ETL in den Zeiten von Big Data

Größe: px
Ab Seite anzeigen:

Download "ETL in den Zeiten von Big Data"

Transkript

1 ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1

2 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung IBM Corporation

3 ETL im Datawarehouse Extrakt Transform Load 3

4 ETL Beispiel Kunde R Entfernung von Dubletten je KUNDE Kontoart Lookup Schlüssel zu sprechendem Text: KONTOART zu ID J L A Ziel Inner Join über KDNR Aggregation der Salden je Kunde Konto Aussteuerung von Konten ohne gültige ID Error / Reject IBM Corporation

5 ETL Ergebnis IBM Corporation

6 ETL Herausforderungen im DWH Skalierbarkeit und Pushdown Mehrere konsekutive ETL Prozesse Beladungszeiten und Latency Aufwand ETL Entwicklungen 50% des DWH Aufwands Wiederverwendbarkeit Repository & Search Module Parametrisierung Generierung aus Metadaten Qualitative und fachliche Aufbereitung und Validierung der Daten Transformation eher Commodity Ohne geht es aber nicht (Historisierung, Hierarchiewechsel, Formate, Datenmodelle) 6

7 Realität und aktuelle Herausforderungen Diverse Datentöpfe für Analytics Typisch ein führendes DWH SAP BW Abteilungslösungen, auf Frontend Basis Analytics auf operative Systeme Challenges Agilität, zentrales EDW zu schwerfällig Beladungszeiten Big Data Ist Hadoop die Lösung für alles Integration neuer Technologien (Hadoop, SPARK) Massive Datenmengen Stamm- und Referenzdaten Cleansing 8

8 Umgang mit verteilten Repositories Konsolidierung Extremer fachlicher Aufwand Führt zu hoher Komplexität, weniger Agilität Federation Setzt fachliche Vergleichbarkeit voraus Stammdaten und Referenzdaten müssen übereinstimmen Data Lake Katalogisierung fachlicher Objekte und wo sie technisch liegen Self Service mit simplem click ETL Wiederum Stamm- und Referenzdaten ETL Tool muss Datenqualität, Stammdaten-Bereinigung, Metadaten-Management und Katalog können Support von Federation 9

9 Sind die Tage von ETL gezählt? In Memory Wir brauchen kein ETL, da virtuelle Views auf den operativen Originaldaten Hadoop Schema after run Flume, Sqoop Aber Historisierungen?? Data Cleansing?? Back to SQL (views) oder Python (??) 10

10 Anforderungen aus neuen Architekturen Katalog der Business Objekte mit Link zu IT Assets Daten Self-Service für Anwender DQ für Business User Integriert mit ETL Pushdown für MapReduce 11

11 Information Server Inhalt letztes Upgrade Governance Integration mit neuen Technologien Data Self Service Cloud 12

12 Governance Governance Catalogue umfasst Hadoop / Hive Katalog Erweiterte Möglichkeiten für Policies Governance Dashboard Exception Stage und DQ Dashboard 13

13 Integration mit neuen Technologien Hadoop Stage Balanced Optimization für MapReduce Unstructured Stage Stream Stage MDM Stage Connectoren für Amazon, Greenplum 14

14 Data Self Service Aktionen aus dem Governance Catalog ( Shop for Data ) DataClick erstellt automatisch Transfer Jobs 15

15 Cloud Hypervisor Version DataWorks IBM DataWorks Data Refinery Services Load data Cleanse addresses Profile data Classify data 16

16 Zusammenfassung ETL ist nach wie vor eine Core Competency für Analytics Das reine ETL tritt in den Hintergrund Metadaten-Management und Katalog Stamm- und Referenzdaten Self Service für Daten Neue Herausforderungen durch neue Technologien Hadoop Cloud There is no free lunch - Bekannte Konzepte gelten auch für neue Technologien Datenaufbereitung ist und bleibt ein wesentlicher Aufwandstreiber 17

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch In dieser Session wird IDAREF, ein Framework, dass auf logischer Ebene eine analytische

Mehr

Agenda. Einführung MS SQL Server Integration Services (SSIS) Oracle Data Warehouse Builder (OWB) Zusammenfassung Quellen. Einführung SSIS OWB

Agenda. Einführung MS SQL Server Integration Services (SSIS) Oracle Data Warehouse Builder (OWB) Zusammenfassung Quellen. Einführung SSIS OWB Agenda Einführung MS SQL Server Integration Services () Oracle Data Warehouse Builder () Quellen 10.12.2009 Martin Tobies - DQ Tools 2 Agenda Einführung MS SQL Server Integration Services () Oracle Data

Mehr

SPoT Agenda. Begrüßung und Vorstellung CAS AG. Markttrends aus Analystensicht. Big Data Trusted Information

SPoT Agenda. Begrüßung und Vorstellung CAS AG. Markttrends aus Analystensicht. Big Data Trusted Information SPoT Agenda Begrüßung und Vorstellung CAS AG Markttrends aus Analystensicht Big Data Trusted Information Lars Iffert, BARC GmbH Dr. Oliver Adamczak, IBM Deutschland GmbH Factory Ansatz für ETL-Prozesse

Mehr

Die Rolle des Stammdatenmanagements im digitalen Unternehmen

Die Rolle des Stammdatenmanagements im digitalen Unternehmen Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Die Rolle des Stammdatenmanagements im digitalen Unternehmen Frankfurt, April 2015 Die Digitalisierung der Welt Nach der Globalisierung

Mehr

Information Integration in Zeiten von BigData mit IBM Information Server 9.1. Christian Lenke IBM Software Group InfoSphere Specialist

Information Integration in Zeiten von BigData mit IBM Information Server 9.1. Christian Lenke IBM Software Group InfoSphere Specialist Information Integration in Zeiten von BigData mit IBM Information Server 9.1 Christian Lenke IBM Software Group InfoSphere Specialist Trusted Data Bereitstellung zuverlässiger Informationen transaktionale

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

ITGAIN Fach- und Technikspezialist

ITGAIN Fach- und Technikspezialist ITGAIN Fach- und Technikspezialist KOMPETENZ GEWINNBRINGEND EINSETZEN. Copyright 2012 ITGAIN GmbH 1 SPoT Wir bringen Ihre Informationen auf den Punkt. Hamburg, 07.05.2012 FACTORY-ANSATZ FÜR ETL-PROZESSE

Mehr

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT DIE DATEN IM ZENTRUM: SAS DATA RAINER STERNECKER SOLUTIONS ARCHITECT SAS INSTITUTE SOFTWARE GMBH Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. NEUE WEGE GEHEN SAS DATA GOVERNANCE & QUALITY

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA

BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA BI-Kongress 2016 COMBINED THINKING FOR SUCCESS - BI & S/4HANA AUFSTELLUNG OPTIMIEREN. ENTWICKELN SIE IHRE SYSTEMLANDSCHAFT WEITER UND VERKAUFEN SIE DIE CHANCEN IHREN ANWENDERN Yu Chen, Thorsten Stossmeister

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

SAP BI Fokustage 2015

SAP BI Fokustage 2015 SAP BI Fokustage 2015 Agenda 13:30 Uhr Begrüßung 13:45 Uhr Quo vadis SAP BW? Die Backend-Strategie der SAP Windhoff Software Services GmbH 14:30 Uhr Projektvortrag: Mobile Dashboard-Anwendung mit SAP Design

Mehr

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren

Strategie und Self Service BI im Unternehmen. Gegensätze miteinander kombinieren Strategie und Self Service BI im Unternehmen Gegensätze miteinander kombinieren Claas Planitzer Düsseldorf Juni 2015 Agenda 5. Herausforderungen 1. Idealbild 2. Realität 3. Self Service 4. BI. Was ist

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Business Driven Intelligence

Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Business Driven Intelligence Mit Excel Know-how webbasierte BI- Applikationen erstellen #MobileBI Jochen Heßler, 16.03.2015 2002 Gegründet in Freiburg, Deutschland 2002 Heute Büros in Freiburg, Frankfurt, Düsseldorf, Paris, Boston

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben!

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben! Take aways Mit Power BI wird Excel zum zentralen Tool für Self- Service BI End-End Self-Service Lösungsszenarien werden erstmals möglich Der Information Worker erhält ein flexibles Toolset aus bekannten

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Load Strategy Datenmodell DQ-Check-Methoden DWH-Probleme? Datenqualität aus der Sicht des One-DWH s Franz Hopfenwieser AGENDA 26 PT AGENDA

Load Strategy Datenmodell DQ-Check-Methoden DWH-Probleme? Datenqualität aus der Sicht des One-DWH s Franz Hopfenwieser AGENDA 26 PT AGENDA Datenqualität aus der Sicht des One- s Franz Hopfenwieser 18. Juni 2007 ONE, Franz HOPFENWIESER, 18.6.2007 SEITE 1 AGENDA 26 PT AGENDA DQ wird konstruiert One /MIS Aufgabenteilung OA/ Load Strategy Datenmodell

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Peter Garlock Manager Cloud Computing Austria. Cloud Computing. Heiter statt wolkig. 2011 IBM Corporation

Peter Garlock Manager Cloud Computing Austria. Cloud Computing. Heiter statt wolkig. 2011 IBM Corporation Peter Garlock Manager Cloud Computing Austria Cloud Computing Heiter statt wolkig 1 Was passiert in Europa in 2011? Eine Markteinschätzung Quelle: IDC European Cloud Top 10 predictions, January 2011 2

Mehr

Bessere Daten durch Stammdatenmanagement

Bessere Daten durch Stammdatenmanagement make connections share ideas be inspired Bessere Daten durch Stammdatenmanagement Mit SAS MDM, bessere Stammdaten für operativen Systeme make connections share ideas be inspired Overview Mit SAS MDM bessere

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU BLUEFORTE GmbH Dirk Lerner 25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU 1 Elemente des Data Vault (Basic) HUB

Mehr

What s New in SAS Data Management

What s New in SAS Data Management make connections share ideas be inspired What s New in SAS Data Management Der SAS Enterprise Data Integration Server 4.3 und 4.4: die wichtigsten Neuerungen und ein Ausblick auf 4.5 Hans-Rainer Pauli

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA

Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA Copyright o p y r i g h t 2012, 2 0 1 2, SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL,

Mehr

Agenda Azure Active Directory mehr als nur Benutzer und Gruppen

Agenda Azure Active Directory mehr als nur Benutzer und Gruppen @seklenk @PeNoWiMo Agenda Azure Active Directory mehr als nur Benutzer und Gruppen Azure Active Directory in a Nutshell Multifaktorauthentifizierung (MFA) MyApps Azure AD Application Proxy Azure AD Join

Mehr

Infografik Business Intelligence

Infografik Business Intelligence Infografik Business Intelligence Top 5 Ziele 1 Top 5 Probleme 3 Im Geschäft bleiben 77% Komplexität 28,6% Vertrauen in Zahlen sicherstellen 76% Anforderungsdefinitionen 24,9% Wirtschaflicher Ressourceneinsatz

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt

Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt Ian Perry Marco Lehmann Stefan Sander Darmstadt, 6.11.2012 Einmal Pie-Chart und zurück Ian Perry Sales Engineer - IP&S Client Technical

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Wir unternehmen IT. Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Karlsruhe, 30.09.2015 $id thgreiner Thorsten Greiner Teamleiter Software Development ConSol* Software GmbH, Düsseldorf

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

Ideen, Methoden, Werkzeuge

Ideen, Methoden, Werkzeuge Ideen, Methoden, Werkzeuge das IVM BHG Reform Framework Mag. Norbert Schlager-Weidinger Mag. Christian Mayr Mag. Markus Mitterer IVM Institut für Verwaltungsmanagement GmbH Name Herausforderungen der BHG

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA

BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA BI WIKI START-UP YOUR DWH PARTIZIPATIVE BI IM ZEITALTER VON BIG DATA Agenda VORSTELLUNG B.TELLIGENT WIE ENTSTEHT EINE KENNZAHL? WAS SIND METADATEN? AUFBAU UND FUNKTIONSWEISE DES BI WIKI LIVE DEMO ZUSAMMENFASSUNG

Mehr

PRODATIS CONSULTING AG. Folie 1

PRODATIS CONSULTING AG. Folie 1 Folie 1 Führend im Gartner Magic Quadranten für verteilte, interagierende SOA Projekte Oracle ist weltweit auf Rang 1 auf dem Markt der Enterprise Service Bus Suiten (ESB) für SOA Software 2010 26,3 %

Mehr

Oracle BI EE mit großen Datenmengen

Oracle BI EE mit großen Datenmengen Oracle BI EE mit großen Datenmengen Christian Casek Riverland Solutions GmbH München Schlüsselworte: Oracle BI EE, Oracle BI Applications, Informatica, RPD, große Datenmengen, Performance, Performanceoptimierung,

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

Data Flow One Engine V 3.1

Data Flow One Engine V 3.1 Data Flow One Engine V 3.1 Data Flow One Engine V3.1 Für eine gute Performance Data Flow One ist eine Standardsoftware im EAI-Bereich, welche es dem Benutzer ermöglicht, auf einfache, graphisch unterstützte

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Software AG Innovation Day 2014 Bonn, 2.7.2014 Dr. Carsten Bange, Geschäftsführer Business Application Research Center

Mehr

AnyWeb AG 2008 www.anyweb.ch

AnyWeb AG 2008 www.anyweb.ch Agenda SM7 Service Service Manager 7 Service Lifycycle Demo Q&A HP Software BTO System Service Business outcomes STRATEGY Project & Portfolio CIO Office SOA CTO Office APPLICATIONS Quality Quality Performance

Mehr

PROZESSCONTROLLING MIT MICROSOFT TOOLS

PROZESSCONTROLLING MIT MICROSOFT TOOLS PROZESSCONTROLLING MIT MICROSOFT TOOLS AGENDA In eigener Sache Processcontrolling mit Office Demo Excel Maps Processcontrolling mit SQL Server Rolle von SharePoint 2013 Demo Praxisbeispiel Einkaufsprozess

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

MetaNavigation der effizienteste Weg maximalen Mehrwert aus BI Metadaten zu ziehen

MetaNavigation der effizienteste Weg maximalen Mehrwert aus BI Metadaten zu ziehen MetaNavigation der effizienteste Weg maximalen Mehrwert aus BI Metadaten zu ziehen Pasquale Grippo Senior Manager/Business Unit Manager BI 18/20.10.2011 Oracle Business Analytics Summits Düsseldorf/München

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases

Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases Komponenten des Big Data Lab Konzepte und Technologien zum Bearbeiten von Big Data Use Cases Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. Fachbereich: Die richtigen Fragen SAS BIG DATA

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Private Cloud Management in der Praxis

Private Cloud Management in der Praxis Private Cloud Management in der Praxis Self Service Portal 2.0 Walter Weinfurter Support Escalation Engineer Microsoft Deutschland GmbH Merkmale von Private Cloud Infrastrukturen Private Cloud = Infrastruktur

Mehr

Social Insight für Ihren ServiceDesk

Social Insight für Ihren ServiceDesk Social Insight für Ihren ServiceDesk Business und IT in einer Konversation vereinen Karsten Partzsch, HP Software Presales Jürgen Lorry, HP Software Presales Die Herausforderung: Die Lücke zwischen traditioneller

Mehr

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management

Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Erfolgreiches Zusammenarbeiten von IT und Marketing am Beispiel von Meta Daten Management Sprecher: Uwe Nadler, Senior Managing Consultant 1 Marketing braucht unterschiedliche Informationen, um entsprechende

Mehr

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014 Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung

Mehr

10 Jahre Stammdaten-Management-Forum: Rückblick, Ausblick und Trends

10 Jahre Stammdaten-Management-Forum: Rückblick, Ausblick und Trends 10 Jahre Stammdaten-Management-Forum: Rückblick, Ausblick und Trends Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Köln, Juni 2015 10 Jahre Stammdatenmanagement Forum Stammdaten-Management

Mehr

Self Service BI der Anwender im Fokus

Self Service BI der Anwender im Fokus Self Service BI der Anwender im Fokus Frankfurt, 25.03.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC 1 Kernanforderung Agilität = Geschwindigkeit sich anpassen zu können Quelle: Statistisches

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

THE KNOWLEDGE PEOPLE. CompanyFlyer.indd 1 07.03.2016 11:48:05

THE KNOWLEDGE PEOPLE. CompanyFlyer.indd 1 07.03.2016 11:48:05 THE KNOWLEDGE PEOPLE CompanyFlyer.indd 1 07.03.2016 11:48:05 BE SMART IT-CONSULTING Smartes IT-Consulting für die Zukunft: Agilität, Dynamische IT, Komplexitätsreduzierung, Cloud, Industrie 4.0, Big Data

Mehr

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch

B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch B1 - Big Data Science: Tornado oder laues Lüftchen? Uetliberg, 15.09.2015 www.boak.ch WANN REDEN WIR VON BIG DATA SCIENCE? Big Data ist der technische Teil von Big Data Science. Mehr Daten! Mehr Datenquellen(-änderungen)!

Mehr

Ergebnisse der BARC-Studie Datenintegration

Ergebnisse der BARC-Studie Datenintegration Ergebnisse der BARC-Studie Datenintegration Patrick Keller BARC-Studie Data Warehousing und Datenintegration Data-Warehouse- und Datenintegrations- Werkzeuge im direkten Vergleich 1 Jahr Zugriff auf Studie

Mehr

SharePoint und IBM FileNet P8 Integration im Handel. Fred Rothert Teamleiter DMS REWE-Informations-Systeme GmbH

SharePoint und IBM FileNet P8 Integration im Handel. Fred Rothert Teamleiter DMS REWE-Informations-Systeme GmbH SharePoint und IBM FileNet P8 Integration im Handel Fred Rothert Teamleiter DMS REWE-Informations-Systeme GmbH Agenda Die REWE Group DMS bei der REWE Rahmenbedingungen und Anforderungen Infrastruktur Herausforderungen

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Dr. Martin Hebach, Cebit 2015 Senior Solution Architect mhebach@informatica.com Abstract Für Business Intelligence Aufgaben

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

IT SECURITY MANAGEMENT MIT ARIS CLOUD ENTERPRISE

IT SECURITY MANAGEMENT MIT ARIS CLOUD ENTERPRISE IT SECURITY MANAGEMENT MIT ARIS CLOUD ENTERPRISE Christoph Lorenz Software AG Cloud Service Operations SOFTWARE AG DIGITAL BUSINESS PLATFORM Die Software AG hat die weltweit erste Digital Business Platform

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Creating your future. IT. αacentrix

Creating your future. IT. αacentrix Creating your future. IT. αacentrix We bring IT into Business Context Creating your future. IT. Wir sind eine Strategie- und Technologieberatung mit starkem Fokus auf die IT-Megatrends Cloud, Mobility,

Mehr

Transparente SOA Governance mit Modellierung. OOP 2010 München, 28. Januar 2010, 12:30 Uhr Modeling Day

Transparente SOA Governance mit Modellierung. OOP 2010 München, 28. Januar 2010, 12:30 Uhr Modeling Day Transparente SOA Governance mit Modellierung OOP 2010 München, 28. Januar 2010, 12:30 Uhr Modeling Day I N H A L T 1. SOA Governance 2. Service Repositories 3. SOA Governance mit Modellen I N H A L T 1.

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte BI Operations Erfolgsfaktoren für einen effizienten Data Warehouse Betrieb

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte BI Operations Erfolgsfaktoren für einen effizienten Data Warehouse Betrieb 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle. CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC

Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle. CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Digitale Transformation: BI und Big Data treiben neue Geschäftsmodelle CeBIT, 18.3.2015 Dr. Carsten Bange, Gründer und Geschäftsführer BARC BARC: Expertise für datengetriebene Unternehmen Beratung Strategie

Mehr

Big Data für die Internet Sicherheit

Big Data für die Internet Sicherheit Big Data für die Internet Sicherheit Ralph Kemperdick Hans Wieser Microsoft 1 Mobile-first Data-driven Cloud-first 2 2 3 Messenger Wi nd ow s Liv e 4 5 Anwendung: Das Microsoft Cybercrime Center 6 Betrug

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Die IBM Netezza Architektur für fortgeschrittene Analysen

Die IBM Netezza Architektur für fortgeschrittene Analysen Michael Sebald IT Architect Netezza Die IBM Netezza Architektur für fortgeschrittene Analysen 2011 IBM Corporation Was ist das Problem aller Data Warehouse Lösungen? I / O Transaktionaler und analytischer

Mehr

BI und Data Warehouse

BI und Data Warehouse BI und Data Warehouse Die neue Welt der Daten mit 2012 Daniel Weinmann Product Marketing Manager Microsoft Deutschland GmbH Sascha Lorenz Consultant & Gesellschafter PSG Projekt Service GmbH Werner Gauer

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch Markus Ruf, Geschäftsführer mip GmbH Jens Kretzschmar, Senior

Mehr

Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb. Thomas Mattick, BBF GmbH

Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb. Thomas Mattick, BBF GmbH Vorteile einer standardisierten DV-orientierten BI-Architektur hinsichtlich Modellierung, Bewirtschaftung und Betrieb Thomas Mattick, BBF GmbH Vorstellung Thomas Mattick Projektauszug (BI) Auftragsabwicklung/Leistungsbewertung

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

Das generierte Data Warehouse

Das generierte Data Warehouse Das generierte Data Warehouse Aspekte beim Einsatz von DWH-Generatoren Peter Welker (Trivadis GmbH) BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1

Mehr

Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003

Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003 Data-Warehouse Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003 23.09.2003, Folie: 1 Data Warehouse Historie Architekturprinzip

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?!

MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?! MOBILE ON POWER MACHEN SIE IHRE ANWENDUNGEN MOBIL?! Oliver Steinhauer Sascha Köhler.mobile PROFI Mobile Business Agenda MACHEN SIE IHRE ANWENDUNGEN MOBIL?! HERAUSFORDERUNG Prozesse und Anwendungen A B

Mehr