zur Nummer 127. Hier ist von der ASCII- Nummer die Zahl 28 abgezogen, damit die Verschlüsselung mit zweistelligen Zahlen möglich ist. Mit höheren Nummern als sie Abb. 2.4 entsprechen folgen noch die Kleinbuchstaben und andere Zeichen. Abb. 2.4 ASCII-Code minus 28 Nun verschlüsseln wir mit Abb. 2.5 die Ziffern einzeln. Sei m die Nachricht (message), als Wort istes RABE, s der Schlüssel und c die verschlüsselte Nachricht (ciphertext), der Code. Die Vorgehensweise ist eigentlich dieselbe wie beim Vigenère-Quadrat aus Abb. 2.3, nur haben wir es jetzt durch die Zahlen bequemer als mit den Buchstaben. Wir müssen nur einzeln zu jeder Ziffer der Nachricht m die darunter stehende Ziffer des Schlüssels addieren und dabei die Zehnerüberträge ignorieren. Man nennt dieses Vorgehen auch Addition modulo 10. In Abschnitt 2.3 widmen wir uns ausführlich dem modulo-rechnen.

6 2.1 Die alte und die neue Kryptografie 13 Abb. 2.5 Vigenère-Quadrat mit Zahlen Bemerkenswert ist, wie sich das antike Alphabetverschieben in ein mathematisches Vorgehen verwandelt hat. Verschlüsseln mit dem One-Time-Pad Die verschlüsselte Nachricht könnte der Angreifer gern abfangen, sie enthält für jemanden, der den Schlüssel nicht kennt, keinerlei Information. Denn jede andere Nachricht m kann bei passendem Schlüssel s genau diese verschlüsselte Nachricht c ergeben. Machen Sie sich anhand der Abb. 2.6 klar, dass zur Textnachricht MAUS ein Schlüssel s konstruiert werden kann, der auch zu c führt. Abb. 2.6 Auch MAUS wird zum Code von RABE Hier ist der Schlüssel acht Stellen lang und das Verfahren kann Worte mit vier Buchstaben unknackbar verschlüsseln. Bleibt man auch bei längeren Nachrichten bei einem so kurzen Schlüssel, so kann ein Angreifer die Schlüssellänge herausbekommen und dann doch mit der Beachtung der Buchstabenhäufigkeiten Erfolg haben. Also nimmt man keine kurzen Schlüssel.

7 14 2. Kryptografie Das One-Time-Pad ist eine Verschlüsselungsmethode, bei der jede Schlüsselziffer nur einmal zum Verschlüsseln einer Ziffer der Nachricht verwendet wird. Abb. 2.7 One-Time-Pad als Abreißkalender Wenn jeder Schlüssel möglich ist, ist das One-Time-Pad mit unserer obigen Überlegung als sicher nachgewiesen. Die Zahlenfolge für den Schlüssel muss so lang sein wie die Nachricht. Und der Angreifer darf keine Schlüsselziffer vorhersagen können. Stellen Sie sich vor, zufällige Schlüsselziffern stünden auf einem Abreißkalender wie in Abb. 2.7, dessen Blätter Sie einzeln verwenden und dann wegwerfen. Nun widmen wir uns der Schwierigkeit, dass der Empfänger eine identische Kopie dieses Abreißkalenders braucht. Quasizufällige Zahlenfolgen kann man mit Computern leicht erzeugen. Mit quasizufällig meint man, dass die Zahlenfolge für einen Angreifer nicht erratbar ist, dass sie aber in Wahrheit durch einen Algorithmus, ein Rechenverfahren, erzeugt wird. Es eignen sich z. B. die Ziffern der Kreiszahl π von irgendeiner Startstelle aus, sagen wir ab der Stelle Die beiden Kommunikationspartner starten dann die π-berechnung oder allgemeiner einen Zufallszahlengenerator an derselben Stelle. Nun haben wir also den identischen Abreißkalender mit zufällig erscheinenden Ziffern, aber es bleibt noch das Problem, wie die Startstelle unangreifbar sicher übermittelt werden kann. Genau hier kommt die alte Kryptografie nicht weiter haben Diffie und Hellman das Problem der sicheren Schlüsselvereinbarung gelöst, wie Sie in Abschnitt sehen und verstehen können. Damit ist das Zeitalter der modernen Kryptografie eingeläutet, die sich vollständig von der Idee der verborgenen Muster löst undals Werkzeuge große Primzahlenund das modulo-rechnen etabliert. 2.2 Primzahlen Ein natürliche Zahl heißt Primzahl, wenn sie genau zwei Teiler hat, nämlich die 1 und sich selbst. Damit ist 2 die kleinste Primzahl und auch die einzige gerade Zahl unter den Primzahlen. Alle anderen geraden Zahlen haben ja die 2 als dritten möglichen Teiler. Die nachfolgenden Primzahlen sind 3, 5, 7, 11, 13, 17, 19,..., dabei sagen die drei Pünktchen nur, dass noch weitere Primzahlen folgen. Nicht gemeint ist, dass nun die 21 folgt,

Klassische Verschlüsselungsverfahren

Klassische Verschlüsselungsverfahren Klassische Verschlüsselungsverfahren Matthias Rainer 20.11.2007 Inhaltsverzeichnis 1 Grundlagen 2 2 Substitutionschiffren 2 2.1 Monoalphabetische Substitutionen....................... 3 2.1.1 Verschiebechiffren............................

Mehr

Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln

Lehreinheit E V2 Verschlüsselung mit symmetrischen Schlüsseln V-Verschlüsslung Lehreinheit Verschlüsselung mit symmetrischen Schlüsseln Zeitrahmen 70 Minuten Zielgruppe Sekundarstufe I Sekundarstufe II Inhaltliche Voraussetzung V1 Caesar-Chiffre Für Punkt 2: Addieren/Subtrahieren

Mehr

Seminar für LAK. Angewandte Mathematik

Seminar für LAK. Angewandte Mathematik LV-Nummer: 250115 Wintersemester 2009/2010 Ao. Univ.-Prof. Dr. Peter Schmitt Seminar für LAK Angewandte Mathematik Martin Kletzmayr Matrikelnummer: 0304008 Studienkennzahl: A 190 313 406 Email: martin.kletzmayr@gmx.net

Mehr

Kryptologie. Nicolas Bellm. 24. November 2005

Kryptologie. Nicolas Bellm. 24. November 2005 24. November 2005 Inhalt Einleitung 1 Einleitung 2 Klassische Skytale Monoalphabetische Verfahren Polyalphabetische Verfahren 3 Moderne Symmetrische Assymetrische 4 Ausblick Einleitung Einleitung Die ist

Mehr

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May

Kryptologie. Verschlüsselungstechniken von Cäsar bis heute. Arnulf May Kryptologie Verschlüsselungstechniken von Cäsar bis heute Inhalt Was ist Kryptologie Caesar Verschlüsselung Entschlüsselungsverfahren Die Chiffrierscheibe Bestimmung der Sprache Vigenére Verschlüsselung

Mehr

Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10)

Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10) Fakultät für Mathematik und Informatik Univeristät Würzburg Am Hubland, 97 074 Würzburg Ich sehe was, was Du nicht siehst! über visuelle Geheimschriften (Girls Day, 26. April 2007; Stufe 9/10) Worum geht

Mehr

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln

27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln 27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Seminar zur Diskreten Mathematik SS2005 André Latour a.latour@fz-juelich.de 1 Inhalt Kryptographische Begriffe Primzahlen Sätze von Euler und Fermat RSA 2 Was ist Kryptographie?

Mehr

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012

Symmetrische und Asymmetrische Kryptographie. Technik Seminar 2012 Symmetrische und Asymmetrische Kryptographie Technik Seminar 2012 Inhalt Symmetrische Kryptographie Transpositionchiffre Substitutionchiffre Aktuelle Verfahren zur Verschlüsselung Hash-Funktionen Message

Mehr

1. Klassische Kryptographie: Caesar-Verschlüsselung

1. Klassische Kryptographie: Caesar-Verschlüsselung 1. Klassische Kryptographie: Caesar-Verschlüsselung Das Bestreben, Botschaften für andere unlesbar zu versenden, hat zur Entwicklung einer Wissenschaft rund um die Verschlüsselung von Nachrichten geführt,

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau

Asymmetrische. Verschlüsselungsverfahren. erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Asymmetrische Verschlü erarbeitet von: Emilia Winkler Christian-Weise-Gymnasium Zittau Gliederung 1) Prinzip der asymmetrischen Verschlü 2) Vergleich mit den symmetrischen Verschlü (Vor- und Nachteile)

Mehr

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen

Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Grundbegriffe der Kryptographie II Technisches Seminar SS 2012 Deniz Bilen Agenda 1. Kerckhoff sches Prinzip 2. Kommunikationsszenario 3. Wichtige Begriffe 4. Sicherheitsmechanismen 1. Symmetrische Verschlüsselung

Mehr

Kryptographie und Verschlüsselung

Kryptographie und Verschlüsselung 7-it Kryptographie und Verschlüsselung Jörg Thomas 7-it Kryptographie und Verschlüsselung Begriffsbildung Geschichte Ziel moderner Kryptographie Sicherheit Public-Key-Kryptographie Ausblick Begriffsbildung

Mehr

Schulungspaket ISO 9001

Schulungspaket ISO 9001 Schulungspaket ISO 9001 PPT-Präsentationen Übungen Dokumentationsvorlagen Bearbeitet von Jens Harmeier 1. Auflage 2014. Onlineprodukt. ISBN 978 3 8111 6740 7 Wirtschaft > Management > Qualitätsmanagement

Mehr

Kryptologie. GFS im Fach Mathematik. Nicolas Bellm. 12. November - 16. November 2005

Kryptologie. GFS im Fach Mathematik. Nicolas Bellm. 12. November - 16. November 2005 Kryptologie GFS im Fach Mathematik Nicolas Bellm 12. November - 16. November 2005 Der Inhalt dieses Dokuments steht unter der GNU-Lizenz für freie Dokumentation http://www.gnu.org/copyleft/fdl.html Inhaltsverzeichnis

Mehr

Cacherhochschule CHS. Teil II polyalphabetische Substitutionschiffren

Cacherhochschule CHS. Teil II polyalphabetische Substitutionschiffren Cacherhochschule CHS Multi-Mystery Rätselhilfe -Event Teil II polyalphabetische Substitutionschiffren Herzlich willkommen! Kurz zur Erinnerung: Teil I behandelte Chiffren und Codes Polybios, Vanity, ROT

Mehr

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09

Verschlüsselung. Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern. 12.10.2011 Fabian Simon Bfit09 Verschlüsselung Fabian Simon BBS Südliche Weinstraße Kirchstraße 18 Steinfelderstraße 53 76831 Birkweiler 76887 Bad Bergzabern 12.10.2011 Fabian Simon Bfit09 Inhaltsverzeichnis 1 Warum verschlüsselt man?...3

Mehr

Mit Python von Caesar zur Public-Key Kryptographie

Mit Python von Caesar zur Public-Key Kryptographie Mit Python von Caesar zur Public-Key Kryptographie Thomas Grischott KSS 30. Juni 2008 1 Die Caesarverschiebung Caesar hat Nachrichten an seine Feldherren verschlüsselt, indem er jeden Buchstaben um drei

Mehr

Exkurs Kryptographie

Exkurs Kryptographie Exkurs Kryptographie Am Anfang Konventionelle Krytographie Julius Cäsar mißtraute seinen Boten Ersetzen der Buchstaben einer Nachricht durch den dritten folgenden im Alphabet z. B. ABCDEFGHIJKLMNOPQRSTUVWXYZ

Mehr

10. Kryptographie. Was ist Kryptographie?

10. Kryptographie. Was ist Kryptographie? Chr.Nelius: Zahlentheorie (SoSe 2015) 39 10. Kryptographie Was ist Kryptographie? Die Kryptographie handelt von der Verschlüsselung (Chiffrierung) von Nachrichten zum Zwecke der Geheimhaltung und von dem

Mehr

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen

Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Kryptographie Motivation Schutz von Informationen bei Übertragung über unsichere Kanäle Beispiele für zu schützende Informationen Geheimzahlen (Geldkarten, Mobiltelefon) Zugriffsdaten (Login-Daten, Passwörter)

Mehr

1.1. Von den Anfängen der Verschlüsselung bis zur modernen Kryptografie

1.1. Von den Anfängen der Verschlüsselung bis zur modernen Kryptografie Dr. Anita Dorfmayr, Universität Wien Von Cäsar bis RSA Verschlüsselung von der 1. bis zur 8. Klasse Anwendungsorientierter Mathematikunterricht kann nicht nur Motivation und Interesse der Schüler/innen

Mehr

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus

1 Kryptosysteme 1 KRYPTOSYSTEME. Definition 1.1 Eine Kryptosystem (P(A), C(B), K, E, D) besteht aus 1 RYPTOSYSTEME 1 ryptosysteme Definition 1.1 Eine ryptosystem (P(A), C(B),, E, D) besteht aus einer Menge P von lartexten (plaintext) über einem lartextalphabet A, einer Menge C von Geheimtexten (ciphertext)

Mehr

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung)

Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) Was bisher geschah Sicherheitsziele: Verfügbarkeit (Schutz vor Verlust) Vertraulichkeit (Schutz vor unbefugtem Lesen) Authentizität (Schutz vor Veränderung, Fälschung) von Information beim Speichern und

Mehr

Kryptologie. 2. Sicherstellung, dass eine Nachricht unverfälscht beim Empfänger ankommt: Integrität.

Kryptologie. 2. Sicherstellung, dass eine Nachricht unverfälscht beim Empfänger ankommt: Integrität. Kryptologie Zur Terminologie Die Begriffe KRYPTOLOGIE und KRYPTOGRAPHIE entstammen den griechischen Wörtern kryptos (geheim), logos (Wort, Sinn) und graphein (schreiben). Kryptographie ist die Lehre vom

Mehr

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur

Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit. Asymmetrische Verschlüsselung, Digitale Signatur Konzepte von Betriebssystemkomponenten: Schwerpunkt Sicherheit Thema: Asymmetrische Verschlüsselung, Digitale Signatur Vortragender: Rudi Pfister Überblick: Asymmetrische Verschlüsselungsverfahren - Prinzip

Mehr

Kryptographie Reine Mathematik in den Geheimdiensten

Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie Reine Mathematik in den Geheimdiensten Priska Jahnke 10. Juli 2006 Kryptographie Reine Mathematik in den Geheimdiensten Kryptographie (Kryptologie) = Lehre von den Geheimschriften Kaufleute,

Mehr

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13.

Von Cäsar bis RSA. Chiffrierung von der 1. bis zur 8. Klasse. Dr. Anita Dorfmayr Universität Wien. Lehrerfortbildungstag der ÖMG Wien, 13. Von Cäsar bis RSA Chiffrierung von der 1. bis zur 8. Klasse Dr. Anita Dorfmayr Universität Wien Lehrerfortbildungstag der ÖMG Wien, 13. April 2007 Gliederung Einführung Geschichte Zielsetzungen der Kryptografie

Mehr

Public-Key-Kryptosystem

Public-Key-Kryptosystem Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen

Mehr

Einführung in die verschlüsselte Kommunikation

Einführung in die verschlüsselte Kommunikation Einführung in die verschlüsselte Kommunikation Loofmann AFRA Berlin 25.10.2013 Loofmann (AFRA Berlin) Creative Common BY-NC-SA 2.0 25.10.2013 1 / 37 Ziele des Vortrages Wie funktioniert Verschlüsselung?

Mehr

JavaScript kinderleicht!

JavaScript kinderleicht! JavaScript kinderleicht! Einfach programmieren lernen mit der Sprache des Web Bearbeitet von Nick Morgan 1. Auflage 2015. Taschenbuch. XX, 284 S. Paperback ISBN 978 3 86490 240 6 Format (B x L): 16,5 x

Mehr

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02

Facharbeit. Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 Facharbeit Public-Key-Verfahren(PGP) Stephan Larws Informatik 02 1 Inhaltsverzeichnis 1.) DES 2.) Das Problem der Schlüsselverteilung - Lösung von Diffie, Hellman und Merkle 3.) Die Idee der asymmetrischen

Mehr

1. Asymmetrische Verschlüsselung einfach erklärt

1. Asymmetrische Verschlüsselung einfach erklärt 1. Asymmetrische Verschlüsselung einfach erklärt Das Prinzip der asymmetrischen Verschlüsselung beruht im Wesentlichen darauf, dass sich jeder Kommunikationspartner jeweils ein Schlüsselpaar (bestehend

Mehr

Kryptographie praktisch erlebt

Kryptographie praktisch erlebt Kryptographie praktisch erlebt Dr. G. Weck INFODAS GmbH Köln Inhalt Klassische Kryptographie Symmetrische Verschlüsselung Asymmetrische Verschlüsselung Digitale Signaturen Erzeugung gemeinsamer Schlüssel

Mehr

Office 2016 für Mac Das Profibuch

Office 2016 für Mac Das Profibuch Edition SmartBooks Office 2016 für Mac Das Profibuch Mehr herausholen aus Word, Excel, PowerPoint, OneNote und Outlook Bearbeitet von Horst-Dieter Radke 1. Auflage 2015. Taschenbuch. XIV, 380 S. Paperback

Mehr

Langenscheidt Training plus, Mathe 6. Klasse

Langenscheidt Training plus, Mathe 6. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x

Mehr

Einfache kryptographische Verfahren

Einfache kryptographische Verfahren Einfache kryptographische Verfahren Prof. Dr. Hagen Knaf Studiengang Angewandte Mathematik 26. April 2015 c = a b + a b + + a b 1 11 1 12 2 1n c = a b + a b + + a b 2 21 1 22 2 2n c = a b + a b + + a b

Mehr

Grundkurs Programmieren in Java

Grundkurs Programmieren in Java Grundkurs Programmieren in Java Band 1: Der Einstieg in Programmierung und Objektorientierung Bearbeitet von Dietmar Ratz, Jens Scheffler, Detlef Seese 1. Auflage 2001. Taschenbuch. 463 S. Paperback ISBN

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne

Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung

Mehr

VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation

VON. Kryptographie. 07. März 2013. Powerpoint-Präsentation VON 07. März 2013 & Kryptographie Powerpoint-Präsentation 1 Allgemeines über die Kryptographie kryptós= griechisch verborgen, geheim gráphein= griechisch schreiben Kryptographie + Kryptoanalyse= Kryptologie

Mehr

11. Das RSA Verfahren und andere Verfahren

11. Das RSA Verfahren und andere Verfahren Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern

Mehr

Handbuch Farbkomposition - Webfarben

Handbuch Farbkomposition - Webfarben Handbuch Farbkomposition - Webfarben Bearbeitet von Helen Weber 1. Auflage 2008. Taschenbuch. 304 S. Paperback ISBN 978 3 8266 5957 7 Format (B x L): 17 x 24 cm Gewicht: 654 g Zu Inhaltsverzeichnis schnell

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Informationssicherheit - Lösung Blatt 2

Informationssicherheit - Lösung Blatt 2 Informationssicherheit - Lösung Blatt 2 Adam Glodek adam.glodek@gmail.com 13.04.2010 1 1 Aufgabe 1: One Time Pad 1.1 Aufgabenstellung Gegeben ist der folgende Klartext 12Uhr (ASCII). Verschlüsseln Sie

Mehr

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie

Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie

Mehr

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer

Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Das RSA-Verschlüsselungsverfahren 1 Christian Vollmer Allgemein: Das RSA-Verschlüsselungsverfahren ist ein häufig benutztes Verschlüsselungsverfahren, weil es sehr sicher ist. Es gehört zu der Klasse der

Mehr

Der Kälteanlagenbauer

Der Kälteanlagenbauer Der Kälteanlagenbauer Band : Grundkenntnisse Bearbeitet von Karl Breidenbach., überarbeitete und erweiterte Auflage. Buch. XXVIII, S. Gebunden ISBN 00 Format (B x L):,0 x,0 cm Zu Inhaltsverzeichnis schnell

Mehr

Geschäftsprozessmanagement mit Visio, ViFlow und MS Project

Geschäftsprozessmanagement mit Visio, ViFlow und MS Project Geschäftsprozessmanagement mit Visio, ViFlow und MS Project Bearbeitet von Josef Schwab 2., aktualisierte und erweiterte Auflage 2005. Taschenbuch. XXXII, 280 S. Paperback ISBN 978 3 446 40464 9 Format

Mehr

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Basistraining Vektorgrafik

Basistraining Vektorgrafik Basistraining Vektorgrafik Der kreative Pfad zu besseren Grafiken Bearbeitet von Von Glitschka 1. Auflage 2014. Taschenbuch. XVI, 234 S. Paperback ISBN 978 3 86490 182 9 Format (B x L): 18,5 x 24,5 cm

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (2)

Grundlagen der Verschlüsselung und Authentifizierung (2) Grundlagen der Verschlüsselung und Authentifizierung (2) Ausarbeitung im Seminar Konzepte von Betriebssystem-Komponenten Benjamin Klink 21. Juli 2010 Inhaltsverzeichnis 1 Einleitung 1 2 Asymmetrische Verschlüsselung

Mehr

Kryptografie und Kryptoanalyse

Kryptografie und Kryptoanalyse Kryptografie und Kryptoanalyse Gruppenunterricht zum Thema: Kryptografie und Kryptoanalyse Fach: Informatik, Informationssicherheit Schultyp: Sekundarstufe II (Gymnasien, Berufsschulen) letzte Klassen,

Mehr

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz

Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht

Mehr

Business. Projektmanagement. Grundlagen, Methoden und Techniken. Bearbeitet von Rolf Meier

Business. Projektmanagement. Grundlagen, Methoden und Techniken. Bearbeitet von Rolf Meier Business Projektmanagement Grundlagen, Methoden und Techniken. Bearbeitet von Rolf Meier 2., Überarbeitete Auflage des Titels 978-3-89749-431-2 2009. Buch. 128 S. Hardcover ISBN 978 3 86936 016 4 Format

Mehr

Kryptologie und Kodierungstheorie

Kryptologie und Kodierungstheorie Kryptologie und Kodierungstheorie Alexander May Horst Görtz Institut für IT-Sicherheit Ruhr-Universität Bochum Lehrerfortbildung 17.01.2012 Kryptologie Verschlüsselung, Substitution, Permutation 1 / 18

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Koordinatenmesstechnik und CAX-Anwendungen in der Produktion

Koordinatenmesstechnik und CAX-Anwendungen in der Produktion Koordinatenmesstechnik und CAX-Anwendungen in der Produktion Grundlagen, Schnittstellen und Integration Bearbeitet von Tilo Pfeifer, Dietrich Imkamp 1. Auflage 2004. Buch. 184 S. Hardcover ISBN 978 3 446

Mehr

Verschlüsselungsverfahren

Verschlüsselungsverfahren Verschlüsselungsverfahren Herrn Breder hat es nach dem Studium nach München verschlagen. Seine Studienkollegin Frau Ahrend wohnt in Heidelberg. Da beide beruflich sehr stark einspannt sind, gibt es keine

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Agile Unternehmen durch Business Rules

Agile Unternehmen durch Business Rules Xpert.press Agile Unternehmen durch Business Rules Der Business Rules Ansatz Bearbeitet von Markus Schacher, Patrick Grässle 1. Auflage 2006. Buch. xiv, 340 S. Hardcover ISBN 978 3 540 25676 2 Format (B

Mehr

Change Management in der Praxis

Change Management in der Praxis Change Management in der Praxis Beispiele, Methoden, Instrumente Bearbeitet von Prof. Dr. Susanne Rank, Rita Scheinpflug, Beate Bidjanbeg, Martin Claßen, Dr. Thomas Kleinau, Michael Kleine-Arndt, Dr. Helmut

Mehr

Kreatives Gestalten mit Flash 5.0

Kreatives Gestalten mit Flash 5.0 Kreatives Gestalten mit Flash 5.0 Animationen, Effekte und Anwendungen für das WWW Bearbeitet von Isolde Kommer 1. Auflage 2000. Buch. 444 S. Hardcover ISBN 978 3 446 21463 7 Format (B x L): 20,1 x 23,6

Mehr

Informatik Programmieren 6.Klasse

Informatik Programmieren 6.Klasse Informatik Programmieren 6.Klasse Inhalt 1. Kryptologie... 1 2. Substitutionsverfahren... 2 3. Vigenère-Chiffre... 3 4. Hashing... 4 5. MD5... 4 6. PGP?... 4 Wie arbeitet PGP?... 5 7. Delphi Programme...

Mehr

Berufsentwicklung für die Branche der Windenergienutzung in Deutschland

Berufsentwicklung für die Branche der Windenergienutzung in Deutschland Berufsentwicklung für die Branche der Windenergienutzung in Ein Beitrag zur Berufsbildungs- und Curriculumforschung Bearbeitet von Michael Germann 1. Auflage 2013. Buch. 227 S. Hardcover ISBN 978 3 631

Mehr

Taschenbuch Betriebliche Sicherheitstechnik

Taschenbuch Betriebliche Sicherheitstechnik Taschenbuch Betriebliche Sicherheitstechnik Bearbeitet von Dr.-Ing. habil. Günter Lehder, Dr.-Ing. Reinald Skiba neu bearbeitete Auflage 2000. Taschenbuch. 456 S. Paperback ISBN 978 3 503 04145 9 Format

Mehr

Polyalphabetische Verschlüsselung und Stochastik THORSTEN MEHLICH, BOCHUM

Polyalphabetische Verschlüsselung und Stochastik THORSTEN MEHLICH, BOCHUM Literatur http://pisa.ipn.uni-kiel.de/zusfsg_pisa006_national. pdf Profil Das Magazin für Gymnasium und Gesellschaft, 1/008, S. 6 ff. HENZE, N. ( 6 006): Stochastik für Einsteiger. Wiesbaden: Vieweg. MEYER,

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Einführung in die moderne Kryptographie

Einführung in die moderne Kryptographie c by Rolf Haenni (2006) Seite 1 Von der Caesar-Verschlüsselung zum Online-Banking: Einführung in die moderne Kryptographie Prof. Rolf Haenni Reasoning under UNcertainty Group Institute of Computer Science

Mehr

Lektion 2 Die Suche nach Sicherheit und modulares Rechnen

Lektion 2 Die Suche nach Sicherheit und modulares Rechnen Lektion 2 Die Suche nach Sicherheit und modulares Rechnen Menschen streben ständig nach mehr Sicherheit. Alle Anwendungen sollen so sicher wie nur möglich werden. Bei Kryptosystemen ist es nicht anders.

Mehr

Das Verschlüsseln verstehen

Das Verschlüsseln verstehen Das Verschlüsseln verstehen Kurz-Vorlesung Security Day 2013 Prof. (FH) Univ.-Doz. DI. Dr. Ernst Piller Kurzvorlesung "Das Verschlüsseln verstehen", Security Day 2013, Ernst Piller 1 Warum eigentlich Verschlüsselung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Streng geheim? - Die Kunst des Ver- und Entschlüsselns

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Streng geheim? - Die Kunst des Ver- und Entschlüsselns Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Streng geheim - Die Kunst des Ver- und Entschlüsselns Das komplette Material finden Sie hier: School-Scout.de S 1 Streng geheim Die

Mehr

Wie bleibt unser Geheimnis geheim?

Wie bleibt unser Geheimnis geheim? Wie bleibt unser Geheimnis geheim? Jan Tobias Mühlberg Wie bleibt unser Geheimnis geheim? MuT, Wintersemester 2009/10 Jan Tobias Mühlberg & Johannes Schwalb muehlber@swt-bamberg.de Lehrstuhl: Prof. Lüttgen,

Mehr

Kryptographie. eine kurze Einführung von Christof Schowalter A. WOZU KRYPTOGRAPHIE? 2 B. BEZEICHNUNGEN UND FACHBEGRIFFE 2

Kryptographie. eine kurze Einführung von Christof Schowalter A. WOZU KRYPTOGRAPHIE? 2 B. BEZEICHNUNGEN UND FACHBEGRIFFE 2 Kryptographie eine kurze Einführung von Christof Schowalter A. WOZU KRYPTOGRAPHIE? 2 B. BEZEICHNUNGEN UND FACHBEGRIFFE 2 C. KLASSISCHE KRYPTOGRAPHIE 3 1. Verschiebechiffre 3 2. Schlüsselwort 4 3. Tauschchiffren

Mehr

Die Sprachenfolge an den höheren Schulen in Preußen (1859-1931)

Die Sprachenfolge an den höheren Schulen in Preußen (1859-1931) Die Sprachenfolge an den höheren Schulen in Preußen (1859-1931) Ein historischer Diskurs Bearbeitet von Christiane Ostermeier 1. Auflage 2012. Taschenbuch. 324 S. Paperback ISBN 978 3 8382 0447 5 Format

Mehr

IT Sicherheitsmanagement

IT Sicherheitsmanagement mitp Professional IT Sicherheitsmanagement Arbeitsplatz IT Security Manager Bearbeitet von Thomas W. Harich 1. Auflage 2012. Buch. 472 S. Hardcover ISBN 978 3 8266 9193 5 Format (B x L): 17 x 24 cm Gewicht:

Mehr

"Practical Cryptography" Kapitel 8, 9, 15, 16 und 22 (Ferguson/Schneider)

Practical Cryptography Kapitel 8, 9, 15, 16 und 22 (Ferguson/Schneider) "Practical Cryptography" Kapitel 8, 9, 15, 16 und 22 (Ferguson/Schneider) Seminar Internetsicherheit TU-Berlin Martin Eismann Martin Eismann Internet-Sicherheit Practical Cryptography Folie 1 Was ist Sicherheit?

Mehr

12 Kryptologie. hier: Geheimhaltung, Authentifizierung, Integriät (Echtheit).

12 Kryptologie. hier: Geheimhaltung, Authentifizierung, Integriät (Echtheit). 12 Kryptologie Mit der zunehmenden Vernetzung, insbesondere seit das Internet immer mehr Verbreitung findet, sind Methoden zum Verschlüsseln von Daten immer wichtiger geworden. Kryptologie fand ihren Anfang

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Virtuelle Lehrerweiterbildung Informatik in Niedersachsen Kerstin Strecker Kryptografie S. 1. Kryptografie

Virtuelle Lehrerweiterbildung Informatik in Niedersachsen Kerstin Strecker Kryptografie S. 1. Kryptografie Kerstin Strecker Kryptografie S. 1 Kryptografie 1. Alice, Bob und Eve Solange Menschen miteinander kommunizieren, besteht auch der Wunsch, bestimmte Nachrichten geheim zu halten. Einerseits, weil die Nachricht

Mehr

4 Codierung nach Viginere (Lösung)

4 Codierung nach Viginere (Lösung) Kapitel 4 Codierung nach Viginere (Lösung) Seite 1/14 4 Codierung nach Viginere (Lösung) 4.1 Einführung Blaise de Vigenère lebte von 1523 bis 1596 in Frankreich und war nach dem Studium bei verschiedenen

Mehr

Grundlegende Protokolle

Grundlegende Protokolle Grundlegende Protokolle k.lindstrot@fz-juelich.de Grundlegende Protokolle S.1/60 Inhaltsverzeichnis Einleitung Passwortverfahren Wechselcodeverfahren Challange-and-Response Diffie-Hellman-Schlüsselvereinbarung

Mehr

9 Kryptographische Verfahren

9 Kryptographische Verfahren 9 Kryptographische Verfahren Kryptographie, Kryptologie (griech.) = Lehre von den Geheimschriften Zweck: ursprünglich: vertrauliche Nachrichtenübertragung/speicherung rechnerbezogen: Vertraulichkeit, Authentizität,

Mehr

Internationales Privatrecht und Geschäftsführerhaftung bei Insolvenzen von Auslandsgesellschaften

Internationales Privatrecht und Geschäftsführerhaftung bei Insolvenzen von Auslandsgesellschaften Europäische Hochschulschriften 5371 Internationales Privatrecht und Geschäftsführerhaftung bei Insolvenzen von Auslandsgesellschaften Gläubigerschutz im englischen und deutschen Recht Bearbeitet von Christian

Mehr

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur

Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Konzepte von Betriebssystem-Komponenten: Schwerpunkt Sicherheit Grundlagen: Asymmetrische Verschlüsslung, Digitale Signatur Rudi Pfister Rudi.Pfister@informatik.stud.uni-erlangen.de Public-Key-Verfahren

Mehr

Sobotta Atlas der Anatomie des Menschen

Sobotta Atlas der Anatomie des Menschen Sobotta Atlas der Anatomie des Menschen Gesamtwerk in 3 Bänden und Tabellenheft Bearbeitet von Johannes Sobotta, Prof. Dr. Friedrich Paulsen, Prof. Dr. Jens Waschke 23. Auflage 2010. Buch inkl. Online-Nutzung.

Mehr

Seminar Kryptographie und Datensicherheit

Seminar Kryptographie und Datensicherheit Seminar Kryptographie und Datensicherheit Einfache Kryptosysteme und ihre Analyse Christoph Kreitz 1. Grundlagen von Kryptosystemen 2. Buchstabenorientierte Systeme 3. Blockbasierte Verschlüsselung 4.

Mehr

KOMPASS - Kompetenztraining für Jugendliche mit Autismus- Spektrum-Störungen

KOMPASS - Kompetenztraining für Jugendliche mit Autismus- Spektrum-Störungen KOMPASS - Kompetenztraining für Jugendliche mit Autismus- Spektrum-Störungen Ein Praxishandbuch für Gruppen- und Einzelinterventionen Bearbeitet von Bettina Jenny, Philippe Goetschel, Martina Isenschmid,

Mehr

Wiederholung: Informationssicherheit Ziele

Wiederholung: Informationssicherheit Ziele Wiederholung: Informationssicherheit Ziele Vertraulichkeit : Schutz der Information vor unberechtigtem Zugriff bei Speicherung, Verarbeitung und Übertragung Methode: Verschüsselung symmetrische Verfahren

Mehr

MicroRNA Interference Technologies

MicroRNA Interference Technologies MicroRNA Interference Technologies Bearbeitet von Zhiguo Wang 1. Auflage 2009. Buch. xii, 194 S. Hardcover ISBN 978 3 642 00488 9 Format (B x L): 15,5 x 23,5 cm Gewicht: 517 g Weitere Fachgebiete > Chemie,

Mehr

33 Mind Maps für die Praxis

33 Mind Maps für die Praxis 33 Mind Maps für die Praxis Kreatives Planen und Visualisieren am PC mit MindManager Bearbeitet von Helmut Reinke, Sybille Geisenheyner 1. Auflage 2001. Taschenbuch. 320 S. Paperback ISBN 978 3 446 21476

Mehr

Langenscheidt Training plus, Mathe 4. Klasse

Langenscheidt Training plus, Mathe 4. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 4. Klasse Bearbeitet von Birgit Kölmel, Ute Ohlms 1. Auflage 2013. Taschenbuch. ca. 88 S. Paperback ISBN 978 3 468 60071 5 Format

Mehr

Pflegebedürftig?! Das Angehörigenbuch

Pflegebedürftig?! Das Angehörigenbuch Pflegebedürftig?! Das Angehörigenbuch Informationen, Tipps, Formulare, Checklisten Bearbeitet von Anja Palesch 1. Auflage 2013. Taschenbuch. Paperback ISBN 978 3 17 022490 2 Format (B x L): 17 x 24 cm

Mehr

Ästhetische Chirurgie

Ästhetische Chirurgie Rat & Hilfe Ästhetische Chirurgie Bearbeitet von Birgit Wörle, Gerhard Sattler 1. Auflage 2007. Taschenbuch. 146 S. Paperback ISBN 978 3 17 019669 8 Format (B x L): 14 x 20,3 cm Gewicht: 212 g Weitere

Mehr

Energieeffiziente Schulen - EnEff:Schule.

Energieeffiziente Schulen - EnEff:Schule. Energieeffiziente Schulen - EnEff:Schule. Bearbeitet von Johann Reiß, Hans Erhorn, Michael Geiger, Annette Roser, Edelgard Gruber, Karin Schakib-Ekbata, Manuel Winkler, Werner Jensch 1. Auflage 2013. Buch.

Mehr