Name:... Vorname:... Matrikel-Nr.:... Unterschrift:...

Größe: px
Ab Seite anzeigen:

Download "Name:... Vorname:... Matrikel-Nr.:... Unterschrift:..."

Transkript

1 Studiengang Bachelor of Computer Science Modulprüfung Praktische Informatik 1 Wintersemester 2010 / 2011 Name:... Vorname:... Matrikel-Nr.:... Unterschrift:... Hinweise: 1.) Schreiben Sie Ihren Namen und Ihre Matrikelnummer zu Beginn auf das Deckblatt der Klausur. Überprüfen Sie, ob die Klausur vollständig ist. 2.) Bearbeiten Sie die Aufgaben möglichst auf den jeweiligen Blättern. Der Platz auf dem Aufgabenblatt ist so bemessen, dass er für die Lösung der Aufgabe ausreicht. Andernfalls verwenden Sie die Rückseite oder ein mit Ihrem Namen, Ihrer Matrikelnummer und der Aufgabennummer gekennzeichnetes separates Blatt. 3.) Es sind keine Hilfsmittel (Taschenrechner, Mitschrift, Bücher, o.ä.) außer einem Schreibgerät zugelassen. 4.) Schreiben Sie mit dokumentenechten Stiften. Mit Bleistiften, Tintenkiller o.ä. erstellte Lösungen sind ungültig! Rotschreibende Stifte sind ebenfalls verboten! Schreiben Sie bitte leserlich! Aufgabe Teil Teil 2 Σ (GDI) (ADS) Erreichbare Punkte Erreichte Punkte V i e l E r f o l g!!! Note:

2 Modulprüfung Praktische Informatik 1 Teilprüfung 2: Algorithmen und Datenstrukturen Prof. Dr. Wolfgang Schramm Name:... Vorname:... Matrikel-Nr.:... Unterschrift:... Hinweise: 1.) Schreiben Sie Ihren Namen und Ihre Matrikelnummer zu Beginn auf das Deckblatt der Klausur. Überprüfen Sie, ob die Klausur vollständig ist. 2.) Bearbeiten Sie die Aufgaben möglichst auf den jeweiligen Blättern. Der Platz auf dem Aufgabenblatt ist so bemessen, dass er für die Lösung der Aufgabe ausreicht. Andernfalls verwenden Sie die Rückseite oder ein mit Ihrem Namen, Ihrer Matrikelnummer und der Aufgabennummer gekennzeichnetes separates Blatt. 3.) Es sind keine Hilfsmittel (Taschenrechner, Mitschrift, Bücher, o.ä.) außer einem Schreibgerät zugelassen. 4.) Schreiben Sie mit dokumentenechten Stiften. Mit Bleistiften, Tintenkiller o.ä. erstellte Lösungen sind ungültig! Rotschreibende Stifte sind ebenfalls verboten! Schreiben Sie bitte leserlich! Aufgabe Σ Erreichbare Punkte Erreichte Punkte

3 Aufgabe 1 Rekursion 8 Punkte Für Binärzahlen b seien folgende Funktionen gegeben: leftrest(b) liefert den linken Rest, d.h. alle Binärziffern bis auf die rechteste, o z.b. leftrest(1110) = 111 righthead(b) liefert die rechteste Binärziffer (als int) einer Binärzahl, o z.b. righthead(1110) = 0 length(b) liefert die Anzahl der Ziffern einer Binärzahl (als int), o z.b. length(1110) = 4 Entwickeln Sie unter Zuhilfenahme dieser Funktionen eine Funktion dezr im Pseudo-Code, die eine Binärzahl in eine Dezimalzahl umwandelt. Der Aufruf von dezr(1001) liefert als Ergebnis den Dezimalwert 9. Hinweis: Der Dezimalwert einer Binärzahl kann folgendermaßen definiert werden: dez(b) = b falls length(b) = 1 2 * dez(leftrest(b)) + righthead(b) falls length(b) > 1 Schreiben Sie eine Funktion dezr(b) im Pseudo-Code, die rekursiv den Dezimalwert der Binärzahl b berechnet. 2

4 Aufgabe 2 Sortierverfahren 18 (10 + 8) Punkte a) Gegeben ist die folgende Zahlenfolge: Sortieren sie diese Zahlenfolge mittels: - QuickSort Welche QuickSort-Variante Sie verwenden, ist Ihnen überlassen. Geben Sie aber die verwendete Variante an. Für jeden rekursiven Aufruf von QuickSort geben Sie den Bereich des Arrays, das Pivotelement, und alle Vertauschen an. (6 Punkte) - Direkter Merge Sort Geben Sie für jeden Split bzw. Merge alle Bänder an und markieren Sie die Läufe (runs) durch Klammern ( ). (4 Punkte) 3

5 Aufgabe 2 Sortierverfahren - Fortsetzung 18 (10 + 8) Punkte b) Sortieren Sie die folgende Zahlenfolge mittels HeapSort HeapSort Überführen Sie die Array-Darstellung zuerst in eine Baumdarstellung. Überführen Sie dann im ersten Schritt diesen Baum in einen MaxHeap. Geben Sie beim Aufbau des Heap jeden Zwischenschritt (= veränderter Baum) an. Nachdem Sie den MaxHeap aufgebaut haben, sortieren Sie den Baum. Geben Sie auch jetzt wieder alle Zwischenschritte an. (8 Punkte) 4

6 Aufgabe 3 Hashing 6 Punkte Gegeben sei folgende Hash-Tabelle mit N = 7 Buckets. Tragen sie Städte Mannheim, Heidelberg, Karlsruhe, Darmstadt, Frankfurt und Mainz. in der angegebenen Reihenfolge in die Hash-Tabelle ein. Verwenden sie bei Kollisionen zur Berechnung eines alternativen Buckets das quadratische Sondieren. Die Hashfunktion ist wie folgt definiert: h(name) = ord (1. Buchstabe von name) % Als Hilfestellung hier die Ordinalwerte der Buchstaben: A 1 G 7 M 13 S 19 Y 25 B 2 H 8 N 14 T 20 Z 26 C 3 I 9 O 15 U 21 D 4 J 10 P 16 V 22 E 5 K 11 Q 17 W 23 F 6 L 12 R 18 x 24 5

7 Aufgabe 4 AVL-Bäume 4 Punkte Geben Sie einen AVL-Baum der Höhe 5 an, der möglichst wenig Knoten besitzt. 6

8 Aufgabe 5 B-Bäume 18 (12 + 6) Punkte a) Löschen Sie im nachfolgenden B-Baum der Ordnung 2 die 18. Sofern eine Maßnahme zur Wiederherstellung der B-Baum-Eigenschaft notwendig ist, geben sie die entsprechende Maßnahme an und anschließend den veränderten B-Baum. 7

9 Aufgabe 5 B-Bäume Fortsetzung 18 (12 + 6) Punkte b) Betrachten sie einen B-Baum der Ordnung m=2. Wie viele Elemente hat ein B-Baum der Ordnung 2 und der Höhe 4 mindestens? Wie viele Vergleichsoperationen zum Suchen eines Schlüssels braucht man in einem B- Baum der Ordnung 2 und der Höhe 4 maximal? 8

10 Aufgabe 6 Tries 8 Punkte Fügen Sie nacheinander folgende Strings in einen Trie ein: "wir", "sind", "wo", "weiß", "wer" Geben Sie den Trie nach dem Einfügen jedes String an. 9

Vorname:... Matrikel-Nr.:... Unterschrift:...

Vorname:... Matrikel-Nr.:... Unterschrift:... Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Algorithmen und Datenstrukturen Wintersemester 2003 / 2004 Name:... Vorname:...

Mehr

186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26. November 2010

186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26. November 2010 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 1. Übungstest WS 2010/11 26.

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

DAP2-Klausur 07.08.2004

DAP2-Klausur 07.08.2004 DAP2-Klausur 07.08.2004 Vorname : Familienname: Ich studiere (Bitte markieren): Informatik/Inform. Lehramt/Inf.technik/Physik/ Mathe/Statistik/Sonstiges: Bitte beachten: Auf jedem Blatt Matrikelnummer

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 1 für die Übung

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Probeklausur Grundlagen der Datenbanksysteme II

Probeklausur Grundlagen der Datenbanksysteme II Prof. Dott.-Ing. Roberto V. Zicari Datenbanken und Informationssysteme Institut für Informatik Fachbereich Informatik und Mathematik Probeklausur Grundlagen der Datenbanksysteme II Frau: Herr: Vorname:

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

Nachholklausur Informatik II

Nachholklausur Informatik II Technische Universität Darmstadt Teil Informatik II Fachbereich Informatik Frühjahr 2001 Fachgebiet Graphisch-Interaktive Systeme Prof. Dr. J. L. Encarnação Dr. J. Schönhut Nachholklausur Informatik II

Mehr

"Einführung in die Programmierung" Krefeld, den 24. September 2013

Einführung in die Programmierung Krefeld, den 24. September 2013 Einführung in die Programmierung Matrikelnummer: Klausur zur Vorlesung "Einführung in die Programmierung" Krefeld, den 24. September 2013 Hinweise: Übertragen Sie bitte Name und Matrikelnummer deutlich

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Fakultät Wirtschaftswissenschaft

Fakultät Wirtschaftswissenschaft Fakultät Wirtschaftswissenschaft Matrikelnr. Name Vorname KLAUSUR: Entwurf und Implementierung von Informationssystemen (32561) TERMIN: 11.09.2013, 14.00 16.00 Uhr PRÜFER: Univ.-Prof. Dr. Stefan Strecker

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Name, Vorname Matrikelnummer Probeklausur zur Vorlesung Einführung in die Programmierung WS 2008/09 Dauer: 2 Stunden Hinweise: Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf dieses Deckblatt und

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift:

Name (in Druckbuchstaben): Matrikelnummer: Unterschrift: 20-minütige Klausur zur Vorlesung Lineare Modelle im Sommersemester 20 PD Dr. Christian Heumann Ludwig-Maximilians-Universität München, Institut für Statistik 2. Oktober 20, 4:5 6:5 Uhr Überprüfen Sie

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Modulklausur Konstruktion und Analyse ökonomischer Modelle

Modulklausur Konstruktion und Analyse ökonomischer Modelle Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 04.03.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau der Klausur Pflichtaufgabe Maximale Punktzahl: 34 Wahlpflichtaufgabe

Mehr

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion:

Übungsblatt 1. f(n) = f(n) = O(g(n)) g(n) = O(f(n)) Zeigen oder widerlegen Sie: 3 n = Θ(2 n ) Aufgabe 1.2 Gegeben sei die folgende Funktion: Übungsblatt 1 Aufgabe 1.1 Beweisen oder widerlegen Sie, dass für die im Folgenden definierte Funktion f(n) die Beziehung f(n) = Θ(n 4 ) gilt. Beachten Sie, dass zu einem vollständigen Beweis gegebenenfalls

Mehr

Teil 1: IT- und Medientechnik

Teil 1: IT- und Medientechnik Matrikelnummer Punkte Note Verwenden Sie nur dieses Klausurformular für Ihre Lösungen. Die Blätter müssen zusammengeheftet bleiben. Es dürfen keine Hilfsmittel oder Notizen in der Klausur verwendet werden

Mehr

Klausur zur Vorlesung Signale und Systeme

Klausur zur Vorlesung Signale und Systeme Name: 10. Juli 2008, 11.00-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Mitschrift Übungen, Skript, handgeschriebene 2-seitige

Mehr

Fragen für die Klausuren

Fragen für die Klausuren Fragen für die Klausuren Vom Quellcode zum ausführbaren Programm Was ist ein Quellcode? Ist der Quellcode von einem Programm auf unterschiedlichen Rechner gleich? Nennen Sie drei Programmiersprachen. Was

Mehr

Tutoraufgabe 1 (2 3 4 Bäume):

Tutoraufgabe 1 (2 3 4 Bäume): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Übungsblatt (Abgabe.0.0) F. Corzilius, S. Schupp, T. Ströder Allgemeine Hinweise: Die Hausaufgaben sollen in Gruppen von je bis Studierenden aus

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

Vorname: Nachname: Matrikelnummer: E-Mail-Addresse: Studiengang (bitte genau einen ankreuzen): Master of SSE Erasmus Sonstige:

Vorname: Nachname: Matrikelnummer: E-Mail-Addresse: Studiengang (bitte genau einen ankreuzen): Master of SSE Erasmus Sonstige: RHEINISCH- WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN LEHR- UND FORSCHUNGSGEBIET INFORMATIK II RWTH Aachen D-52056 Aachen GERMANY http://www-i2.informatik.rwth-aachen.de/lufgi2/tes06/ LuFG Informatik II

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Bearbeitungszeit: 120 Minuten. Kommentare kosten Zeit; kommentieren Sie ihr Programm nur da, wo der Code alleine nicht verständlich wäre.

Bearbeitungszeit: 120 Minuten. Kommentare kosten Zeit; kommentieren Sie ihr Programm nur da, wo der Code alleine nicht verständlich wäre. Fakultät IV Elektrotechnik/Informatik Klausur Einführung in die Informatik I für Elektrotechniker Name:... Matr.-Nr.... Bearbeitungszeit: 120 Minuten Bewertung (bitte offenlassen : ) Aufgabe Punkte Erreichte

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der

Aufgabe 3: Übersetzen Sie die folgenden natürlich-sprachlichen Aussagen in die Sprache der Aufgabe 1: Sind die folgenden Abbildungen jeweils injektiv, surjektiv und/oder bijektiv? (a) f 1 (x) = x, mit f 1 : R + R + (b) f (x) = x, mit f : R R (c) f 3 (x) = x, mit f 3 : R R (d) f 4 (x) = 3x, mit

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

1. Probeklausur zu Programmierung 1 (WS 07/08)

1. Probeklausur zu Programmierung 1 (WS 07/08) Fachschaft Informatikstudiengänge Fachrichtung 6.2 Informatik Das Team der Bremser 1. Probeklausur zu Programmierung 1 (WS 07/08) http://fsinfo.cs.uni-sb.de Name Matrikelnummer Bitte öffnen Sie das Klausurheft

Mehr

Klausur zur Einführung in die objektorientierte Programmierung mit Java

Klausur zur Einführung in die objektorientierte Programmierung mit Java Klausur zur Einführung in die objektorientierte Programmierung mit Java im Studiengang Informationswissenschaft Prof. Dr. Christian Wolff Professur für Medieninformatik Institut für Medien-, Informations-

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

Einführung in die Informatik I Kapitel II.3: Sortieren

Einführung in die Informatik I Kapitel II.3: Sortieren 1 Einführung in die Informatik I Kapitel II.3: Sortieren Prof. Dr.-Ing. Marcin Grzegorzek Juniorprofessur für Mustererkennung im Institut für Bildinformatik Department Elektrotechnik und Informatik Fakultät

Mehr

HINWEISE ZUR ADS-KLAUSUR SS06 für BACHELOR (für beide Termine)

HINWEISE ZUR ADS-KLAUSUR SS06 für BACHELOR (für beide Termine) HINWEISE ZUR ADS-KLAUSUR SS06 für BACHELOR (für beide Termine) Für DIPLOMER gelten, wie bereits bekannt, die Bedingungen und Inhalte der Klausuren aus SS04 bzw. WS04/05 weiter klicken sie sich auf unserer

Mehr

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK)

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK) TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010 2. Schriftliche Leistungskontrolle (EK) Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte

Mehr

Hauptdiplomklausur Informatik März 2002: Internet Protokolle

Hauptdiplomklausur Informatik März 2002: Internet Protokolle Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Professor Dr. W. Effelsberg Hauptdiplomklausur Informatik März 2002: Internet Protokolle Name:... Vorname:...

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

JAVA - Suchen - Sortieren

JAVA - Suchen - Sortieren Übungen Informatik I JAVA - Suchen - Sortieren http://www.fbi-lkt.fh-karlsruhe.de/lab/info01/tutorial Übungen Informatik 1 Folie 1 Inhalt Suchen/Sortieren binary search mergesort bubblesort Übungen Informatik

Mehr

Abschlussklausur. Verteilte Systeme. Bewertung: 25. November 2014. Name: Vorname: Matrikelnummer:

Abschlussklausur. Verteilte Systeme. Bewertung: 25. November 2014. Name: Vorname: Matrikelnummer: Abschlussklausur Verteilte Systeme 25. November 2014 Name: Vorname: Matrikelnummer: Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und dass ich mich gesund und prüfungsfähig

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

EndTermTest PROGALGO WS1516 A

EndTermTest PROGALGO WS1516 A EndTermTest PROGALGO WS1516 A 14.1.2016 Name:................. UID:.................. PC-Nr:................ Beachten Sie: Lesen Sie erst die Angaben aufmerksam, genau und vollständig. Die Verwendung von

Mehr

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen...

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen... Suchen und Sortieren In diesem Kapitel behandeln wir Algorithmen zum Suchen und Sortieren Inhalt 1. Grundlagen... 2 2. Sortieren... 6 1.1. Vertauschen... 13 1.2. Selektion... 16 1.3. Einfügen... 19 1.4.

Mehr

Ingenieurmathematik für Maschinenbau, Blatt 1

Ingenieurmathematik für Maschinenbau, Blatt 1 Ingenieurmathematik für Maschinenbau, Blatt 1 Probeklausur Ingenieurmathematik für Maschinenbau Studiengang Prüfungsfach Prüfer Prüfungstermin Prüfungsdauer Prüfungsunterlagen Hilfsmittel Maschinenbau

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Klausur WS 2006/07 Programmiersprache Java Objektorientierte Programmierung II 15. März 2007

Klausur WS 2006/07 Programmiersprache Java Objektorientierte Programmierung II 15. März 2007 Fachhochschule Bonn-Rhein-Sieg University of Applied Sciences Fachbereich Informatik Prof. Dr. Peter Becker Klausur WS 2006/07 Programmiersprache Java Objektorientierte Programmierung II 15. März 2007

Mehr

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04

4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 4. Übungsblatt zu Mathematik für Informatiker I, WS 2003/04 JOACHIM VON ZUR GATHEN, OLAF MÜLLER, MICHAEL NÜSKEN Abgabe bis Freitag, 14. November 2003, 11 11 in den jeweils richtigen grünen oder roten Kasten

Mehr

Klausur zur Vorlesung VWL II Makroökonomie (SoSe 13)

Klausur zur Vorlesung VWL II Makroökonomie (SoSe 13) Klausur zur Vorlesung VWL II Makroökonomie (SoSe 13) (Prof. Dr. Jochen Michaelis) Persönliche Angaben Vorname: Nachname: Matrikel-Nr.: Studiengang: Punkteverteilung Aufgabe 1 2 3 oder 4 Bonus Punkte /20

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2005/06 20.2.2006 Prof. Dr. Jörg Rambau Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Grundfachklausur Teil 2 / Statik II

Grundfachklausur Teil 2 / Statik II Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204

Mehr

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Funktionen Prof. Dr. Nikolaus Wulff Rekursive Funktionen Jede C Funktion besitzt ihren eigenen lokalen Satz an Variablen. Dies bietet ganze neue Möglichkeiten Funktionen zu

Mehr

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte:

Klausur Informatik 1 SS 08. Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte. Gesamtpunkte: Klausur Informatik 1 SS 08 Aufgabe 1 2 3 4 Max. Punkte 30 40 40 10 Punkte Gesamtpunkte: Note: Bearbeitungszeit 120 Minuten Keine Hilfsmittel Tragen Sie als erstes Ihren vollständigen Namen und Ihre Matrikelnummer

Mehr

Vertraulich. Nachname: Vorname: Matrikel-Nummer: Studiengang: Datum: 30. Januar 2015

Vertraulich. Nachname: Vorname: Matrikel-Nummer: Studiengang: Datum: 30. Januar 2015 Information Security Management System Klausur Wintersemester 2014/15 Hochschule Albstadt-Sigmaringen Nachname: Vorname: Matrikel-Nummer: Studiengang: Vertraulich Datum: 30. Januar 2015 Bitte lesen Sie

Mehr

Hochschule Ravensburg-Weingarten Schriftliche Prüfung Programmieren Prof. Dr. M. Zeller

Hochschule Ravensburg-Weingarten Schriftliche Prüfung Programmieren Prof. Dr. M. Zeller Hochschule Ravensburg-Weingarten Schriftliche Prüfung Programmieren Prof. Dr. M. Zeller Datum, Zeit, 08:00 09:30 Uhr (90 min) Aufgabenblätter 14 Seiten (einschl. Deckblatt) erreichbare Punktzahl 54 zugelassene

Mehr

Universität Augsburg, Institut für Informatik Sommersemester 2005 Prof. Dr. Werner Kießling 15. Oktober 2005 Dr. Alfons Huhn, Timotheus Preisinger

Universität Augsburg, Institut für Informatik Sommersemester 2005 Prof. Dr. Werner Kießling 15. Oktober 2005 Dr. Alfons Huhn, Timotheus Preisinger Universität Augsburg, Institut für Informatik Sommersemester 2005 Prof. Dr. Werner Kießling 15. Oktober 2005 Dr. Alfons Huhn, Timotheus Preisinger Informatik II Hinweise: Die Bearbeitungszeit beträgt 90

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14

Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14 Universität Augsburg, Institut für Informatik Wintersemester 2013/14 Prof. Dr. W. Kießling 10. Oktober 2013 F. Wenzel, D. Köppl Suchmaschinen Vorlesung Suchmaschinen Semesterklausur Wintersemester 2013/14

Mehr

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT BACHELOR PRÜFUNG. FACH / MODUL: Betriebswirtschaftliche Grundlagen

UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT BACHELOR PRÜFUNG. FACH / MODUL: Betriebswirtschaftliche Grundlagen UNIVERSITÄT LEIPZIG WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT BACHELOR PRÜFUNG DATUM: 05. August 2011 FACH / MODUL: Betriebswirtschaftliche Grundlagen TEILGEBIET: KLAUSURDAUER: PRÜFER: Technik des Rechnungswesen

Mehr

Hinweise zur Anfertigung von wissenschaftlichen Arbeiten

Hinweise zur Anfertigung von wissenschaftlichen Arbeiten UNIVERSITÄT HOHENHEIM INSTITUT FÜR BETRIEBSWIRTSCHAFTSLEHRE Fachgebiet Risikomanagement und Derivate Prof. Dr. Christian Koziol Hinweise zur Anfertigung von wissenschaftlichen Arbeiten Formale Richtlinien

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2011 / 2012

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2011 / 2012 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 0 / 0 Montag, den. Februar 0, 09: Uhr 0: Uhr Prof. Dr. D. Zöbel, Dipl.

Mehr

Matrikel-Nr.: Nachholklausur Wirtschafts- und Finanzmathematik

Matrikel-Nr.: Nachholklausur Wirtschafts- und Finanzmathematik Name: Matrikel-Nr.: Nachholklausur Wirtschafts- und Finanzmathematik Prüfer Etschberger, Heiden, Jansen Prüfungsdatum 7. Juli 2015 Prüfungsort Augsburg Studiengang IM und BW Bearbeitungszeit: 90 Minuten

Mehr

Einladung zur Klausur

Einladung zur Klausur FACHBEREICH Informatik Lehrgebiet Software Engineering Prof. Dr. H.-W. Six FernUniversität in Hagen An alle Teilnehmer(innen) des Kurses 01794 Software Engineering II im Wintersemester 2005/06 Ihr Zeichen

Mehr

Name:... Vorname:... Matrikel-Nr.:... Studienfach:...

Name:... Vorname:... Matrikel-Nr.:... Studienfach:... Stefan Lucks Medien Bauhaus-Univ. Weimar Probeklausur Name:.............................. Vorname:........................... Matrikel-Nr.:....................... Studienfach:........................ Wichtige

Mehr

Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997

Aufg. P max 1 10 Klausur Elektrotechnik 2 14 3 8 4 10 am 14.03.1997 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel

Mehr

Technische Führung. Bachelor. mer. meiner Note zusammen ... Diplom. gründlich. Sie lesbar! 5. 6. 7. Wenn Sie. Viel Erfolg! max. Punktzahl.

Technische Führung. Bachelor. mer. meiner Note zusammen ... Diplom. gründlich. Sie lesbar! 5. 6. 7. Wenn Sie. Viel Erfolg! max. Punktzahl. Technische Universität Braunschweig Institut für Organisation und Führung Bachelorprüfung/Diplomvorprüfung Einführung in die Unternehmensführung (BWL 1) Wintersemester 2009/2010, 11. Februar 2010 Name,

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Sie müssen den Test bis 20:00 Uhr am Abgabetag dieses Übungszettels absolviert haben.

Sie müssen den Test bis 20:00 Uhr am Abgabetag dieses Übungszettels absolviert haben. Informatik I Wintersemester 2013/14 Prof. Dr. Carsten Damm Georg-August-Universität Göttingen Dr. Henrik Brosenne Institut für Informatik Übung 6 Abgabe bis Dienstag, 10.12., 18:00 Uhr. Werfen Sie Ihre

Mehr

Klausur zur Einführung in die objektorientierte Programmierung mit Java

Klausur zur Einführung in die objektorientierte Programmierung mit Java Klausur zur Einführung in die objektorientierte Programmierung mit Java im Studiengang Informationswissenschaft Prof. Dr. Christian Wolff Professur für Medieninformatik Institut für Medien-, Informations-

Mehr

Einführung in die objektorientierte Programmierung mit Java. Klausur am 19. Oktober 2005

Einführung in die objektorientierte Programmierung mit Java. Klausur am 19. Oktober 2005 Einführung in die objektorientierte Programmierung mit Java Klausur am 19. Oktober 2005 Matrikelnummer: Nachname: Vorname: Semesteranzahl: Die Klausur besteht aus drei Frageblöcken zu den Inhalten der

Mehr

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Informatik I 2 Übung 9 Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Quellcode Strukturieren Wenn alle Funktionen in einer Datei zusammengefasst sind wird es schnell unübersichtlich Mehrere

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 7. Februar

Mehr

Informatikgrundlagen (WS 2015/2016)

Informatikgrundlagen (WS 2015/2016) Informatikgrundlagen (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Entwurf eines Deckblattes für die Diplom-/Bachelor-/Masterarbeit

Entwurf eines Deckblattes für die Diplom-/Bachelor-/Masterarbeit Universität Duisburg-Essen SG Einschreibungs- und Prüfungswesen Vorsitzende der Prüfungsausschüsse Universitätsstraße 2 45117 Essen Aushang Datum 12.März 2012 Entwurf eines Deckblattes für die Diplom-/Bachelor-/Masterarbeit

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Grundlagen der Technischen Informatik / Digitaltechnik (GTI/DT)

Grundlagen der Technischen Informatik / Digitaltechnik (GTI/DT) Klausur zur Vorlesung Grundlagen der Technischen Informatik / Digitaltechnik (GTI/DT) Prof. Marco Platzner Fachgebiet Technische Informatik Universität Paderborn 03.04.2009 Die Bearbeitungsdauer beträgt

Mehr

Klausur zur Vorlesung Verteilte Systeme im SS 2007 Prof. Dr. Odej Kao 24. Juli 2007

Klausur zur Vorlesung Verteilte Systeme im SS 2007 Prof. Dr. Odej Kao 24. Juli 2007 Klausur zur Vorlesung Verteilte Systeme im SS 2007 Prof. Dr. Odej Kao 24. Juli 2007 Name: Vorname: Matrikelnummer: Studiengang: E-Mail: Schreiben Sie zunächst sofort Ihren Namen und Matrikelnummer auf

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften Prof. Dr. W. Esswein Lehrstuhl Wirtschaftsinformatik, insbesondere Systementwicklung

TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften Prof. Dr. W. Esswein Lehrstuhl Wirtschaftsinformatik, insbesondere Systementwicklung TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Wirtschaftswissenschaften Prof. Dr. W. Esswein Lehrstuhl Wirtschaftsinformatik, insbesondere Systementwicklung Diplomprüfung Wintersemester 2010-2011 im Fach Wirtschaftsinformatik,

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Einführung in Python Übung 1

Einführung in Python Übung 1 Einführung in Python Übung 1 Rebecca Breu, Bastian Tweddell Oktober 2007 Login: XXXloginXXX Passwort: XXXpasswortXXX Bitte das Passwort ändern (passwd)! Datentypen I Aufgabe 1 (Erste Schritte, Zahlen)

Mehr

Bäume und Wälder. Bäume und Wälder 1 / 37

Bäume und Wälder. Bäume und Wälder 1 / 37 Bäume und Wälder Bäume und Wälder 1 / 37 Bäume Ein (ungerichteter) Baum ist ein ungerichteter Graph G = (V, E), der zusammenhängend ist und keine Kreise enthält. Diese Graphen sind Bäume: Diese aber nicht:

Mehr